The Emerging Role of the Histone H2AK13/15 Ubiquitination: Mechanisms of Writing, Reading, and Erasing in DNA Damage Repair and Disease
<p>The cascade of events in the DNA damage response to double-strand breaks (DSBs). DSB induction, represented by a lightning bolt, leads to the phosphorylation of H2AX, resulting in γH2AX formation by ATM kinase. γH2AX recruits MDC1, which in turn recruits RNF8. RNF8-mediated ubiquitination of H1 or L3MBTL2 has been proposed to recruit RNF168. RNF168 mediates K63-linked (orange) ubiquitination on lysines 13 and 15 of H2A-type histones. H2AK13/15 ubiquitination serves as a recruitment platform for downstream mediators of the DSB response, including the BRCA1-A complex and 53BP1.</p> "> Figure 2
<p>Schematic representation of RNF168 functional domain. The RING domain, the E3 ligase catalytic domain, was responsible for the ubiquitination of H2AK13/15. The UDM1 domain plays a crucial role in the initial recruitment of RNF168 to DNA damage sites by binding to polyubiquitinated H1.0. Additionally, the UDM2 domain interacts with the H2AK13/15 ubiquitinated nucleosome, facilitating the amplification of RNF168 signaling.</p> "> Figure 3
<p>Selective ubiquitination of histone H2A by RNF168. (<b>A</b>) Schematic representation of RNF168-mediated ubiquitination at K13/K15 on histone H2A. No significant ubiquitination is observed at lysines 118 and 119 (K118/K119) of H2A or lysine 120 (K120) of H2B, as indicated by the cross symbol (<b>B</b>) Structural model showing the nucleosome core particle, highlighting the targeted lysine residues (H2AK13/15, H2AK118/119, and H2BK120) and their spatial positioning relative to the DNA and histone octamer. (Figure created with Chimerax 1.9).</p> "> Figure 4
<p>Structural model of the RNF168-UbcH5c-ubiquitin complex on the nucleosome. (<b>A</b>,<b>B</b>) RNF168 (orange) interacts with the nucleosome core particle via histone H2A (yellow) and DNA (gray). UbcH5c (blue) facilitates ubiquitin (Ub, yellow) transfer. Two orientations of the complex are shown (90° rotation). (<b>C</b>) The picture illustrates the spatial positioning of ubiquitin in its “close” (Ub close, green) and “back” (Ub back, yellow) conformations relative to the nucleosome. (<b>D</b>) Close-up view of the salt bridge formation between RNF168 and the acidic patch of H2B, along with ion-dipole interactions. (<b>E</b>) Close-up view of salt bridge formation between RNF168 and H2A, along with additional interactions at the interface. (<b>F</b>) Close-up view of hydrophobic and polar interactions between the RNF168 RING domain and UbcH5c. (<b>G</b>) Close-up view of UbcH5c and its α-helix positioned above the SHL 4.5 region of nucleosomal DNA.</p> "> Figure 5
<p>PTMs and missense mutations of RNF168. This schematic aligns the domains of the RNF168 protein (residues 1–571) with PTMs and mutation data. The upper section shows the types and locations of RNF168 PTMs, including phosphorylation (yellow), ubiquitination (blue), and SUMOylation (orange). K468 and S411 are key ubiquitination sites, while S134 and K158 are phosphorylation sites associated with the functional regulation of RNF168. The lower section highlights missense mutations related to RNF168, with specific emphasis on S59L, P4L, and R407Q, which are closely associated with functional loss or abnormal activation of RNF168. Data sources: St. Jude ProteinPaint (<a href="https://proteinpaint.stjude.org/" target="_blank">https://proteinpaint.stjude.org/</a>, accessed on 1 January 2025) and PhosphoSitePlus (<a href="https://www.phosphosite.org/homeAction.action" target="_blank">https://www.phosphosite.org/homeAction.action</a>, accessed on 1 January 2025).</p> "> Figure 6
<p>Crosstalk between H1 ubiquitination and H2AK13/15 ubiquitination. The K63-linked polyubiquitinated H1 recruits the UDM1 domain of RNF168 to facilitate the H2AK13/15 ubiquitination by RNF168 RING domain and UbcH5c.</p> "> Figure 7
<p>Schematic Diagram of the Binding Mechanism of 53BP1 Protein to Modified Nucleosomes. (<b>A</b>,<b>B</b>) Cartoon depiction of 53BP1(1484−1972) recognizing the γH2AXK15ub-H4K20me2-modified nucleosome. (<b>C</b>) Cryo-EM structure of the 53BP1<sup>TUB</sup>-bound complex formed with the γH2AXK15ub-H4K20me2 nucleosome.</p> "> Figure 8
<p>The BARD1 domain composition, the BRCA1-BARD1 complex in DNA repair pathway regulation, and the structure of BARD1 and H2AK15ub nucleosome complex. (<b>A</b>) Schematic representation of BARD1 domains, highlighting the RING domain (residues 26–126), ankyrin repeat domain (ARD, residues 425–545), and BRCT domain (residues 567–777). (<b>B</b>) A proposed model further illustrates the bivalent recognition of nucleosomes by BARD1, with a logic gate mechanism that highlights how the interplay of H2AK15ub and H4K20 post-translational modification states govern the decision between HR and NHEJ. (<b>C</b>,<b>D</b>) Cryo-EM reconstruction (left and right) of the BARD1 complexed with the H2AK13/15ub nucleosome is shown in two orientations, emphasizing the interaction interfaces between the BARD1 (BRCT and ARD domains) and the ubiquitin and nucleosome components (H2A, H2B, H3, H4, and DNA).</p> "> Figure 9
<p>Deubiquitinases (USP16, USP3, USP51, POH1, and USP44) regulate H2AK13/15ub. USP16, USP3, and USP51 directly remove H2AK13/15ub, while USP44 and POH1 indirectly regulate it by affecting upstream ubiquitination events. Note: USP16, USP3, USP51, and USP44 belong to the USP family; POH1 belongs to the JAMM/MPN+ family.</p> "> Figure 10
<p>Disease associations of H2AK13/15 ubiquitination. (<b>A</b>) Mutations in the RNF168 gene (e.g., A133fsX and Q442fsX) disrupt H2AK13/15 ubiquitination. (<b>B</b>) The BRCA1/BARD1 complex, 53BP1 repair factors showed abnormal localization and abundance, failing to be effectively recruited by H2AK13/15ub to DSB sites. Defective H2AK13/15 ubiquitination reduces the efficiency of DNA damage repair in neurons. (<b>C</b>) RNF168 deficiency significantly reduces CSR efficiency, declining the efficiency of CSR to IgA and weakening immune responses. (<b>D</b>) BRCA1 promotes HR repair by interacting with H2AK13/15 ubiquitination. BRCA1 mutations impair HR repair, resulting in genomic instability. Concurrent BRCA1 and BARD1 mutations (e.g., p.Glu652fs) synergistically disrupt DNA repair mechanisms, leading to significantly increased breast cancer risk. Figure created with <a href="http://BioRender.com" target="_blank">BioRender.com</a>.</p> ">
Abstract
:1. Introduction
2. Writing: RNF168-Mediated H2AK13/15ub
2.1. Discovery, Function, and Domain Composition of RNF168
2.2. RNF168 Specifically Ubiquitinates Nucleosomal H2AK13/15 Sites
2.3. Crosstalk of H1 Ubiquitination and H2AK13/15 Ubiquitination
3. Reading: Effector Proteins of H2AK13/15ub
3.1. 53BP1
3.1.1. Mono-Ubiquitinated H2AK15 Recognition by 53BP1
3.1.2. Di-Ubiquitinated H2AK13/15 Recognition by 53BP1
3.1.3. The Second-Tier Modifications of H2AK15ub: K6ac, T12ph
3.1.4. 53BP1 Recruitment Influenced by Other Histone Modifications
3.2. RAD18
3.3. BARD1
3.3.1. Discovery and Functionality of BARD1
3.3.2. Mechanism of BARD1 Recognition of H2AK13/15ub
4. Erasing: H2AK13/15 Deubiquitinases
4.1. USP3
4.2. USP16
4.3. USP44
4.4. USP51
4.5. POH1
5. H2AK13/15 Ubiquitination and Disease
5.1. RIDDLE Syndrome
5.2. Neurological Diseases
5.3. Immune System Diseases
5.4. Breast Cancer
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kornberg, R.D. Chromatin structure: A repeating unit of histones and DNA. Science 1974, 184, 868–871. [Google Scholar] [CrossRef]
- Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef]
- Tessarz, P.; Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell. Biol. 2014, 15, 703–708. [Google Scholar] [CrossRef]
- Rothbart, S.B.; Strahl, B.D. Interpreting the language of histone and DNA modifications. Biochim. Biophys. Acta 2014, 1839, 627–643. [Google Scholar] [CrossRef]
- Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016, 17, 487–500. [Google Scholar] [CrossRef]
- Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature 2000, 403, 41–45. [Google Scholar] [CrossRef]
- Tamburri, S.; Lavarone, E.; Fernández-Pérez, D.; Conway, E.; Zanotti, M.; Manganaro, D.; Pasini, D. Histone H2AK119 mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol. Cell 2020, 77, 840–856.e845. [Google Scholar] [CrossRef]
- Cao, R.; Tsukada, Y.; Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell. 2005, 20, 845–854. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Erdjument-Bromage, H.; Vidal, M.; Tempst, P.; Jones, R.S.; Zhang, Y. Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004, 431, 873–878. [Google Scholar] [CrossRef]
- Mattiroli, F.; Vissers, J.H.; van Dijk, W.J.; Ikpa, P.; Citterio, E.; Vermeulen, W.; Marteijn, J.A.; Sixma, T.K. RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell 2012, 150, 1182–1195. [Google Scholar] [CrossRef]
- McGinty, R.K.; Kim, J.; Chatterjee, C.; Roeder, R.G.; Muir, T.W. Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 2008, 453, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.H.; Xu, R.-M.; Zhang, Y.; Struhl, K. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J. Biol. Chem. 2002, 277, 34655–34657. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Shukla, A.; Schneider, J.; Swanson, S.K.; Washburn, M.P.; Florens, L.; Bhaumik, S.R.; Shilatifard, A. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 2007, 131, 1084–1096. [Google Scholar] [CrossRef]
- Debelouchina, G.T.; Gerecht, K.; Muir, T.W. Ubiquitin utilizes an acidic surface patch to alter chromatin structure. Nat. Chem. Biol. 2017, 13, 105–110. [Google Scholar] [CrossRef]
- Kalb, R.; Mallery, D.L.; Larkin, C.; Huang, J.T.; Hiom, K. BRCA1 is a histone-H2A-specific ubiquitin ligase. Cell Rep. 2014, 8, 999–1005. [Google Scholar] [CrossRef]
- Krajewski, W.A. Effects of DNA Superhelical Stress on the Stability of H2B-Ubiquitylated Nucleosomes. J. Mol. Biol. 2018, 430, 5002–5014. [Google Scholar] [CrossRef]
- Wu, L.; Zee, B.M.; Wang, Y.; Garcia, B.A.; Dou, Y. The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation. Mol. Cell 2011, 43, 132–144. [Google Scholar] [CrossRef]
- Wu, L.; Li, L.; Zhou, B.; Qin, Z.; Dou, Y. H2B ubiquitylation promotes RNA Pol II processivity via PAF1 and pTEFb. Mol. Cell 2014, 54, 920–931. [Google Scholar] [CrossRef]
- Ai, H.; Tong, Z.; Deng, Z.; Shi, Q.; Tao, S.; Sun, G.; Liang, J.; Sun, M.; Wu, X.; Zheng, Q. Mechanism of nucleosomal H2A K13/15 monoubiquitination and adjacent dual monoubiquitination by RNF168. Nat. Chem. Biol. 2024, 31, 1–13. [Google Scholar] [CrossRef]
- Horn, V.; Uckelmann, M.; Zhang, H.; Eerland, J.; Aarsman, I.; le Paige, U.B.; Davidovich, C.; Sixma, T.K.; van Ingen, H. Structural basis of specific H2A K13/K15 ubiquitination by RNF168. Nat. Commun. 2019, 10, 1751. [Google Scholar] [CrossRef]
- Fradet-Turcotte, A.; Canny, M.D.; Escribano-Díaz, C.; Orthwein, A.; Leung, C.C.; Huang, H.; Landry, M.-C.; Kitevski-LeBlanc, J.; Noordermeer, S.M.; Sicheri, F. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature 2013, 499, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.R.; Clifford, G.; Bonnet, C.; Groth, A.; Wilson, M.D.; Chapman, J.R. BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination. Nature 2021, 596, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Suberbielle, E.; Djukic, B.; Evans, M.; Kim, D.H.; Taneja, P.; Wang, X.; Finucane, M.; Knox, J.; Ho, K.; Devidze, N. DNA repair factor BRCA1 depletion occurs in Alzheimer brains and impairs cognitive function in mice. Nat. Commun. 2015, 6, 8897. [Google Scholar] [CrossRef]
- Santos, M.A.; Huen, M.S.; Jankovic, M.; Chen, H.-T.; López-Contreras, A.J.; Klein, I.A.; Wong, N.; Barbancho, J.L.; Fernandez-Capetillo, O.; Nussenzweig, M.C. Class switching and meiotic defects in mice lacking the E3 ubiquitin ligase RNF8. J. Exp. Med. 2010, 207, 973–981. [Google Scholar] [CrossRef]
- Patel, P.S.; Abraham, K.J.; Guturi, K.K.N.; Halaby, M.-J.; Khan, Z.; Palomero, L.; Ho, B.; Duan, S.; St-Germain, J.; Algouneh, A. RNF168 regulates R-loop resolution and genomic stability in BRCA1/2-deficient tumors. J. Clin. Investig. 2021, 131, e140105. [Google Scholar] [CrossRef]
- Sharma, N.; Zhu, Q.; Wani, G.; He, J.; Wang, Q.-e.; Wani, A.A. USP3 counteracts RNF168 via deubiquitinating H2A and γH2AX at lysine 13 and 15. Cell Cycle 2014, 13, 106–114. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, H.; Wang, H. The histone H2A deubiquitinase USP16 interacts with HERC2 and fine-tunes cellular response to DNA damage. J. Biol. Chem. 2014, 289, 32883–32894. [Google Scholar] [CrossRef]
- Mosbech, A.; Lukas, C.; Bekker-Jensen, S.; Mailand, N. The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases. J. Biol. Chem. 2013, 288, 16579–16587. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Liu, J.; Cheruiyot, A.; Lee, J.H.; Ordog, T.; Lou, Z.; You, Z.; Zhang, Z. USP51 deubiquitylates H2AK13,15ub and regulates DNA damage response. Genes Dev. 2016, 30, 946–959. [Google Scholar] [CrossRef]
- Verma, R.; Aravind, L.; Oania, R.; McDonald, W.H.; Yates, J.R., 3rd; Koonin, E.V.; Deshaies, R.J. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002, 298, 611–615. [Google Scholar] [CrossRef]
- Butler, L.R.; Densham, R.M.; Jia, J.; Garvin, A.J.; Stone, H.R.; Shah, V.; Weekes, D.; Festy, F.; Beesley, J.; Morris, J.R. The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response. EMBO J. 2012, 31, 3918–3934. [Google Scholar] [CrossRef] [PubMed]
- Pinato, S.; Scandiuzzi, C.; Arnaudo, N.; Citterio, E.; Gaudino, G.; Penengo, L. RNF168, a new RING finger, MIU-containing protein that modifies chromatin by ubiquitination of histones H2A and H2AX. BMC Mol. Biol. 2009, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Chen, J. MRE11-RAD50-NBS1 complex dictates DNA repair independent of H2AX. J. Biol. Chem. 2010, 285, 1097–1104. [Google Scholar] [CrossRef]
- Thorslund, T.; Ripplinger, A.; Hoffmann, S.; Wild, T.; Uckelmann, M.; Villumsen, B.; Narita, T.; Sixma, T.K.; Choudhary, C.; Bekker-Jensen, S.; et al. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature 2015, 527, 389–393. [Google Scholar] [CrossRef]
- Nowsheen, S.; Aziz, K.; Aziz, A.; Deng, M.; Qin, B.; Luo, K.; Jeganathan, K.B.; Zhang, H.; Liu, T.; Yu, J.; et al. L3MBTL2 orchestrates ubiquitin signalling by dictating the sequential recruitment of RNF8 and RNF168 after DNA damage. Nat. Cell. Biol. 2018, 20, 455–464. [Google Scholar] [CrossRef]
- Gatti, M.; Pinato, S.; Maspero, E.; Soffientini, P.; Polo, S.; Penengo, L. A novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 ubiquitin ligase. Cell Cycle 2012, 11, 2538–2544. [Google Scholar] [CrossRef]
- Doil, C.; Mailand, N.; Bekker-Jensen, S.; Menard, P.; Larsen, D.H.; Pepperkok, R.; Ellenberg, J.; Panier, S.; Durocher, D.; Bartek, J. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 2009, 136, 435–446. [Google Scholar] [CrossRef]
- Hu, Q.; Botuyan, M.V.; Cui, G.; Zhao, D.; Mer, G. Mechanisms of ubiquitin-nucleosome recognition and regulation of 53BP1 chromatin recruitment by RNF168/169 and RAD18. Mol. Cell 2017, 66, 473–487.e479. [Google Scholar] [CrossRef]
- Hu, Q.; Zhao, D.; Cui, G.; Bhandari, J.; Thompson, J.R.; Botuyan, M.V.; Mer, G. Mechanisms of RNF168 nucleosome recognition and ubiquitylation. Mol. Cell 2024, 84, 839–853.e812. [Google Scholar] [CrossRef]
- Takahashi, T.S.; Hirade, Y.; Toma, A.; Sato, Y.; Yamagata, A.; Goto-Ito, S.; Tomita, A.; Nakada, S.; Fukai, S. Structural insights into two distinct binding modules for Lys63-linked polyubiquitin chains in RNF168. Nat. Commun. 2018, 9, 170. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, J.; Xu, J.; Yang, H.; Li, X.; Hou, Y.; Zhao, Y.; Xue, M.; Wang, B.; Yu, N. RNF 168 facilitates oestrogen receptor α transcription and drives breast cancer proliferation. J. Cell. Mol. Med. 2018, 22, 4161–4170. [Google Scholar] [CrossRef] [PubMed]
- Gou, Y.; Jin, D.; He, S.; Han, S.; Bai, Q. RNF168 is highly expressed in esophageal squamous cell carcinoma and contributes to the malignant behaviors in association with the Wnt/β-catenin signaling pathway. Aging (Albany NY) 2021, 13, 5403–5414. [Google Scholar] [CrossRef]
- Yu, N.; Xue, M.; Wang, W.; Xia, D.; Li, Y.; Zhou, X.; Pang, D.; Lu, K.; Hou, J.; Zhang, A. RNF 168 facilitates proliferation and invasion of esophageal carcinoma, possibly via stabilizing STAT 1. J. Cell. Mol. Med. 2019, 23, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Kongsema, M.; Zona, S.; Karunarathna, U.; Cabrera, E.; Man, E.P.; Yao, S.; Shibakawa, A.; Khoo, U.-S.; Medema, R.H.; Freire, R. RNF168 cooperates with RNF8 to mediate FOXM1 ubiquitination and degradation in breast cancer epirubicin treatment. Oncogenesis 2016, 5, e252. [Google Scholar] [CrossRef] [PubMed]
- Pommier, Y.; Sun, Y.; Huang, S.-y.N.; Nitiss, J.L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell. Biol. 2016, 17, 703–721. [Google Scholar] [CrossRef]
- Guturi, K.K.N.; Bohgaki, M.; Bohgaki, T.; Srikumar, T.; Ng, D.; Kumareswaran, R.; El Ghamrasni, S.; Jeon, J.; Patel, P.; Eldin, M.S. RNF168 and USP10 regulate topoisomerase IIα function via opposing effects on its ubiquitylation. Nat. Commun. 2016, 7, 12638. [Google Scholar] [CrossRef]
- Stewart, G.S.; Panier, S.; Townsend, K.; Al-Hakim, A.K.; Kolas, N.K.; Miller, E.S.; Nakada, S.; Ylanko, J.; Olivarius, S.; Mendez, M. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 2009, 136, 420–434. [Google Scholar] [CrossRef]
- Xie, X.; Hu, H.; Tong, X.; Li, L.; Liu, X.; Chen, M.; Yuan, H.; Xie, X.; Li, Q.; Zhang, Y. The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168. Nat. Cell Biol. 2018, 20, 320–331. [Google Scholar] [CrossRef]
- Boeing, S.; Williamson, L.; Encheva, V.; Gori, I.; Saunders, R.E.; Instrell, R.; Aygün, O.; Rodriguez-Martinez, M.; Weems, J.C.; Kelly, G.P. Multiomic analysis of the UV-induced DNA damage response. Cell Rep. 2016, 15, 1597–1610. [Google Scholar] [CrossRef]
- Akimov, V.; Barrio-Hernandez, I.; Hansen, S.V.; Hallenborg, P.; Pedersen, A.-K.; Bekker-Jensen, D.B.; Puglia, M.; Christensen, S.D.; Vanselow, J.T.; Nielsen, M.M. UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat. Struct. Mol. Biol. 2018, 25, 631–640. [Google Scholar] [CrossRef]
- Sharma, K.; D’Souza, R.C.; Tyanova, S.; Schaab, C.; Wiśniewski, J.R.; Cox, J.; Mann, M. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 2014, 8, 1583–1594. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, I.A.; D’souza, R.C.; Yang, B.; Verlaan-de Vries, M.; Mann, M.; Vertegaal, A.C. Uncovering global SUMOylation signaling networks in a site-specific manner. Nat. Struct. Mol. Biol. 2014, 21, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Hayes, T.F.; Benaich, N.; Goldie, S.J.; Sipilä, K.; Ames-Draycott, A.; Cai, W.; Yin, G.; Watt, F.M. Integrative genomic and functional analysis of human oral squamous cell carcinoma cell lines reveals synergistic effects of FAT1 and CASP8 inactivation. Cancer Lett. 2016, 383, 106–114. [Google Scholar] [CrossRef]
- Lee, J.-K.; Wang, J.; Sa, J.K.; Ladewig, E.; Lee, H.-O.; Lee, I.-H.; Kang, H.J.; Rosenbloom, D.S.; Camara, P.G.; Liu, Z. Spatiotemporal genomic architecture informs precision oncology in glioblastoma. Nat. Genet. 2017, 49, 594–599. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y.; Cheng, C.; Cui, H.; Cheng, L.; Kong, P.; Wang, J.; Li, Y.; Chen, W.; Song, B. Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma. Am. J. Hum. Genet. 2015, 96, 597–611. [Google Scholar] [CrossRef]
- Gatti, M.; Pinato, S.; Maiolica, A.; Rocchio, F.; Prato, M.G.; Aebersold, R.; Penengo, L. RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep. 2015, 10, 226–238. [Google Scholar] [CrossRef]
- Kelliher, J.L.; West, K.L.; Gong, Q.; Leung, J.W. Histone H2A variants alpha1-extension helix directs RNF168-mediated ubiquitination. Nat. Commun. 2020, 11, 2462. [Google Scholar] [CrossRef]
- Mattiroli, F.; Uckelmann, M.; Sahtoe, D.D.; Van Dijk, W.J.; Sixma, T.K. The nucleosome acidic patch plays a critical role in RNF168-dependent ubiquitination of histone H2A. Nat. Commun. 2014, 5, 3291. [Google Scholar] [CrossRef]
- Lou, Z.; Minter-Dykhouse, K.; Franco, S.; Gostissa, M.; Rivera, M.A.; Celeste, A.; Manis, J.P.; Van Deursen, J.; Nussenzweig, A.; Paull, T.T. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol. Cell 2006, 21, 187–200. [Google Scholar] [CrossRef]
- Shi, Q.; Deng, Z.; Zhang, L.; Tong, Z.; Li, J.B.; Chu, G.C.; Ai, H.; Liu, L. Promotion of RNF168-Mediated Nucleosomal H2A Ubiquitylation by Structurally Defined K63-Polyubiquitylated Linker Histone H1. Angew. Chem. Int. Ed. 2024, 64, e202413651. [Google Scholar] [CrossRef]
- Franz, P.; Delvaux de Fenffe, C.M.; Fierz, B. A Site-Specific Click Chemistry Approach to Di-Ubiquitylate H1 Variants Reveals Position-Dependent Stimulation of the DNA Repair Protein RNF168. Angew. Chem. Int. Ed. 2024, 63, e202408435. [Google Scholar] [CrossRef]
- Iwabuchi, K.; Bartel, P.L.; Li, B.; Marraccino, R.; Fields, S. Two cellular proteins that bind to wild-type but not mutant p53. Proc. Natl. Acad. Sci. USA 1994, 91, 6098–6102. [Google Scholar] [CrossRef]
- Schultz, L.B.; Chehab, N.H.; Malikzay, A.; Halazonetis, T.D. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell Biol. 2000, 151, 1381–1390. [Google Scholar] [CrossRef]
- Anderson, L.; Henderson, C.; Adachi, Y. Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol. Cell Biol. 2001, 21, 1719–1729. [Google Scholar] [CrossRef]
- Rappold, I.; Iwabuchi, K.; Date, T.; Chen, J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage–signaling pathways. J. Cell. Biol. 2001, 153, 613–620. [Google Scholar] [CrossRef]
- Li, J.-B.; Qi, Y.-K.; He, Q.-Q.; Ai, H.-S.; Liu, S.-l.; Wang, J.-X.; Zheng, J.-S.; Liu, L.; Tian, C. Chemically synthesized histone H2A Lys13 di-ubiquitination promotes binding of 53BP1 to nucleosomes. Cell Res. 2018, 28, 257–260. [Google Scholar] [CrossRef]
- Liang, J.; Gong, Q.; Li, Y.; Zheng, Y.; Zheng, J.-S.; Tian, C.; Li, J.-B. Thiirane linkers directed histone H2A diubiquitination suggests plasticity in 53BP1 recognition. Chem. Commun. 2019, 55, 12639–12642. [Google Scholar] [CrossRef]
- Lu, X.; Tang, M.; Zhu, Q.; Yang, Q.; Li, Z.; Bao, Y.; Liu, G.; Hou, T.; Lv, Y.; Zhao, Y. GLP-catalyzed H4K16me1 promotes 53BP1 recruitment to permit DNA damage repair and cell survival. Nucleic Acids Res. 2019, 47, 10977–10993. [Google Scholar] [CrossRef]
- Kleiner, R.E.; Verma, P.; Molloy, K.R.; Chait, B.T.; Kapoor, T.M. Chemical proteomics reveals a γH2AX-53BP1 interaction in the DNA damage response. Nat. Chem. Biol. 2015, 11, 807–814. [Google Scholar] [CrossRef]
- Chu, G.-C.; Liang, L.-J.; Zhao, R.; Guo, Y.-Y.; Li, C.-T.; Zuo, C.; Ai, H.; Hua, X.; Li, Z.-C.; Li, Y.-M. Ferricyanide-Promoted Oxidative Activation and Ligation of Protein Thioacids in Neutral Aqueous Media. CCS 2024, 6, 2031–2043. [Google Scholar] [CrossRef]
- Walser, F.; Mulder, M.P.; Bragantini, B.; Burger, S.; Gubser, T.; Gatti, M.; Botuyan, M.V.; Villa, A.; Altmeyer, M.; Neri, D. Ubiquitin phosphorylation at Thr12 modulates the DNA damage response. Mol. Cell 2020, 80, 423–436.e429. [Google Scholar] [CrossRef]
- Ai, H.; Chu, G.-C.; Gong, Q.; Tong, Z.-B.; Deng, Z.; Liu, X.; Yang, F.; Xu, Z.; Li, J.-B.; Tian, C. Chemical synthesis of post-translationally modified H2AX reveals redundancy in interplay between histone phosphorylation, ubiquitination, and methylation on the binding of 53BP1 with nucleosomes. J. Am. Chem. Soc. 2022, 144, 18329–18337. [Google Scholar] [CrossRef]
- Wilson, M.D.; Benlekbir, S.; Fradet-Turcotte, A.; Sherker, A.; Julien, J.-P.; McEwan, A.; Noordermeer, S.M.; Sicheri, F.; Rubinstein, J.L.; Durocher, D. The structural basis of modified nucleosome recognition by 53BP1. Nature 2016, 536, 100–103. [Google Scholar] [CrossRef]
- Cassier-Chauvat, C.; Fabre, F. A similar defect in UV-induced mutagenesis conferred by the rad6 and rad18 mutations of Saccharomyces cerevisiae. Mutat. Res. 1991, 254, 247–253. [Google Scholar] [CrossRef]
- Palek, M.; Palkova, N.; Kleiblova, P.; Kleibl, Z.; Macurek, L. RAD18 directs DNA double-strand break repair by homologous recombination to post-replicative chromatin. Nucleic Acids Res. 2024, 52, 7687–7703. [Google Scholar] [CrossRef]
- Tateishi, S.; Sakuraba, Y.; Masuyama, S.; Inoue, H.; Yamaizumi, M. Dysfunction of human Rad18 results in defective postreplication repair and hypersensitivity to multiple mutagens. Proc. Natl. Acad. Sci. USA 2000, 97, 7927–7932. [Google Scholar] [CrossRef]
- Wu, L.C.; Wang, Z.W.; Tsan, J.T.; Spillman, M.A.; Phung, A.; Xu, X.L.; Yang, M.-C.W.; Hwang, L.-Y.; Bowcock, A.M.; Baer, R. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat. Genet. 1996, 14, 430–440. [Google Scholar] [CrossRef]
- Hu, Q.; Botuyan, M.V.; Zhao, D.; Cui, G.; Mer, E.; Mer, G. Mechanisms of BRCA1–BARD1 nucleosome recognition and ubiquitylation. Nature 2021, 596, 438–443. [Google Scholar] [CrossRef]
- Dai, L.; Dai, Y.; Han, J.; Huang, Y.; Wang, L.; Huang, J.; Zhou, Z. Structural insight into BRCA1-BARD1 complex recruitment to damaged chromatin. Mol. Cell 2021, 81, 2765–2777.e2766. [Google Scholar] [CrossRef]
- Burdett, H.; Foglizzo, M.; Musgrove, L.J.; Kumar, D.; Clifford, G.; Campbell, L.J.; Heath, G.R.; Zeqiraj, E.; Wilson, M.D. BRCA1-BARD1 combines multiple chromatin recognition modules to bridge nascent nucleosomes. Nucleic Acids Res. 2023, 51, 11080–11103. [Google Scholar] [CrossRef]
- Ai, H.; Sun, M.; Liu, A.; Sun, Z.; Liu, T.; Cao, L.; Liang, L.; Qu, Q.; Li, Z.; Deng, Z. H2B Lys34 ubiquitination induces nucleosome distortion to stimulate Dot1L activity. Nat. Chem. Biol. 2022, 18, 972–980. [Google Scholar] [CrossRef]
- Jang, S.; Kang, C.; Yang, H.-S.; Jung, T.; Hebert, H.; Chung, K.Y.; Kim, S.J.; Hohng, S.; Song, J.-J. Structural basis of recognition and destabilization of the histone H2B ubiquitinated nucleosome by the DOT1L histone H3 Lys79 methyltransferase. Genes Dev. 2019, 33, 620–625. [Google Scholar] [CrossRef]
- Worden, E.J.; Hoffmann, N.A.; Hicks, C.W.; Wolberger, C. Mechanism of cross-talk between H2B ubiquitination and H3 methylation by Dot1L. Cell 2019, 176, 1490–1501.e1412. [Google Scholar] [CrossRef]
- Anderson, C.J.; Baird, M.R.; Hsu, A.; Barbour, E.H.; Koyama, Y.; Borgnia, M.J.; McGinty, R.K. Structural basis for recognition of ubiquitylated nucleosome by Dot1L methyltransferase. Cell Rep. 2019, 26, 1681–1690.e1685. [Google Scholar] [CrossRef]
- Valencia-Sánchez, M.I.; De Ioannes, P.; Wang, M.; Vasilyev, N.; Chen, R.; Nudler, E.; Armache, J.-P.; Armache, K.-J. Structural basis of Dot1L stimulation by histone H2B lysine 120 ubiquitination. Mol. Cell 2019, 74, 1010–1019.e1016. [Google Scholar] [CrossRef]
- Yao, T.; Jing, W.; Hu, Z.; Tan, M.; Cao, M.; Wang, Q.; Li, Y.; Yuan, G.; Lei, M.; Huang, J. Structural basis of the crosstalk between histone H2B monoubiquitination and H3 lysine 79 methylation on nucleosome. Cell Res. 2019, 29, 330–333. [Google Scholar] [CrossRef]
- Tong, Z.; Ai, H.; Xu, Z.; He, K.; Chu, G.-C.; Shi, Q.; Deng, Z.; Xue, Q.; Sun, M.; Du, Y. Synovial sarcoma X breakpoint 1 protein uses a cryptic groove to selectively recognize H2AK119Ub nucleosomes. Nat. Struct. Mol. Biol. 2024, 31, 300–310. [Google Scholar] [CrossRef]
- Densham, R.M.; Garvin, A.J.; Stone, H.R.; Strachan, J.; Baldock, R.A.; Daza-Martin, M.; Fletcher, A.; Blair-Reid, S.; Beesley, J.; Johal, B.; et al. Human BRCA1-BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection. Nat. Struct. Mol. Biol. 2016, 23, 647–655. [Google Scholar] [CrossRef]
- Sloper-Mould, K.E.; Eyre, H.J.; Wang, X.-W.; Sutherland, G.R.; Baker, R.T. Characterization and chromosomal localization of USP3, a novel human ubiquitin-specific protease. J. Biol. Chem. 1999, 274, 26878–26884. [Google Scholar] [CrossRef]
- Nicassio, F.; Corrado, N.; Vissers, J.H.; Areces, L.B.; Bergink, S.; Marteijn, J.A.; Geverts, B.; Houtsmuller, A.B.; Vermeulen, W.; Di Fiore, P.P. Human USP3 is a chromatin modifier required for S phase progression and genome stability. Curr. Biol. 2007, 17, 1972–1977. [Google Scholar] [CrossRef]
- Cai, S.-Y.; Babbitt, R.W.; Marchesi, V.T. A mutant deubiquitinating enzyme (Ubp-M) associates with mitotic chromosomes and blocks cell division. Proc. Natl. Acad. Sci. USA 1999, 96, 2828–2833. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.-Y.; Zhai, L.; Yang, C.; Nie, S.; Erdjument-Bromage, H.; Tempst, P.; Chang, C.; Wang, H. Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature 2007, 449, 1068–1072. [Google Scholar] [CrossRef]
- Ai, H.; He, Z.; Deng, Z.; Chu, G.-C.; Shi, Q.; Tong, Z.; Li, J.-B.; Pan, M.; Liu, L. Structural and mechanistic basis for nucleosomal H2AK119 deubiquitination by single-subunit deubiquitinase USP16. Nat. Struct. Mol. Biol. 2024, 31, 1745–1755. [Google Scholar] [CrossRef]
- Stegmeier, F.; Rape, M.; Draviam, V.M.; Nalepa, G.; Sowa, M.E.; Ang, X.L.; Mcdonald Iii, E.R.; Li, M.Z.; Hannon, G.J.; Sorger, P.K. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 2007, 446, 876–881. [Google Scholar] [CrossRef]
- Ai, H.; Guo, Y.; Sun, D.; Liu, S.; Qi, Y.; Guo, J.; Qu, Q.; Gong, Q.; Zhao, S.; Li, J. Examination of the deubiquitylation site selectivity of USP51 by using chemically synthesized ubiquitylated histones. ChemBioChem 2019, 20, 221–229. [Google Scholar] [CrossRef]
- Stewart, G.S.; Stankovic, T.; Byrd, P.J.; Wechsler, T.; Miller, E.S.; Huissoon, A.; Drayson, M.T.; West, S.C.; Elledge, S.J.; Taylor, A.M.R. RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling. Proc. Natl. Acad. Sci. USA 2007, 104, 16910–16915. [Google Scholar] [CrossRef]
- Ramachandran, S.; Chahwan, R.; Nepal, R.M.; Frieder, D.; Panier, S.; Roa, S.; Zaheen, A.; Durocher, D.; Scharff, M.D.; Martin, A. The RNF8/RNF168 ubiquitin ligase cascade facilitates class switch recombination. Proc. Natl. Acad. Sci. USA 2010, 107, 809–814. [Google Scholar] [CrossRef]
- Callen, E.; Nussenzweig, M.; Nussenzweig, A. Breaking down cell cycle checkpoints and DNA repair during antigen receptor gene assembly. Oncogene 2007, 26, 7759–7764. [Google Scholar] [CrossRef]
- Paull, T.T.; Rogakou, E.P.; Yamazaki, V.; Kirchgessner, C.U.; Gellert, M.; Bonner, W.M. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 2000, 10, 886–895. [Google Scholar] [CrossRef]
- Shams, A.; Binothman, N.; Boudreault, J.; Wang, N.; Shams, F.; Hamam, D.; Tian, J.; Moamer, A.; Dai, M.; Lebrun, J.-J. Prolactin receptor-driven combined luminal and epithelial differentiation in breast cancer restricts plasticity, stemness, tumorigenesis and metastasis. Oncogenesis 2021, 10, 10. [Google Scholar] [CrossRef]
- Xiao, M.; He, J.; Yin, L.; Chen, X.; Zu, X.; Shen, Y. Tumor-associated macrophages: Critical players in drug resistance of breast cancer. Front. Immunol. 2021, 12, 799428. [Google Scholar] [CrossRef] [PubMed]
- De Brakeleer, S.; De Grève, J.; Loris, R.; Janin, N.; Lissens, W.; Sermijn, E.; Teugels, E. Cancer predisposing missense and protein truncating BARD1 mutations in non-BRCA1 or BRCA2 breast cancer families. Hum. Mutat. 2010, 31, E1175–E1185. [Google Scholar] [CrossRef] [PubMed]
- Boulton, S. Cellular functions of the BRCA tumour-suppressor proteins. Biochem. Soc. Trans. 2006, 34, 633–645. [Google Scholar] [CrossRef] [PubMed]
53BP1 Domain | Histone Modification | Influence | Refs. |
---|---|---|---|
Tudor | H4K20me2 H4K16me1 | Enhance binding | [21,68] |
UDR | H2AK15monoub H2AK15diub H2AK13diub | Enhance binding | [21,66,67] |
H2AK15UbT12ph H2AK15UbK6ac | Impair binding | [70,71] | |
BRCT | γH2AXS139 | Enhance binding | [69,72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, Q.; Liu, Y.; Ai, H. The Emerging Role of the Histone H2AK13/15 Ubiquitination: Mechanisms of Writing, Reading, and Erasing in DNA Damage Repair and Disease. Cells 2025, 14, 307. https://doi.org/10.3390/cells14040307
Shu Q, Liu Y, Ai H. The Emerging Role of the Histone H2AK13/15 Ubiquitination: Mechanisms of Writing, Reading, and Erasing in DNA Damage Repair and Disease. Cells. 2025; 14(4):307. https://doi.org/10.3390/cells14040307
Chicago/Turabian StyleShu, Qi, Yun Liu, and Huasong Ai. 2025. "The Emerging Role of the Histone H2AK13/15 Ubiquitination: Mechanisms of Writing, Reading, and Erasing in DNA Damage Repair and Disease" Cells 14, no. 4: 307. https://doi.org/10.3390/cells14040307
APA StyleShu, Q., Liu, Y., & Ai, H. (2025). The Emerging Role of the Histone H2AK13/15 Ubiquitination: Mechanisms of Writing, Reading, and Erasing in DNA Damage Repair and Disease. Cells, 14(4), 307. https://doi.org/10.3390/cells14040307