Comparing Selection Criteria to Select Grapevine Clones by Water Use Efficiency
<p>Linear regression between the natural logarithm intrinsic water use efficiency (WUE<sub>i</sub>, A<sub>N</sub>/g<sub>s</sub>) and stomatal conductance (g<sub>s</sub>) representing the clonal groupings analysed (LG: La Grajera; VN: Vitis Navarra; VP: Vitis Provedo; R: Roda).</p> "> Figure 2
<p>Linear regression between carbon isotopic discrimination (<sup>13</sup>C) and WUE<sub>i</sub> of the data set grouped in the clone sets analysed (LG: La Grajera; VN: Vitis Navarra; VP: Vitis Provedo; R: Roda). ** <span class="html-italic">p</span>-value < 0.01; * <span class="html-italic">p</span>-value < 0.05; n.s: not significant.</p> "> Figure 3
<p>Residual percentages relationship of intrinsic water use efficiency (WUE<sub>i</sub>) and carbon isotopic discrimination (<sup>13</sup>C) in the clonal groupings analysed (LG: La Grajera; VN: Vitis Navarra; VP: Vitis Provedo; R: Roda).</p> "> Figure 4
<p>Relative position based on the residual percentage value of carbon isotopic discrimination (<sup>13</sup>C) and intrinsic water use efficiency (WUE<sub>i</sub>) in each group of clones and genotypes analysed (LG: La Grajera; VN: Vitis Navarra; VP: Vitis Provedo; R: Roda).</p> "> Figure 5
<p>Linear regression between carbon isotopic discrimination (<sup>13</sup>C) and WUE<sub>i</sub> of the analysed groups separating efficient and very efficient genotypes (filled mark) and very inefficient genotypes (empty mark).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Plant Material
2.2. Leaf Gas Exchange Measurements
2.3. Carbon Isotope Ratios
2.4. Statistical Analysis
3. Results
3.1. Comparison of Fields and Year Effect
3.2. Genotypic Characterisation of WUE
3.3. Ability of δ13C and Leaf Gas Exchange Values to Measure WUE
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.M.; Pou, A.; Fuentes, S.; Jaume, F.; Bota, J. Improving water use efficiency of vineyards in semi-arid regions. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar]
- Flexas, J.; Galmés, J.; Gallé, A.; Gulías, J.; Pou, A.; Ribas-Carbó, M.; Medrano, H. Improving water use efficiency in grapevines: Potential physiological targets for biotechnological improvement. Aust. J. Grape Wine Res. 2010, 16, 106–121. [Google Scholar]
- Jones, G.V.; Reid, R.; Vilks, A. Climate, Grapes, and Wine: Structure and Suitability in a Variable and Changing Climate; The Geography of Wine, Ed.; Academic Press, Springer: Dordrecht, The Netherlands, 2012; pp. 109–133. [Google Scholar]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013—The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: New York, NY, USA, 2013; pp. 1029–1136. [Google Scholar]
- OIV (International Organisation of Vine and Wine). State of the World Vitivinicultural Sector in 2020. 2020. Available online: https://www.oiv.int/public/medias/8731/oiv-state-of-the-world-vitivinicultural-sector-in-2020.pdf (accessed on 6 April 2022).
- Encuesta Sobre Superficies y Rendimientos Cultivos (ESYRCE). Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/ (accessed on 1 April 2022).
- Medrano, H.; Pou, A.; Tomàs, M.; Martorell, S.; Escalona, J.M.; Gulias, J.; Flexas, J. Improving water use efficiency in grapevines: Agronomic and biotechnological approaches. Acta Hortic. 2012, 931, 97–107. [Google Scholar]
- Bota, J.; Tomás, M.; Flexas, J.; Medrano, H.; Escalona, J.M. Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress. Agric. Water Manag. 2016, 164, 91–99. [Google Scholar]
- Romero, P.; Navarro, J.M.; Ordaz, P.B. Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. Agric. Water Manag. 2022, 259, 107216. [Google Scholar]
- Tomás, M.; Medrano, H.; Escalona, J.M.; Martorell, S.; Pou, A.; Ribas-Carbó, M.; Flexas, J. Variability of water use efficiency in grapevines. Environ. Exp. Bot. 2014, 103, 148–157. [Google Scholar]
- Van Leeuwen, C.; Roby, J.P.; Alonso-Villaverde, V.; Gindro, K. Impact of clonal variability in Vitis vinifera Cabernet franc on grape composition, wine 33 quality, leaf blade stilbene content, and downy mildew resistance. J. Agric. Food Chem. 2012, 61, 19–24. [Google Scholar]
- Tortosa, I.; Escalona, J.M.; Bota, J.; Tomas, M.; Hernandez, E.; Escudero, E.G.; Medrano, H. Exploring the genetic variability in water use efficiency: Evaluation of inter and intra cultivar genetic diversity in grapevines. Plant Sci. 2016, 251, 35–43. [Google Scholar]
- Buesa, I.; Escalona, J.M.; Tortosa, I.; Marín, D.; Loidi, M.; Santesteban, L.G.; Medrano, H. Intracultivar genetic diversity in grapevine: Water use efficiency variability within cv. Grenache. Physiol. Plant. 2021, 173, 2226–2237. [Google Scholar]
- Ibáñez, J.; Carreño, J.; Yuste, J.; Martínez-Zapater, J.M. Grapevine breeding and clonal selection programmes in Spain. In Grapevine Breeding Programs for the Wine Industry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 183–209. [Google Scholar]
- Guo, D.; Zhang, J.; Liu, C.; Zhang, G.; Li, M.; Zhang, Q. Genetic variability and relationships between and within grape cultivated varieties and wild species based on SRAP markers. Tree Genet. Genomes 2012, 8, 789–800. [Google Scholar]
- Laucou, V.; Lacombe, T.; Dechesne, F.; Siret, R.; Bruno, J.P.; Dessup, M.; Santoni, S. High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor. Appl. Genet. 2011, 122, 1233–1245. [Google Scholar] [PubMed]
- Carbonell-Bejerano, P.; Santa María, E.; Torres-Pérez, R.; Royo, C.; Lijavetzky, D.; Bravo, G.; Martínez-Zapater, J.M. Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg. Plant and Cell Physiology. Plant Cell Physiol. 2013, 54, 1200–1216. [Google Scholar] [PubMed] [Green Version]
- Mwamahonje, A.; Maseta, Z.; Mlalila, F.; Feyissa, T. Application of genomic and genetic engineering tools for improvement of grapevines. J. Anim. Plant Sci. 2020, 30, 1058–1070. [Google Scholar]
- Migicovsky, Z.; Myles, S. Exploiting wild relatives for genomics-assisted breeding of perennial crops. Front. Plant Sci. 2017, 8, 460. [Google Scholar] [PubMed] [Green Version]
- Laimer, M. Transgenic grapevines. Transgenic Plant J. 2007, 1, 219–227. [Google Scholar]
- Pou, A.; Gulías, J.; Moreno, M.; Tomàs, M.; Medrano, H.; Cifre, J. Cover cropping in Vitis vinifera L. cv. Manto Negro vineyards under Mediterranean conditions: Effects on plant vigour, yield and grape quality. Oeno One 2011, 45, 223–234. [Google Scholar]
- Fischer, R.A.; Turner, N.C. Plant productivity in the arid and semiarid zones. Annu. Rev. Plant Physiol. 1978, 29, 277–317. [Google Scholar]
- Bchir, A.; Escalona, J.M.; Gallé, A.; Hernández-Montes, E.; Tortosa, I.; Braham, M.; Medrano, H. Carbon isotope discrimination (δ13C) as an indicator of vine water status and water use efficiency (WUE): Looking for the most representative sample and sampling time. Agric. Water Manag. 2016, 167, 11–20. [Google Scholar]
- De Souza, C.R.; Maroco, J.P.; dos Santos, T.P.; Rodrigues, M.L.; Lopes, C.M.; Pereira, J.S.; Chaves, M.M. Impact of deficit irrigation on water use 29 efficiency and carbon isotope composition (δ13C) of field-grown grapevines under Mediterranean climate. J. Exp. Bot. 2005, 56, 2163–2172. [Google Scholar]
- Farquhar, G.D.; Richards, R.A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct. Plant Biol. 1984, 11, 539–552. [Google Scholar]
- Soar, C.J.; Dry, P.R.; Loveys, B.R. Scion photosynthesis and leaf gas exchange in Vitis vinifera L. cv. Shiraz: Mediation of rootstock effects via xylem sap ABA. Aust. J. Grape Wine Res. 2006, 12, 82–96. [Google Scholar]
- Stoll, M.; Loveys, B.; Dry, P. Hormonal changes induced by partial rootzone drying of irrigated grapevine. J. Exp. Bot. 2000, 51, 1627–1634. [Google Scholar] [PubMed] [Green Version]
- Vandeleur, R.K.; Mayo, G.; Shelden, M.C.; Gilliham, M.; Kaiser, B.N.; Tyerman, S.D. The role of plasma membrane intrinsic protein aquaporins in water transport through roots: Diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol. 2009, 149, 445–460. [Google Scholar] [PubMed] [Green Version]
- Gaudillère, J.P.; Van Leeuwen, C.; Ollat, N. Carbon isotope composition of sugars in grapevine, an integrated indicator of vineyard water status. J. Exp. Bot. 2002, 53, 757–763. [Google Scholar]
- Gobierno de la Rioja. Available online: https://www.larioja.org/agricultura/es/informacion-agroclimatica/red-estaciones-agroclimaticas-siar (accessed on 10 May 2022).
- Agencia Estatal de Meteorologia (AEMET). Available online: http://www.aemet.es/es/portada (accessed on 10 May 2022).
- Tortosa, I.; Escalona, J.M.; Toro, G.; Douthe, C.; Medrano, H. Clonal behavior in response to soil water availability in Tempranillo grapevine cv: From plant growth to water use efficiency. Agronomy 2020, 10, 862. [Google Scholar]
- Flexas, J.; Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar]
- Tomás, M.; Medrano, H.; Pou, A.; Escalona, J.M.; Martorell, S.; Ribas-Carbó, M.; Flexas, J. Water-use efficiency in grapevine cultivars grown under controlled conditions: Effects of water stress at the leaf and whole-plant level. Aust. J. Grape Wine Res. 2012, 18, 164–172. [Google Scholar]
- Bavestrello-Riquelme, C.; Cavieres, L.; Gallardo, J.; Ibacache, A.; Franck, N.; Zurita-Silva, A. Evaluation of drought stress tolerance in four naturalized grapevine genotypes (Vitis vinifera) from northern Chile. IDESIA 2012, 30, 83–92. [Google Scholar]
- Tortosa, I.; Douthe, C.; Pou, A.; Balda, P.; Hernandez-Montes, E.; Toro, G.; Escalona, J.M.; Medrano, H. Variability in water use efficiency of grapevine Tempranillo clones and stability over years at field conditions. Agronomy 2019, 9, 701. [Google Scholar]
- Yu, R.; Zaccaria, D.; Kisekka, I.; Kurtural, S.K. Soil apparent electrical conductivity and must carbon isotope ratio provide indication of plant water status in wine grape vineyards. Precis. Agric. 2021, 22, 1333–1352. [Google Scholar]
- Zufferey, V.; Verdenal, T.; Dienes, A.; Belcher, S.; Lorenzini, F.; Koestel, C.; Blackford, M.; Bourdin, G.; Gindro, K.; Spangenberg, J.E.; et al. The influence of vine water regime on the leaf gas exchange, berry composition and wine quality of Arvine grapes in Switzerland. Oeno One 2020, 54, 553–568. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Barbarin, I.; Royo, J.B. Application of the measurement of the natural abundance of stable isotopes in viticulture: A review. Aust. J. Grape Wine Res. 2015, 21, 157–167. [Google Scholar] [CrossRef]
- Poni, S.; Bernizzoni, F.; Civardi, S.; Gatti, M.; Porro, D.; Camin, F. Performance and water-use efficiency (single-leaf vs. whole-canopy) of well-watered and half-stressed split-root Lambrusco grapevines grown in Po Valley (Italy). Agric. Ecosyst. Environ. 2009, 129, 97–106. [Google Scholar] [CrossRef]
- Medrano, H.; Escalona, J.M.; Bota, J.; Gulias, J.; Flexas, J. Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter. Ann. Bot. 2002, 89, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Koundouras, S.; Tsialtas, I.T.; Zioziou, E.; Nikolaou, N. Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet–Sauvignon) under contrasting water status: Leaf physiological and structural responses. Agric. Ecosyst. Environ. 2008, 128, 86–96. [Google Scholar] [CrossRef]
- Zufferey, V.; Spring, J.L.; Verdenal, T.; Dienes, A.; Belcher, S.; Lorenzini, F.; Koestel, C.; Rösti, J.; Gindro, K.; Spangenberg, J.; et al. The influence of water stress on plant hydraulics, gas exchange, berry composition and quality of Pinot Noir wines in Switzerland. Oeno One 2017, 51, 17–27. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Flexas, J.; Hernández, E.; Rosselló, J.; Pou, A.; Escalona, J.M.; Bota, J. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop J. 2015, 3, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Martorell, S.; Diaz-Espejo, A.; Tomàs, M.; Pou, A.; El Aou-ouad, H.; Escalona, J.M.; Vadell, J.; Ribas-Carbó, M.; Flexas, J.; Medrano, H. Differences in water-use-efficiency between two Vitis vinifera cultivars (Grenache and Tempranillo) explained by the combined response of stomata to hydraulic and chemical signals during water stress. Agric. Water Manag. 2015, 156, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef] [Green Version]
- Chaves, M.M.; Santos, T.P.; Souza, C.D.; Ortuño, M.F.; Rodrigues, M.L.; Lopes, C.M.; Maroco, J.P.; Pereira, J.S. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Gómez-Alonso, S.; García-Romero, E. Effect of irrigation and variety on oxygen (δ18O) and carbon (δ13C) stable isotope composition of grapes cultivated in a warm climate. Aust. J. Grape Wine Res. 2010, 16, 283–289. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Urretavizcaya, I.; Royo, J.B. Carbon isotope ratio of whole berries as an estimator of plant water status in grapevine (Vitis vinifera L.) cv.‘Tempranillo’. Sci. Hortic. 2012, 146, 7–13. [Google Scholar]
Year | T max (°C) | T min (°C) | P (L m−2) | ET0 (mm Month−1) | GDD (°C Month−1) | |
---|---|---|---|---|---|---|
Roda | ||||||
April | 2015 | 18.1 | 6.9 | 16.2 | 113.1 | 72.7 |
May | 21.8 | 10.0 | 7.2 | 144.6 | 169.7 | |
June | 26.6 | 12.3 | 63.8 | 158.6 | 268.9 | |
July | 30.6 | 15.2 | 10.7 | 190.1 | 370.6 | |
August | 28.5 | 14.1 | 37.1 | 167.8 | 339.3 | |
September | 22.1 | 10.5 | 26.8 | 98.8 | 170.1 | |
October | 18.1 | 8.6 | 58.8 | 65.9 | 96.9 | |
23.7 | 11.1 | 220.6 | 938.9 | 1488.2 | ||
April | 2018 | 17.1 | 7.6 | 97.7 | 97.8 | 76.0 |
May | 19.9 | 8.5 | 51.3 | 111.4 | 120.2 | |
June | 25.0 | 12.8 | 33.3 | 134.6 | 249.6 | |
July | 28.4 | 15.6 | 78.9 | 156.3 | 347.7 | |
August | 29.6 | 14.7 | 0.0 | 157.2 | 356.4 | |
September | 27.4 | 13.6 | 41.4 | 113.8 | 287.3 | |
October | 19.0 | 8.3 | 66.0 | 65.0 | 115.3 | |
23.8 | 11.6 | 368.6 | 836.1 | 1552.5 | ||
La Grajera–Vitis Provedo | ||||||
April | 2015 | 18.7 | 7.3 | 21.0 | 105.0 | 81.7 |
May | 22.6 | 10.8 | 2.6 | 142.5 | 196.0 | |
June | 27.7 | 14.1 | 42.8 | 170.7 | 307.5 | |
July | 31.5 | 17.0 | 34.9 | 197.8 | 410.1 | |
August | 29.0 | 15.3 | 19.1 | 163.9 | 364.0 | |
September | 23.0 | 11.6 | 13.3 | 100.7 | 204.6 | |
October | 18.5 | 9.1 | 33.2 | 62.9 | 111.4 | |
24.4 | 12.2 | 166.9 | 943.5 | 1675.3 | ||
April | 2018 | 17.3 | 7.5 | 86.1 | 90.6 | 76.7 |
May | 19.9 | 9.8 | 65.6 | 112.7 | 138.4 | |
June | 25.2 | 13.9 | 39.3 | 137.4 | 272.0 | |
July | 28.9 | 16.7 | 117.6 | 168.7 | 371.3 | |
August | 30.0 | 16.4 | 0.0 | 167.2 | 386.1 | |
September | 27.3 | 14.5 | 45.4 | 113.1 | 302.0 | |
October | 19.5 | 9.3 | 28.3 | 70.7 | 132.4 | |
24.0 | 12.6 | 382.3 | 860.4 | 1678.9 | ||
Vitis Navarra | ||||||
April | 2015 | 19.8 | 6.0 | 11.9 | 101.1 | 85.3 |
May | 23.5 | 10.2 | 2.4 | 148.9 | 206.7 | |
June | 28.3 | 13.4 | 70.7 | 165.9 | 317.7 | |
July | 30.9 | 16.0 | 0.3 | 184.2 | 395.9 | |
August | 28.8 | 14.2 | 10.3 | 142.7 | 350.4 | |
September | 23.5 | 10.4 | 12.9 | 95.2 | 202.6 | |
October | 19.9 | 8.5 | 24.1 | 57.0 | 116.8 | |
24.9 | 11.3 | 132.6 | 895.0 | 1675.4 | ||
April | 2018 | 18.3 | 6.5 | 61.3 | 93.1 | 80.3 |
May | 21.0 | 9.0 | 29.2 | 119.4 | 149.3 | |
June | 25.8 | 12.9 | 48.6 | 145.8 | 275.9 | |
July | 30.2 | 15.7 | 56.3 | 174.8 | 386.9 | |
August | 29.8 | 14.9 | 6.3 | 159.4 | 372.4 | |
September | 28.0 | 12.9 | 16.2 | 113.3 | 300.4 | |
October | 20.7 | 8.4 | 16.6 | 72.6 | 141.1 | |
24.8 | 11.5 | 234.5 | 878.4 | 1706.3 |
2015 | 2018 | ||||
---|---|---|---|---|---|
gs (mol H2O m−2 s−1) | WUEi (mmol CO2 mol−1 H2O) | gs (mol H2O m−2 s−1) | WUEi (mmol CO2 mol−1 H2O) | ||
Tempranillo | Roda | 0.311 ± 0.108 a | 57.8 ± 15.5 c | ||
La Grajera | 0.097 ± 0.045 c | 118.9 ± 23.6 a | 0.098 ± 0.054 c | 90.5 ± 14.1 a | |
Vitis Provedo | 0.198 ± 0.072 a | 76.7 ± 17 b | |||
Vitis Navarra | 0.164 ± 0.063 b | 76.5 ± 16.5 b | |||
Garnacha | Vitis Navarra | 0.236 ± 0.048 b | 70.6 ± 11.3 b | ||
T-Rootstock | Vitis Navarra | 0.233 ± 0.095 b | 64.6 ± 13.9 bc | ||
General | 0.126 ± 0.069 B | 103.2 ± 29.1 A | 0.236 ± 0.104 A | 68 ± 16.8 B | |
Gs: Two-way ANOVA: Year **, Field ***, Year × Field ** EUAi: Two-way ANOVA: Year ***, Field ***, Year × Field *** |
2015 | |||||||
---|---|---|---|---|---|---|---|
Tempranillo | |||||||
La Grajera | Vitis Navarra | Vitis Provedo | |||||
86 | 110.7 ± 19.8 bcdef | VN1 | 74.3 ± 9.5 b | RJ43 | 69.4 ± 6.8 n.s. | ||
232 | 123.7 ± 18.8 abcd | VN31 | 77.5 ± 8.5 b | RJ78 | 83.3 ± 27.4 n.s. | ||
260 | 131 ± 2.6 ab | VN32 | 97 ± 6.5 a | VP11 | 65.6 ± 9.3 n.s. | ||
280 | 121.5 ± 15.2 abcd | VN33 | 64.9 ± 12.7 b | VP24 | 83.9 ± 9.8 n.s. | ||
518 | 132.4 ± 9.3 ab | VN42 | 79.6 ± 22.2 ab | VP25 | 87.3 ± 13.6 n.s. | ||
560 | 124.7 ± 34 abcd | VN69 | 65.6 ± 16.3 b | VP28 | 66.7 ± 10.2 n.s. | ||
807 | 129.4 ± 26.8 ab | VP8 | 80.9 ± 23.6 n.s. | ||||
814 | 136.3 ± 10.6 ab | ||||||
843 | 129 ± 5.5 abc | ||||||
1041 | 90.1 ± 24.8 ef | ||||||
1048 | 143.1 ± 8.9 a | ||||||
1084 | 81.7 ± 18.8 f | ||||||
1089 | 96.6 ± 25 def | ||||||
RJ26 | 132.9 ± 22.8 ab | ||||||
RJ43 | 113.1 ± 15.4 abcde | ||||||
RJ51 | 99.3 ± 18.5 cdef | ||||||
RJ78 | 126.5 ± 14.5 abcd | ||||||
RJ79 | 123.1 ± 18 abcd | ||||||
2018 | |||||||
Garnacha | T -Rootstock | Tempranillo | |||||
Vitis Navarra | Vitis Navarra | La Grajera | Roda | ||||
ARA-2 | 79.2 ± 8.2 ab | 1103P | 74.7 ± 5 ab | 232 | 93.7 ± 14.2 ab | 6 | 79.6 ± 5 a |
ARA-24 | 57 ± 4.7 e | 110R | 66.8 ± 6.2 abcd | 1048 | 105.1 ± 6.4 a | 108 | 49.4 ± 9 c |
ARA-4 | 81.6 ± 7.9 ab | 140RU | 41.4 ± 2.8 e | 1052 | 101.1 ± 3.3 ab | 137 | 40.8 ± 3.4 c |
ENTAV 136 | 88.6 ± 5.7 a | 420A | 64.1 ± 8.2 bcd | 1078 | 88 ± 10 abc | 156 | 47.9 ± 4.8 c |
ENTAV 141 | 73.5 ± 10.9 bcd | RG2 | 72.6 ± 8 ab | 1084 | 72.8 ± 6.4 c | 166 | 48.2 ± 1.1 c |
EV11 | 67.3 ± 1.8 cde | RG3 | 55 ± 11.8 d | 1371 | 86.1 ± 14.2 bc | 178 | 77.2 ± 16.3 ab |
EV13 | 65.5 ± 9.4 de | RG4 | 58.1 ± 6.1 cd | 203 | 66.4 ± 9.3 b | ||
EV14 | 63.2 ± 5.6 e | RG6 | 71.6 ± 5.4 ab | 215 | 52.6 ± 4.6 c | ||
EV15 | 63.1 ± 6.7 e | RG7 | 75.2 ± 9.9 ab | 243 | 46.2 ± 5.8 c | ||
RJ21 | 61.1 ± 1.5 e | RG8 | 42.4 ± 4.9 e | 336 | 66.9 ± 7.1 b | ||
VNQ | 75.7 ± 5.1 bc | RG9 | 79.3 ± 11.9 a | ||||
SO4 | 68.5 ± 11.8 abc |
2015 | |||||||
---|---|---|---|---|---|---|---|
Tempranillo | |||||||
La Grajera | Vitis Navarra | Vitis Provedo | |||||
86 | −22 ± 0.8 abc | VN1 | −27.1 ± 0.7 bc | RJ43 | −26.3 ± 0.4 a | ||
232 | −21.7 ± 0.2 a | VN31 | −27.8 ± 0.4 c | RJ78 | −25.9 ± 0.5 a | ||
260 | −22.4 ± 0.4 abcd | VN32 | −25.3 ± 0.7 a | VP11 | −26.6 ± 0.4 a | ||
280 | −22.2 ± 0.2 abcd | VN33 | −27.4 ± 0.5 bc | VP24 | −24.4 ± 0.6 c | ||
518 | −22.9 ± 0.5 bcdef | VN42 | −27.3 ± 0.8 bc | VP25 | −24.3 ± 0.4 c | ||
560 | −21.8 ± 0.9 ab | VN69 | −26.6 ± 0.6 b | VP28 | −24 ± 0.3 c | ||
807 | −21.5 ± 0.2 a | VP8 | −25.2 ± 0.6 b | ||||
814 | −22.6 ± 0.6 abcde | ||||||
843 | −22.4 ± 0.4 abcd | ||||||
1041 | −24.8 ± 0.5 gh | ||||||
1048 | −23 ± 0.5 cdef | ||||||
1084 | −25.8 ± 1.8 h | ||||||
1089 | −24.1 ± 0.5 fg | ||||||
RJ26 | −23.9 ± 0.7 fg | ||||||
RJ43 | −24 ± 0.3 fg | ||||||
RJ51 | −23.9 ± 0.7 fg | ||||||
RJ78 | −23.6 ± 0.4 ef | ||||||
RJ79 | −23.2 ± 0.5 def | ||||||
2018 | |||||||
Garnacha | T -Rootstock | Tempranillo | |||||
Vitis Navarra | Vitis Navarra | La Grajera | Roda | ||||
ARA-2 | −24.8 ± 0.7 bc | 1103P | −26.3 ± 0.3 b | 232 | −22.7 ± 0.8 a | 6 | −24.9 ± 0.8 ab |
ARA-24 | −24.8 ± 0.1 bc | 110R | −28 ± 0.4 ef | 1048 | −23.2 ± 0.1 a | 108 | −26.6 ± 0.3 de |
ARA-4 | −24.8 ± 0.4 bc | 140RU | −28.5 ± 0.5 f | 1052 | −23.2 ± 0.8 a | 137 | −27.1 ± 0.9 e |
ENTAV 136 | −24.6 ± 0.3 abc | 420A | −27.7 ± 0.3 de | 1078 | −23.9 ± 0.7 a | 156 | −26.6 ± 0.4 de |
ENTAV 141 | −27 ± 0.6 e | RG2 | −25.4 ± 0.7 a | 1084 | −24.1 ± 0.6 a | 166 | −26.2 ± 0.2 cde |
EV11 | −24 ± 0.7 a | RG3 | −27.4 ± 0.4 cde | 1371 | −25.8 ± 2.3 b | 178 | −24.9 ± 0.7 ab |
EV13 | −24.2 ± 0.2 ab | RG4 | −27.1 ± 0.9 bcd | 203 | −24.5 ± 0.5 a | ||
EV14 | −24.2 ± 0.6 ab | RG6 | −26.7 ± 0.4 bc | 215 | −26 ± 0.8 cd | ||
EV15 | −25.8 ± 0.6 de | RG7 | −26.8 ± 0.4 bc | 243 | −25.6 ± 0.6 bc | ||
RJ21 | −24.9 ± 0.2 bc | RG8 | −29.4 ± 0.3 g | 336 | −24.7 ± 0.9 ab | ||
VNQ | −25.2 ± 0.3 cd | RG9 | −26.9 ± 0.8 bcd | ||||
SO4 | −26.4 ± 0.7 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mairata, A.; Tortosa, I.; Douthe, C.; Escalona, J.M.; Pou, A.; Medrano, H. Comparing Selection Criteria to Select Grapevine Clones by Water Use Efficiency. Agronomy 2022, 12, 1963. https://doi.org/10.3390/agronomy12081963
Mairata A, Tortosa I, Douthe C, Escalona JM, Pou A, Medrano H. Comparing Selection Criteria to Select Grapevine Clones by Water Use Efficiency. Agronomy. 2022; 12(8):1963. https://doi.org/10.3390/agronomy12081963
Chicago/Turabian StyleMairata, Andreu, Ignacio Tortosa, Cyril Douthe, José Mariano Escalona, Alicia Pou, and Hipólito Medrano. 2022. "Comparing Selection Criteria to Select Grapevine Clones by Water Use Efficiency" Agronomy 12, no. 8: 1963. https://doi.org/10.3390/agronomy12081963
APA StyleMairata, A., Tortosa, I., Douthe, C., Escalona, J. M., Pou, A., & Medrano, H. (2022). Comparing Selection Criteria to Select Grapevine Clones by Water Use Efficiency. Agronomy, 12(8), 1963. https://doi.org/10.3390/agronomy12081963