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Abstract: Optical quantitative phase imaging (QPI) is a frequently used technique to recover biological
cells with high contrast in biology and life science for cell detection and analysis. However, the
quantitative phase information is difficult to directly obtain with traditional optical microscopy. In
addition, there are trade-offs between the parameters of traditional optical microscopes. Generally,
a higher resolution results in a smaller field of view (FOV) and narrower depth of field (DOF). To
overcome these drawbacks, we report a novel semi-supervised deep learning-based hybrid network
framework, termed ContransGAN, which can be used in traditional optical microscopes with different
magnifications to obtain high-quality quantitative phase images. This network framework uses a
combination of convolutional operation and multiheaded self-attention mechanism to improve
feature extraction, and only needs a few unpaired microscopic images to train. The ContransGAN
retains the ability of the convolutional neural network (CNN) to extract local features and borrows
the ability of the Swin-Transformer network to extract global features. The trained network can
output the quantitative phase images, which are similar to those restored by the transport of intensity
equation (TIE) under high-power microscopes, according to the amplitude images obtained by low-
power microscopes. Biological and abiotic specimens were tested. The experiments show that the
proposed deep learning algorithm is suitable for microscopic images with different resolutions and
FOVs. Accurate and quick reconstruction of the corresponding high-resolution (HR) phase images
from low-resolution (LR) bright-field microscopic intensity images was realized, which were obtained
under traditional optical microscopes with different magnifications.

Keywords: super-resolution; transformer; CNN; quantitative phase imaging; transport of intensity
equation

1. Introduction

Recent advances in microscopy have allowed imaging of biological processes with a
higher level of quality [1-4]. However, these microscopy techniques are usually limited
by sophisticated setups and special experimental conditions. In addition, the resolution of
optical microscopic imaging is limited by the numerical aperture (NA) of the microscope,
the wavelength of illuminating light, and the pixel spacing of the imaging recording device.
As a result, researchers in related fields are usually committed to dealing with the above
trade-off and improving the imaging efficiency [5].

Since the huge volume of data and the continuous improvement of the computing
power, artificial intelligence (AI) has developed rapidly. Over the past few years, deep
learning technology has been leading the development of Al and is widely used in com-
puter vision [6], natural language processing [7], speech recognition [8], and other fields.

Cells 2022, 11, 2394. https:/ /doi.org/10.3390/ cells11152394

https:/ /www.mdpi.com/journal/cells


https://doi.org/10.3390/cells11152394
https://doi.org/10.3390/cells11152394
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-5930-2351
https://orcid.org/0000-0003-3211-8866
https://doi.org/10.3390/cells11152394
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11152394?type=check_update&version=1

Cells 2022, 11, 2394

20f19

Deep learning uses multiple-layer neural networks to automatically analyze signals or data,
which has unique advantages in solving “inverse problems” and nonlinear problems. The
unique advantages of deep learning technology have also aroused the interest of optical
imaging scholars. Deep learning technology has been used to solve problems that lack effec-
tive solutions in optical computational imaging, such as optical tomography [9,10], optical
fiber imaging [11], ghost imaging [12], scattering imaging [13], and low-light environment
imaging [14]. At the same time, deep learning technology has also been widely used in var-
ious important directions of QPI, such as phase retrieval [14-18], super-resolution [19-23],
phase unwrapping [24-27], label-free detection [28], and various other image enhancement
techniques [29-32]. There is no exception for the use of deep learning in breaking through
the trade-off between the resolution and the field of view in microscopy [33,34]. The general
idea is to use a network to learn the relationship between LR and HR image pairs. The input
LR image will be converted into an HR image but the same field of view as an LR image is
maintained using the built network model. However, the required pairs of LR-HR data
are obtained by mechanically switching between the low NA and high-power objectives
in the experiment and numerical registration in pretreatment, which is a very tedious
process. In order to replace the time-consuming image registration processes, Zhang [35]
et al. degraded the captured HR microscopic images to simulate the LR microscopic image,
However, it is necessary to adjust the parameters repeatedly to ensure that it is similar
to the LR images, which are obtained by the experiment. In addition, the simulated LR
microscopic images are not consistent with the real image degeneration process, which
usually includes blurring, noise, and other defects. Further, some works [36-38] proposed
the use of unsupervised methods for super-resolution imaging, in order to reduce the
amount of training data. The feature extraction results of unsupervised methods are ran-
dom to some extent, so noise or blurring is easily amplified. Meanwhile, there are some
works that train the network using unpaired datasets [39,40]. This kind of semi-supervised
deep learning network framework greatly reduces the difficulty of datasets acquisition.
However, these works only involve conversions between image styles (such as intensity
images are converted to phase images) and do not simultaneously achieve image resolution
enhancement due to the traditional CNN network showing a poor performance in multiple
tasks. For example, it is difficult to achieve the expected imaging effect when performing
super-resolution and quantitative phase imaging at the same time [41].

Researchers have attempted to improve the network performance by adding the resid-
ual module, feedback mechanism, or attention mechanism [42-44] to CNN. However, these
frameworks still have some fundamental limitations. On the one hand, the convolution
operation of CNN is good at extracting local features but poot at extracting global features.
The lack of a global understanding ability results in a loss of rich information in LR micro-
scopic. On the other hand, the weights of the convolution network are fixed and it cannot
adapt to the change in the input dynamically.

In this paper, we propose an end-to-end deep learning framework, which is termed
ContransGAN, coupling CNN with Vision Transformer (ViT) [45] to obtain HR phase
information from LR intensity information. This framework retains the advantage of CNN
in extracting the details of local features, and enhances its ability to capture the global
feature. Furthermore, the network framework can be trained with unpaired images, which
ease the experiment and data preparation. The large FOVs HR quantitative phase images
can be reconstructed from the LR intensity image using the trained ContransGAN. We
verified the effectiveness of the ContransGAN algorithm and its generalization performance
by acquiring LR microscopic images of different samples under an inverted microscope.

2. Methods
2.1. Imaging Hardware and TIE Phase Extraction

TIE is an ideal candidate for phase imaging with partially coherent illuminations [46].
In relation to its closed-form solution, TIE offers a cost-efficient way of measuring the phase
by a single step. The phase recovery by TIE is standard and is briefly explained for the
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completeness of this paper. In the paraxial approximation, TIE can be expressed as the
following format

0 i) () <1>

where k = 27/A is the wave number, r represents the transverse spatial coordinates
perpendicular to the optical axis, ¢ is the phase distribution of the sample, V is the two-
dimensional gradient with respect to r, and I(r) represents the actual intensity distribution
along the optical axis in the plane of z = 0. The left-hand side of the Equation (1) represents
the axial differentiation of the intensity distribution. Solving the TIE requires the axial
differentiation to be obtained in advance. Specifically, the axial differentiation of the
intensity distribution is obtained by acquiring two slightly out-of-focus images with an
equal off-focus distance and opposite direction with respect to the center-focused image,
using the central finite difference method estimation [47]. As expressed in Equation (2), the
derivative of the intensity distribution is approximated by the finite difference as

(r) _I(r,Az) —I(r,—Az)
oz 2Az @

and the extracted phase can be expressed as the Equation (3)

r,Az) —I(r, —Az)
2Az

o(r) ~ kv 271 () vy 2L 3)
where V=2 is the inverse Laplacian operator. In our work, we solved the TIE using the
fast Fourier transform (FFT) algorithm [48] under the homogeneous Neumann boundary
condition [49].

As shown in Figure 1a, an inverted microscope (Nikon ECLIPSE Ti-S) was used for
the experimental setup. The illumination light source was a halogen lamp, and the central
wavelength of the filtered illumination light source was 550 nm. The beam passed through
the specimen and carried the specimen’s information, and then is focused by an objective.
The microscopic images were captured by a CCD camera through a tube lens. Under the
high-power microscope objective (40 x /0.65 NA), we captured the microscopic images
with the same out-of-focus depths (Az = 3 pm) on both sides of the focal plane of the
specimen and the corresponding in-focus microscopic images, and then extracted the
corresponding HR phase information with the TIE algorithm [50-53]. Under the low-power
microscope objective (4 x /0.1 NA, 10 x /0.25 NA, and 20 x /0.4 NA), we captured LR
microscopic images with different resolutions as the input of the ContransGAN.

In our experiment, the spatial coherence of the illumination light source is determined
by the size of the aperture diaphragm [54]. The spatial coherence is represented by the
coherence parameter S, which is the ratio of the condenser aperture to the objective NA.
As shown in Figure 1b, the contrast and resolution of the images that are recorded un-
der the corresponding aperture diaphragm are different. Adjusting the aperture of the
diaphragm to S ~ 0.3 ensures that the captured microscopic images have fine contrast, so
that quantitative phase information can be calculated by TIE [46,55]. Meanwhile, adjusting
the aperture of the diaphragm to S ~ 0.6 captures the LR microscopic images. Figure 1c,f
show the microscopic image obtained in the experiment and the corresponding LR phase
image recovered by TIE respectively. Figure 1d,e show the HR intensity image and the HR
quantitative phase image reconstructed by TIE respectively. The proposed deep learning
framework finally generates the HR phase images consistent with the Figure 1f.



Cells 2022, 11, 2394 40f19

P

(@) - White-light source

Collector Lens

",  Bandpass filter

g « Aperture diaphragm
S G Condenser lens
& Specimen

- E
| Objecti\
= +— F20x| Vective
10x |

k‘ P

=

Figure 1. Experimental setup and acquisition process of the original images. (a) Imaging hardware
setup. (b) Microscopic images obtained under a different aperture diaphragm. (c) The LR microscopic
image captured directly in the experiment. (d) The HR microscopic image captured directly in the
experiment. (e) The reconstructed HR quantitative phase image by TIE. (f) The reconstructed LR
quantitative phase image by TIE.

2.2. Creation of Datasets and Networks Training Details

The ContransGAN proposed in our work was designed based on the CycleGAN
architecture [56]. The network framework is essentially composed of two symmetrical
generative adversarial networks (GAN). The flow chart of the entire training is shown in
Figure 2a. The framework includes the generator Gap and generator Ggp for performing
conversion between images. Correspondingly, the discriminator D4 and discriminator Dy
are responsible for judging whether the images generated by the generators are close to the
reality. The training dataset consists of R4 (input, LR microscopic images) and Rp (ground
truth, HR quantitative phase images) respectively. During the process of training, the LR
microscopic image in Ry is input into the generator Gap to obtain Fg, and then Fp is input
into the discriminator Dg to extract eigenvalues, which are used to calculate Losspp. At
the same time, Fp is also input into Gga to generate REA. The training process of Rp is
consistent with that of Ro. As expressed in Equation (4), the overall loss function can be
written as

Loss = [Lossgan] + )\{Losscycle } = [Losspa + Losspp] + )‘{LosscycleABA + LOSScycleBAB} 4)

where A is used to adjust the proportion of Losscyce, and the value is set to 10. The
main function of Lossgan is to mutually promote the performance of the generators
and discriminators. The overall loss function enables the generators to produce images
approximating well to real ones; the main function of Losscyje is to ensure that the output
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images of the generators are different from the input images in style but consistent in
content. Specifically, as expressed in Equation (5), Lossgan can be written as

Lossgan = Losspa + Losspg
= Ey| (Dg(b) —1)°| +Ea| (1 — Ds(Gag(a)))’ (5)
+Ep [(DA(a) —1)%| + By |(1 ~ Da(Gpa(b)))?
where E[ represents the expected value of the random variable in square brackets; a

and b represent the images in dataset Ry versus Rp respectively. Losscyle is expressed in
Equation (6), which used to further optimize the model. It can be written as

Losscycle = LOSScycleaBA + LOSScycleBAB

= Ful| Goa(Gan(@) —a) [l1]+ Bolll Gas (Gpa(b) —b) |1 ©
where || - ||1 represents the norm L1.
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Figure 2. (a) Training flow diagram. (b) By segmenting the LR microscopic images with different
resolutions, the sub-images with an FOV approximately equal to the HR quantitative phase images
are obtained for training the ContransGAN. Orange and green rectangles are Region of Interest (ROI).

In this paper, unstained Hela cells and polystyrene microspheres (PSMs) are used
as the experimental specimens. Rj and Rp consist of 3500 unpaired LR microscopic
images and 3500 HR quantitative phase images respectively. It is worth noting that by
segmenting the original LR microscopic images, we obtain the LR microscopic images,
which are approximately equal to the FOVs of the HR quantitative phase images. As
shown in Figure 2b, the LR microscopic image that was captured by the 10 x /0.25 NA
objective is equally divided into 16 sub-images, so that the field-of-view range of each
sub-image is approximately equal to that of the 40 x /0.65 NA objective. The FOV of
each sub-image is approximately equal to the HR quantitative phase image reconstructed
by the corresponding microscopic images captured under the 40 x /0.65 NA objective.
In the process of model building, in order to enhance the network generalization ability
and improve the training efficiency and precision, we cropped or scaled the input LR
microscopic images by random image interpolation [57]. Among all the datasets, 85%
are used for the training dataset and the remaining 15% for the testing dataset. The
ContransGAN is implemented by python 3.6.8 based Pytorch 1.3.1 and the network training
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and testing on a PC with double Intel Aeon Gold 5117 CPU @ 2.00 GHz and 128 GB RAM,
using NVIDIA Forced RTX 2080 Ti GPU. The training process takes ~50 h for 80 epochs
(in a batch size of 2). Finally, the imaging speed of the trained ContransGAN for a phase
image can reach ~0.06 s.

2.3. Vision Transformer and Self-Attention Mechanism

Before introducing the generator and the discriminator, it is necessary to introduce the
relevant theories of the Transformer in detail. Transformer [58] is a classic model for natural
language processing (NLP) proposed by Google in 2017. It uses the self-attention mecha-
nism instead of the sequential structure of the recurrent neural network (RNN) [59] so that
the model can be trained in parallel and has global information. Recently, the Transformer
structure has been used in ViT. Figure 3a shows the part used for feature extraction in ViT,
which constructs a series of marker sequences by dividing each image into Patch with
position embedding, and then uses the Transformer module to extract parametric vectors
as visual representations. Position embedding records the sequence correlation between
sequence data. Compared with the characteristics of the RNN sequential input, the method
based on Transformer can directly input data in parallel and store the position relationship
between data, which greatly improves the computing speed and reduces the storage space.
In addition, with the increase in the number of network layers, the distribution of the data
will continue to change. In order to ensure the stability of the data feature distribution, a
layer of regularization [60] is introduced to reduce information loss.
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Figure 3. (a) The feature extraction process and the specific structure of ViT. (b) Calculation flow
chart of the self-attention mechanism in ViT.

The attention mechanism imitates the internal process of biological observation be-
havior and enhances the fineness of observation in some areas. Since it can quickly extract
the important features of sparse data, the attention mechanism is widely used in machine
translation, speech recognition [61], image processing [62], and other fields. The attention
mechanism has become an important concept in the field of neural networks. It is an
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advanced algorithm for multitasking, which is widely used to improve the interpretation
of neural networks, and helps to overcome some challenges in RNN, such as performance
degradation with the increase in the input length and computational inefficiency caused
by an unreasonable input sequence. The self-attention mechanism is the improvement
of the attention mechanism, which reduces the dependence of the network on external
information and is better at capturing the internal relevance of data or features. Transformer
introduces the self-attention mechanism to avoid the use of recursion in the neural network,
and completely relies on the self-attention mechanism to draw the global dependence
between the input and output. In the calculation, the input needs to be linearly transformed
to obtain the matrices: Query (Q), Key (K), and Value (V). As expressed in Equation (7), the
calculation formula can be written as

Vg

where dy is the number of columns of the matrix Q and K.

The calculation process of the self-attention mechanism is shown in Figure 3b and its
steps are as follows:

Step 1: Create three vectors. The input feature map is linearly projected into three
different spaces, resulting in three new vectors, namely Q, K, and V.

Step 2: Calculate the score.

Step 3: Divide by the scaling factor. The score in Step 2 divided by the scaling factor
square +/dy (the square root of the dimension of K), where the raw attention values are
all clustered around the highest scoring value. This step can play the role of scaling
and distraction.

Step 4: Normalization by the softmax [63]. The correlation between the current feature
vector and each feature vector in the feature graph is obtained by the softmax.

Step 5: Multiply each V vector by the softmax. Reduce the concern of uncorrelated
feature vectors.

Step 6: The accumulated weighted value vector generates an updated feature map
as output.

Here, since each location has information about other features in the same image,
the dependencies between long-distance interval features in space can be obtained. On
this basis, the essence of the multi-head self-attention mechanism used in ViT is to split
the three parameters Q, K, and V multiple times while the total number of parameters is
constant, and each group of split parameters is mapped to different subspaces of high-
dimensional space to calculate the attention weight to focus on different parts of the input.
After several parallel calculations, the attention information in all subspaces is merged. Due
to the different distribution of attention in different subspaces, multi-head self-attention is
actually looking for the correlation between the input data from different angles, so that
multiple relationships and subtle differences can be encoded. Multiple independent heads
pay attention to different information (such as global information and local information) to
extract more comprehensive and rich features.

. QKT
Attention(A, K, V) = softmax| —— |V (7)

2.4. Generator and Discriminator

Due to the introduction of the self-attention mechanism and multilayer perceptron
(MLP) structure [64], ViT can reflect complex spatial transformation and long-distance fea-
ture dependence, thus obtaining global feature representation. However, ViT ignores local
feature details, which reduces the distinguishability between high-frequency information
and low-frequency information.

In our work, the Contrans was proposed as the generator, which uses two sampling
channels to combine local features based on CNN and global representation based on Trans-
former to enhance representation learning. As shown in Figure 4a, the Contrans consists of
an improved ViT module branch (termed Swin-Transformer [65]) and a CNN branch. In the
process of training, ViT calculates the global self-attention of the feature maps. However,
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Swin-Transformer is a process in which the window is enlarged, and then the calculation
of self-attention is calculated in terms of the window, which is equivalent to introducing
the information of local aggregation. This process is very similar to the convolution in
CNN, just like the step size and convolution kernel size of CNN, so that the window is not
coincident. The difference is that CNN performs convolution calculation in each window,
and obtains a new window composed of eigenvalues, which represents the characteristics
of this window, while Swin-transformer calculates the self-attention value of each window
to obtain an updated window, then merges the windows through the operation of Patch
Merging, and continues to calculate the self-attention of the merged window (this process
is termed W-MSA), which can also reduce the computational complexity. As shown in
Figure 5a, the size of the input is 224 x 224 and the window size is 7 x 7, which is composed
of 7 x 7 Patch. A box in Figure 5a represents a window. The size of the Patch changes with
the operation of Patch Merging. For example, the Patch of the initial feature map is 4 x 4.
By splicing the Patch of the four surrounding windows, the Patch of the feature map of the
next layer becomes 8 x 8. By a series of operations, the Swin-Transformer downsampling
obtains the feature map with only 1 window and 49 Patch with a size of 32 x 32.

224 x224x1

' Convolutional Block
’ InstanceNorm Block
’ LeakyReKU Block

224x224x96 112x112x192 56x56x384 28x28x768 28x128x1
(4x4),2 (4x4),2 (4x4),2 (4x4),1 (4x4),1

Figure 4. Detailed schematic of the ContransGAN architecture. (a) The schematic of the generator.
(b) The schematic of the discriminator.
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Figure 5. (a) The downsampling process of Swin-Transformer. (b) Schematic diagram of the SW-MAS
operation flow. A, B and C are the regions which need to be moved in the previous feature map.

W-MSA operation reduces complexity but brings new problems, that is, a lack of
information exchange between windows that are not coincident. In order to exchange
information between windows, the region of the feature map can be divided and then
moved and spliced. As shown in Figure 5b, the initial feature map is divided into nine
regions. We move the upper left region (regions A, B, and C) to the lower right, and then
divide the spliced feature map into four equal regions, so that the information between each
window can be exchanged. After the downsampling of the Swin-Transformer and CNN
branches, the deconvolution operation (transpose convolution) is performed on the feature
map obtained by the CNN branch, and the result is spliced with the feature map generated
by the corresponding feature layer in the downsampling process. In the process of stitching,
to make the size of the three parts of the feature image consistent, the corresponding feature
map of the Swin-Transformer needs to be magnified four times by the Upsample operation.

The discriminator in ContransGAN is the PatchGAN [66] structure. As shown in
Figure 4b, the input image passes through a x4 kernel size convolution with stride 2 and
the LeakyReLu [67] activation function. The result is the input of the next part. The next
part consists of three repeating stages of a convolution layer, a normalization module and a
LeakyReLu module. The discriminator divides the input image into overlapping regions,
discriminates on each region, and averages the results. The local region of the image is
distinguished by the designed discriminator, which improves the ability to model the
high-frequency components, so the quality of the image is higher than that of the original
GAN’s discriminator.

3. Results and Discussion
3.1. Results of the Proposed Network

According to the formula of resolution [68], the theoretical resolution of the 4 x /0.1 NA
objective is 2.75 pm. In order to directly reflect the super-resolution effect of the trained
network, we first used PSMs with a diameter of 3 pm as specimens. As shown in Figure 6a,
the resolution of the reconstructed phase image can be gradually improved by converting a
microscope objective with a larger NA. When using the microscopic images captured by
the 40 x /0.65 NA objective, the quantitative phase images of PSMs with HR and accurate
surface morphology can be recovered. We used the microscopic images obtained by the
four different NA objectives as the training dataset to create R5. The trained network is
termed ContransGAN-AIL. In order to quantitatively evaluate the test results, we used the
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scale-invariant feature transform (SIFT) [69] algorithm to obtain the ground truth labels
matching the output by the original HR quantitative phase images, and then calculated the
structural similarity (SSIM) [70] values and peak signal-to-noise ratio (PSNR) [71] between
the output images and the ground truth labels. The test results of the network are shown
in Figure 6b and the results show that ContransGAN-AII can accurately reconstruct the
corresponding HR quantitative phase images for different resolution microscopic images,
and the SSIM values between the output images and the corresponding ground truth
labels are more than 0.90 and the PSNR values are greater than 31 dB. It preliminarily
proves that the proposed network framework can directly generate the corresponding
high-quality HR quantitative phase images through the LR microscopic images. Moreover,
with the improvement of the resolution of the input images, the quality of the output
images gradually improves. This is mainly because for ContransGAN-ALlI, the higher the
resolution of the input images, the richer the detailed structure information they contain,
and the more features can be extracted to establish the mapping relationship between
the LR microscopic images and the HR phase images to constrain the network to achieve
better results. In addition, to prove that the ContransGAN is quantitative, we randomly
calculated the phase heights of 50 PSMs generated by the ContransGAN-AIL As shown
in Figure 7, the result shows that the phase heights of these generated PSMs are all in the
range of 2.8 um-3.2 um, corresponding to a median value of 3.03 um, which is consistent
with expectations (the average relative error is less than 6%).
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Figure 6. Test results of PSMs by the ContransGAN-AIL (a) Microscopic images of the same FOV
under a different NA objective and the quantitative phase images reconstructed by TIE. (b) Results

for the corresponding region. Ground truth labels are the quantitative phase images under the
40 x /0.65 NA objective in (a); SSIM values and PSNR reflect the quantitative relationship between
ground truth labels and Outputl.
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Figure 7. The violin plot of the PSMs’ phase height. The thick black line in the middle indicates the
interquartile range, the thin black line extending from it represents the 95% confidence interval, the
white dot is the median value, and the red spots indicate the distribution of the PSMs’ phase heights.

In order to test the HR quantitative phase images’ generation quality of the network
for biological samples in optical imaging tasks, we used the microscopic images of Hela
cells by the 10 x /0.25 NA objective as the training dataset to create Ry. The trained
network is termed ContransGAN-Hela. As shown in Figure 8, the SSIM values between the
output images and the corresponding ground truth labels of the test results are all above
0.90 and the PSNR values are also greater than 31 dB. Comparing the amplified output
images with the ground truth labels, it can be easily found that the ContransGAN-Hela
can accurately perceive the high-frequency information in the LR intensity image, establish
the mapping relationship between the microscopic images and the quantitative phase
images, and give feedback on the output images. Therefore, the proposed ContransGAN
is also robust for biological samples, which usually have a complex structure. In order to
intuitively compare and analyze the image quality generated by the ContransGAN, we
calculated the average SSIM value and PSNR between all generated HR quantitative phase
images and the corresponding ground truth labels (Table 1). It can be concluded from the
table that the imaging quality of PSMs with a relatively simple structure is better than
that of complex biological samples. The main reason is that in the training process of the
two networks, in order to ensure the consistency of the network training process, we did
not change any parameters. Therefore, only the training images affect the final network
performance, so the complexity of the images in the training data determines the quality of
the network output image. The standard deviations (std) of SSIM and PSNR of different
types of specimens indicate that the more complex the image information is, the more
variables there are between the input and output, and the more difficult it is to establish
the mapping relationship.
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Figure 8. Test results of Hela cells by the ContransGAN-Hela. Amplitude represents the LR micro-
scopic images; ground truth represents the HR quantitative phase images reconstructed by TIE; output
represents the output images of the ContransGAN-Hela; SSIM and PSNR reflect the quantitative
relationship between the ground truth and output; the dotted frame below is the three-dimensional
visual phase distribution in the corresponding FOVs.

Table 1. Quality evaluation index of the test output image of different types of specimens.

Objective 4 x 0.1/NA 10 x 0.25/NA 20 x 0.4/NA 40 x 0.65/NA
Index PSNR SSIM PSNR SSIM PSNR SSIM PSNR
(std) (std) (std) (std) (std) (std) (std)
PSMs 34.032 0.952 35.214 0.975 38.963 0.976 39.331
(£1.0231)  (£0.0113)  (£0.9892)  (£0.0118)  (£0.9153)  (£0.0097)  (+0.8322)
Hela cells 31.751 0.922 32.171 0.939 34.751 0.943 35.380

(£1.2048)  (£0.0151)  (£1.1920)  (+0.0135)  (+1.0723)  (+0.0129)  (+1.0133)

3.2. Comparison of Network Performance

In this paper, compared with the CycleGAN, which uses U-Net [34] as the generator,
the difference between the proposed ContransGAN and the CycleGAN is that in order to
improve the feature extraction ability of the model, we propose a new generator, termed
Contrans. To compare the performance of the modification, we trained the CycleGAN
(U-Net as the generator) and S-Transformer (Swin-Transformer as the generator) with the
same training dataset. The other hyperparameters, including the learning rate, learning
epoch, and batch size, are the same as the ContransGAN-Hela. The results are shown in
Figure 9. Compared with the SSIM values and PSNR in Figure 8, the quantitative phase
images reconstructed by ContransGAN-Hela are more accurate and have a better image
quality. Although CycleGAN and S-Transformer can output a phase image that looks
similar in structure, their phase distribution is inaccurate and some areas of the image
are distorted. Specifically, in terms of detail generation, ContransGAN-Hela can extract
the features of the LR microscopic images as much as possible, so that the final generated
quantitative phase images are close to the real distribution. However, CycleGAN and
S-Transformer only use CNN or Transformer for feature extraction and cannot fully utilize
the information in LR microscopic images, so the generated quantitative phase images
lose many detailed features. For further comparison, we plotted the normalized phase
distribution curve along the implementation part in the dashed box. It is obvious that the
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yellow curve output by ContransGAN-Hela matches the purple curve of the ground-truth
label image, although in Figure 9 IV, since there is low contrast in the LR microscopic images,
the final result has some deviation from the real distribution, but the phase distribution is
almost the same. Relatively speaking, there is a considerable error between the red curve
and the curve output by CycleGAN and S-Transformer.
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Figure 9. Test results of Hela cells by the CycleGAN-Hela and S-Transformer. SSIM and PSNR
reflect the quantitative relationship between the ground truth and the network output phase images;
the curve on the right is the phase value curve of the realization part in the dotted line box in the
corresponding FOV. I, II, IIT and IV are different ROIs.

3.3. Generalization Capability and Accuracy Analysis

The above discussion is based on the microscopic images training network obtained
under the objective containing different NA. In order to further test the generalization
performance of the proposed ContransGAN, we used only the microscopic images of PSMs
captured under the 4 x /0.1 NA objective, the microscopic images of PSMs captured under
the 10 x /0.25 NA objective, and the microscopic images of Hela cells obtained under the
10 x /0.25 NA objective as training data to train the ContransGAN and obtained three
corresponding trained networks. Their corresponding test results are shown in Figure 10.
As shown in Figure 10a, the trained network of PSMs captured by the 4 x /0.1 NA objective
was tested by the other microscopic images captured with different NA objectives. It is
obvious that the proposed network can reconstruct high-quality quantitative phase images
with good forward compatibility. However, there is no good performance of the network
backward compatibility. As shown in Figure 10b,c, the network that was trained with the
microscopic images captured by the 10 x /0.25 NA objective was tested by the microscopic
images captured with the smaller NA objective (4 x /0.1 NA). The results show that the
network cannot be backward compatible to generate high-quality HR quantitative phase
images. It is not difficult to understand that when training with LR microscopic images, the
features extracted by the network to establish the mapping relationship between images
also exist in the corresponding HR microscopic images with richer information, so the
network trained with LR microscopic images can be better reconstructed to generate HR
quantitative microscopic images when using HR microscopic images as the network input.
Conversely, the network trained by the HR microscopic images with richer image informa-
tion cannot reflect the corresponding mapping relationship because of the lack of detail
features in the LR microscopic images, so the generated images have only approximate
morphological features. Especially when imaging biological samples with a relatively
complex structure, the network trained by the HR microscopic images is used to generate
quantitative phase images of LR microscopic images, which will also be affected by the
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noise in the original LR microscopic images. In our work, the HR quantitative phase images
corresponding to microscopic images with different resolutions can be quickly generated
by the trained ContransGAN, which trained with the microscopic images captured under
the 4 x /0.1 NA objective.
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Figure 10. Test results of microscopic images captured by different NA objectives using the Con-
transGAN trained by microscopic images captured by a certain NA objective. (a) The network
trained with the microscopic images under the 4 x /0.1 NA objective generated HR phase images
of the microscopic images captured by the higher NA objective. (b) The network trained with the
microscopic images under the 10 x /0.25 NA objective generated HR phase images of the microscopic
images captured by the higher NA objective. (c) The network trained with the microscopic images
under the 10 x /0.25 NA objective generated HR phase images of the microscopic images captured
by the other NA objectives.
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In practical optical imaging tasks, it is difficult to stay in-focus during long-term
observation or imaging. We need to consider the performance of the network if an object
is located at distances different from those in the training dataset. In order to further
test the generalization performance of the ContransGAN, we trained the network with
the out-of-focus microscopic images with an interval of 550 um between —10 pm and
10 pm from the focal plane under the 10 x /0.25 NA objective. Then, we tested the trained
network with the out-of-focus microscopic image captured at any distance from —10 pm
to 10 pm under the same objective and compared the generated results with the ground
truth labels. As shown in Figure 11a, the results indicated that the trained network is able
to correctly obtain the mapping relationship between LR out-of-focus microscopic images
and the corresponding in-focus HR quantitative phase images with the values of SSIM
versus PSNR being above 0.94 versus 34 dB, respectively. This means that the proposed
ContransGAN can perform auto-focusing, phase retrieval, and super-resolution imaging at
the same time.

Since phase retrieval through TIE requires capturing of microscopic intensity images
at the aperture of the diaphragm S ~ 0.3, and the acquisition of the LR microscopic images
requires constant switching of the aperture of the concentrator, it is natural to consider how
well the network can perform if the test microscopic images are captured with different
apertures of the concentrator. To test this, we trained the ContransGAN with the micro-
scopic images with different contrast obtained by different apertures of the diaphragm
under the 10 x /0.25 NA objective. We tested the trained network with the microscopic
images captured under the same objective at any aperture of the concentrator, and also
compared the generated results with the ground truth labels. As shown in Figure 11b, the
results indicated that the trained network is able to correctly give the mapping relationship
between LR microscopic images different contrast and the corresponding HR quantitative
phase images, with the values of SSIM versus PSNR being above 0.94 versus 34 dB, respec-
tively. This proves that even if the contrast of the LR microscopic intensity images is not
systematic, the proposed ContransGAN is robust and can provide an accurate prediction.
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Figure 11. (a) Test results of the LR out-of-focus microscopic images. (b) Test results of the LR
microscopic images with different contrast captured at different apertures of the concentrator.

4. Conclusions

In summary, we introduced a novel end-to-end deep learning-based network frame-
work for super-resolution QPL It can recover the corresponding HR quantitative phase
image from an LR microscopic intensity image captured by a commercial microscope.
The framework does not need to train with paired data. Using the proposed Contrans
as the generator, the feature extraction ability of the network is greatly enhanced and the
information in the LR microscopic images can be fully utilized. After training, the HR
quantitative phase information of the object can be quickly extracted from a single LR
microscopic intensity image with different resolutions. The feasibility of the proposed
framework for QPI was quantitatively proved by experiments. The framework can adapt
to various problems in optical microscopic imaging, such as defocus, different resolution,
and different contrast, and has strong robustness.
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