Phenotypic Evaluation of Fire Blight Outbreak in the USDA Malus Collection
<p>Examples of fire blight severity in the main collection. (<b>A</b>) Robusta 5 (<span class="html-italic">M. robusta</span>) (<b>B</b>) ‘Ribston’ (<span class="html-italic">M. domestica</span>) (<b>C</b>) ‘Honora’ (<span class="html-italic">M. domestica</span>) (<b>D</b>) ‘Sugar crab’ (<span class="html-italic">Malus</span> hybrid) (<b>E</b>) ‘Royal Gala’ (<span class="html-italic">M. domestica</span>) (<b>F</b>) KAZ 96 08-17 (<span class="html-italic">M. sieversii</span>) (<b>G</b>) ‘Skryzhapel’ (<span class="html-italic">M. domestica</span>) (<b>H</b>) GMAL 3173 (<span class="html-italic">M. baccata</span>) (<b>I</b>) ‘John Standish’ (<span class="html-italic">M. domestica</span>). The fire blight severity percentages are shown in bottom right of each panel. Pictures were taken during the initial fire blight scoring in late June 2020.</p> "> Figure 2
<p>A visual representation of cut severity ratings with score and general description below each image.</p> "> Figure 3
<p>Heat map of fire blight severity for the 667-tree main collection subset. (<b>A</b>) Aerial image of the field. (<b>B</b>) Initial severity average in late June. (<b>C</b>) Severity average 3 weeks later, mid-July. Each square represents a tree. The compass in A. shows the cardinal directions of the field. Fire blight average severity calculated as (number of infected shoots/total number of shoots) × 100 for the west and east facing side of the tree, then averaged together.</p> "> Figure 4
<p>Quantile box plots of 667 main collection subset scored for fire blight severity in June and July. June is shown as open bars and July is shown as filled bars. The box indicates the 25th and 75th quantile and the median is shown as a colored line in the June box and a black line in the July box. The number of trees scored per species is shown in parenthesis. Species are ordered by descending tree count. Box plot colors delimitate species.</p> "> Figure 5
<p>Main collection fire blight severity (%) in June (<b>left</b>) and July (<b>right</b>). The color and size of the circles indicates the number of trees. Only species with 10 or more trees are included in this figure.</p> "> Figure 6
<p>Heatmap of the main collection for cut severity ratings. Each tree is represented by a small box. Heavy cutting is observed throughout the orchard. White areas indicate no tree present. The cardinal directions of the field are shown in the top left corner.</p> "> Figure 7
<p>Cut severity ratings for the main collection. The number of trees per rating per species (<b>A</b>) Wild species (<b>B</b>) <span class="html-italic">Malus</span> hybrid, <span class="html-italic">M. domestica,</span> and <span class="html-italic">M. sieversii</span>. A rating of “0” represents no cuts. Ratings of “1”, “2”, and “3” represent light cuts while ratings of “4”, “5”, and “6” represent heavy cuts.</p> "> Figure 8
<p>Main collection cut severity ratings with species containing >10 trees. (<b>A</b>) Wild species (<b>B</b>) <span class="html-italic">M. domestica, Malus</span> hybrid and <span class="html-italic">M. sieversii.</span> Circle sizes indicate the number of trees, as do the corresponding colors.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. E. amylovora Sampling, Streptomycin Sensitivity, and Strain Identification
2.3. Fire Blight Severity Scoring
2.4. Fire Blight Cut Severity Ratings
2.5. Statistical Analysis
3. Results
3.1. E. amylovora Strain Characterization
3.2. Fire Blight Severity
3.3. Cut Severity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA-NASS. Noncitrus Fruits and Nuts 2018 Summary. 2019. Available online: https://www.nass.usda.gov/Publications/Todays_Reports/reports/ncit0619.pdf (accessed on 4 December 2020).
- Thomson, S.V. Epidemiology of fire blight. In Fire Blight: The Disease and its Causative Agent, Erwinia Amylovora; CAVI Publishing: Wallingfort, UK, 2000; pp. 9–37. [Google Scholar]
- Norelli, J.L.; Jones, A.L.; Aldwinckle, H.S. Fire blight management in the twenty-first century: Using new technologies that enhance host resistance in apple. Plant Dis. 2003, 87, 756–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallis, A.E.; Cox, K.D. Management of fire blight using pre-bloom application of prohexadione-calcium. Plant Dis. 2020, 104, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Longstroth, M. The 2000 fire blight epidemic in southwest Michigan apple orchards. Compact Fruit Tree 2001, 34, 16–19. [Google Scholar]
- Van Der Zwet, T.; Orolaza-Halbrendt, N.; Zeller, W. Chapter 14: Chemical and Cultural Approaches to Enhancing Host Resistance to Fire Blight. In Fire Blight: History, Biology, and Management; Scientific Societies: Saint Paul, MN, USA, 2016; pp. 249–263. [Google Scholar]
- Cabrefiga, J.; Francés, J.; Montesinos, E.; Bonaterra, A. Improvement of fitness and efficacy of a fire blight biocontrol agent via nutritional enhancement combined with osmoadaptation. Appl. Environ. Microbiol. 2011, 77, 3174–3181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngugi, H.K.; Lehman, B.L.; Madden, L.V. Multiple treatment meta-analysis of products evaluated for control of fire blight in the eastern United States. Phytopathology 2011, 101, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Sundin, G.W.; Werner, N.A.; Yoder, K.S.; Aldwinckle, H.S. Field evaluation of biological control of fire blight in the eastern United States. Plant. Dis. 2009, 93, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Pusey, P.L. Biological control agents for fire blight of apple compared under conditions limiting natural dispersal. Plant. Dis. 2002, 86, 639–644. [Google Scholar] [CrossRef] [Green Version]
- Yoder, K.; Miller, S.; Byers, R. Suppression of fire blight in apple shoots by prohexadione-calcium following experimental and natural inoculation. HortScience 1999, 34, 1202–1204. [Google Scholar] [CrossRef] [Green Version]
- Maxson-Stein, K.; He, S.Y.; Hammerschmidt, R.; Jones, A.L. Effect of treating apple trees with acibenzolar-s-methyl on fire blight and expression of pathogenesis-related protein genes. Plant. Dis. 2002, 86, 785–790. [Google Scholar] [CrossRef] [Green Version]
- Brisset, M.-N.; Cesbron, S.; Thomson, S.V.; Paulin, J.-P. Acibenzolar-S-methyl induces the accumulation of defense-related enzymes in apple and protects from fire blight. Eur. J. Plant. Pathol. 2000, 106, 529–536. [Google Scholar] [CrossRef]
- Russo, N.L.; Burr, T.J.; Breth, D.I.; Aldwinckle, H.S. Isolation of streptomycin-resistant isolates of Erwinia amylovora in New York. Plant. Dis. 2008, 92, 714–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGhee, G.C.; Guasco, J.; Bellomo, L.M.; Blumer-Schuette, S.E.; Shane, W.W.; Irish-Brown, A.; Sundin, G.W. Genetic analysis of streptomycin-resistant (SmR) strains of Erwinia amylovora suggests that dissemination of two genotypes is responsible for the current distribution of SmR E. amylovora in Michigan. Phytopathology 2011, 101, 182–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, T.D. Monitoring the Epiphytic Population of Erwinia amylovora on pear with a selective medium. Phytopathology 1972, 62, 1175. [Google Scholar] [CrossRef]
- Loper, J.E. Evaluation of streptomycin, oxytetracycline, and copper resistance of Erwinia amylovora isolated from pear orchards in Washington State. Plant. Dis. 1991, 75, 287. [Google Scholar] [CrossRef]
- Khan, A.; Desnoues, E.; Clark, M. Bacterial strain affects cultivar response to fire blight in apples. Fruit Q. 2018, 26, 6. [Google Scholar]
- Malnoy, M.; Martens, S.; Norelli, J.L.; Barny, M.-A.; Sundin, G.W.; Smits, T.H.M.; Duffy, B. Fire blight: Applied genomic insights of the pathogen and host. Annu. Rev. Phytopathol. 2012, 50, 475–494. [Google Scholar] [CrossRef] [Green Version]
- Durel, C.-E.; Denancé, C.; Brisset, M.-N. Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes ‘Evereste’ and Malus floribunda clone 821. Genome 2009, 52, 139–147. [Google Scholar] [CrossRef]
- Le Roux, P.-M.F.; Khan, M.A.; Broggini, G.A.; Duffy, B.; Gessler, C.; Patocchi, A. Mapping of quantitative trait loci for fire blight resistance in the apple cultivars ‘Florina’ and ‘Nova Easygro’. Genome 2010, 53, 710–722. [Google Scholar] [CrossRef]
- Emeriewen, O.F.; Richter, K.; Berner, T.; Keilwagen, J.; Schnable, P.S.; Malnoy, M.; Peil, A. Construction of a dense genetic map of the Malus fusca fire blight resistant accession MAL0045 using tunable genotyping-by-sequencing SNPs and microsatellites. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Tegtmeier, R.; Pompili, V.; Singh, J.; Micheletti, D.; Silva, K.J.P.; Malnoy, M.; Khan, A. Candidate gene mapping identifies genomic variations in the fire blight susceptibility genes HIPM and DIPM across the Malus germplasm. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Peil, A.; Emeriewen, O.F.; Khan, A.; Kostick, S.; Malnoy, M. Status of fire blight resistance breeding in Malus. J. Plant. Pathol. 2020. [Google Scholar] [CrossRef]
- Vogt, I.; Wöhner, T.; Richter, K.; Flachowsky, H.; Sundin, G.W.; Wensing, A.; Savory, E.A.; Geider, K.; Day, B.; Hanke, M.-V.; et al. Gene-for-gene relationship in the host-pathogen system Malus × robusta 5-Erwinia amylovora. New Phytol. 2013, 197, 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Duffy, B.; Gessler, C.; Patocchi, A. QTL mapping of fire blight resistance in apple. Mol. Breed. 2006, 17, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Peil, A.; Garcia-Libreros, T.; Richter, K.; Trognitz, F.C.; Trognitz, B.; Hanke, M.-V.; Flachowsky, H. Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3. Plant. Breed. 2007, 126, 470–475. [Google Scholar] [CrossRef]
- Peil, A.; Wöhner, T.; Hanke, M.-V.; Flachowsky, H.; Richter, K.; Wensing, A.; Emeriewen, O.; Malnoy, M.; Leroux, P.-M.; Patocchi, A.; et al. Comparative mapping of fire blight resistance in Malus. Acta Hortic. 2014, 47–51. [Google Scholar] [CrossRef]
- Emeriewen, O.F.; Richter, K.; Zini, E.; Malnoy, M.; Peil, A.; Hanke, M.-V. Fire blight resistance of Malus ×arnoldiana is controlled by a quantitative trait locus located at the distal end of linkage group 12. Eur. J. Plant. Pathol. 2017, 148, 1011–1018. [Google Scholar] [CrossRef]
- Forsline, P.; Aldwinckle, H. Natural occurrence of fire blight in USDA apple germplasm collection after 10 years of observation. Acta Hortic. 2002, 351–357. [Google Scholar] [CrossRef]
- Agnello, A.; Beown, B.; Carroll, J.; Cheng, L.; Cox, K.; Curtis, P.; Helms, M.; Kain, D.; Robinson, T. Cornell Pest Management Guidelines for Commercial Tree Fruit Production. Cornell Cooperative Extension. 2019. Available online: https://cropandpestguides.cce.cornell.edu/Preview/2019/Tree_Fruit_Promo_19.pdf (accessed on 4 December 2020).
- Crosse, J.E. A selective medium for and a definitive colony characteristic of Erwinia amylovora. Phytopathology 1973, 63, 1425. [Google Scholar] [CrossRef]
- Tancos, K.A.; Villani, S.; Kuehne, S.; Borejsza-Wysocka, E.; Breth, D.; Carol, J.; Aldwinckle, H.S.; Cox, K.D. Prevalence of streptomycin-resistant Erwinia amylovora in New York apple orchards. Plant. Dis. 2016, 100, 802–809. [Google Scholar] [CrossRef] [Green Version]
- McGhee, G.C.; Jones, A.L. Complete nucleotide sequence of ubiquitous plasmid pEA29 from Erwinia amylovora Strain Ea88: Gene organization and intraspecies variation. Appl. Environ. Microbiol. 2000, 66, 4897–4907. [Google Scholar] [CrossRef] [Green Version]
- Tancos, K.A.; Cox, K.D. Exploring diversity and origins of streptomycin-resistant Erwinia amylovora isolates in New York through CRISPR spacer arrays. Plant. Dis. 2016, 100, 1307–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGhee, G.C.; Sundin, G.W. Erwinia amylovora CRISPR elements provide new tools for evaluating strain diversity and for microbial source tracking. PLoS ONE 2012, 7, e41706. [Google Scholar] [CrossRef] [PubMed]
- Patil, I. ggstatsplot: “ggplot2” based plots with statistical details. CRAN 2018. Available online: https://CRAN.R-project.org/package=ggstatsplot (accessed on 4 December 2020). [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 4 December 2020).
- Aćimović, S.; Higgins, E.; Meredith, C. Effective post-infection programs of prohexadione-calcium for reducing shoot blight and preventing fire blight canker initiation on apple wood with cost-benefit analysis. Fruit Q. 2019, 27, 25–31. [Google Scholar]
- Kostick, S.A.; Norelli, J.L.; Evans, K. Novel metrics to classify fire blight resistance of 94 apple cultivars. Plant. Pathol. 2019, 68, 985–996. [Google Scholar] [CrossRef]
- Brown, S. Apple. In Fruit Breeding; Badenes, M.L., Byrne, D.H., Eds.; Springer: Boston, MA, USA, 2012; pp. 329–367. [Google Scholar]
- Ferree, D.C.; Schmid, J.; Bishop, B. Survival of apple rootstocks to natural infections of fire blight. HortTechnology 2002, 12, 239–241. [Google Scholar] [CrossRef] [Green Version]
- Bessho, H.; Brown, S.K.; Norelli, J.L.; Aldwinckle, H.S.; Cummins, J.N. Observations on the susceptibility of Japanese apple cultivars and rootstock selections to fire blight. J. Am. Pomol. Soc. 2001, 55, 120. [Google Scholar]
- Gardiner, S.E.; Norelli, J.; De Silva, N.H.; Fazio, G.; Peil, A.; Malnoy, M.; Horner, M.; Bowatte, D.; Carlisle, C.; Wiedow, C.; et al. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’ accessions. BMC Genet. 2012, 13, 25. [Google Scholar] [CrossRef]
- Emeriewen, O.; Malnoy, M.; Richter, K.; Kilian, A.; Hanke, M.-V.; Peil, A. Evidence of a major QTL for fire blight resistance in the apple wild species Malus fusca. Acta Hortic. 2014, 289–293. [Google Scholar] [CrossRef]
- Aldwinckle, H.; Gustafson, H.; Forsline, P. Evaluation of the core subset of the USDA apple germplasm collection for resistance to fire blight. Acta Hortic. 1999, 269–272. [Google Scholar] [CrossRef]
- Khan, M.A.; Zhao, Y.; Korban, S. Identification of genetic loci associated with fire blight resistance in Malus through combined use of QTL and association mapping. Physiol. Plant. 2013, 148, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Peil, A.; Bus, V.; Geider, K.; Richter, K.; Flachowsky, H.; Hanke, M.-V. Improvement of fire blight resistance in apple and pear. Int. J. Plant Breed. 2009, 3, 1–27. [Google Scholar]
- Lambe, R. Ornamental and Flower Diseases: Fire Blight of Ornamentals. Plant Disease and Control Notes. Virginia Polytechnic Institute and Statue University. 1980. Available online: https://vtechworks.lib.vt.edu (accessed on 4 December 2020).
- Harshman, J.M.; Evans, K.M.; Allen, H.; Potts, R.; Flamenco, J.; Aldwinckle, H.S.; Wisniewski, M.E.; Norelli, J.L. Fire blight resistance in wild accessions of Malus sieversii. Plant. Dis. 2017, 101, 1738–1745. [Google Scholar] [CrossRef] [PubMed]
- Fazio, G.; Aldwinckle, H.; Volk, G.; Richards, C.; Janisiewicz, W.; Forsline, P. Progress in evaluating Malus sieversii for disease resistance and horticultural traits. Acta Hortic. 2009, 59–66. [Google Scholar] [CrossRef]
- Duan, N.; Bai, Y.; Sun, H.; Wang, N.; Thomas, C.; Linyong, M.; Wang, X.; Jiao, C.; LeGall, N.; Mao, L.; et al. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Sun, X.; Jiao, C.; Schwaninger, H.; Chao, C.T.; Ma, Y.; Duan, N.; Khan, A.; Ban, S.; Xu, K.; Cheng, L.; et al. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat. Genet. 2020, 52, 1423–1432. [Google Scholar] [CrossRef]
Species Comparison | Average June Severity | June p-Value | Average July Severity | July p-Value |
---|---|---|---|---|
M. domestica/M. angustifolia | 25.42/0.18 | 6.08 × 10−10 | 42.4/1.44 | 6.93 × 10−10 |
M. domestica/M. baccata | 25.42/1.08 | 1.26 × 10−11 | 42.4/2.38 | 6.30 × 10−13 |
M. domestica/M. coronaria | 25.42/4.33 | 0.001 | 42.4/6.03 | 3.97 × 10−5 |
M. domestica/M. fusca | 25.42/4.48 | 1.02 × 10−7 | 42.4/5.97 | 1.43 × 10−9 |
M. domestica/Malus hybrid | 25.42/12.43 | 7.78 × 10−7 | 42.4/21.13 | 2.75 × 10−8 |
M. domestica/M. ioensis | 25.42/4.99 | 0.001 | 42.4/6.35 | 1.15 × 10−4 |
M. domestica/M. prunifolia | 25.42/7.97 | 0.019 | 42.4/12.51 | 0.002 |
M. domestica/M. sieversii | 25.42/7.41 | 6.10 × 10−22 | 42.4/13.63 | 2.09 × 10−23 |
Malus hybrid/M. angustifolia | 12.43/0.18 | 0.003 | 21.13/11.44 | 0.008 |
Malus hybrid/M. baccata | 12.43/1.08 | 0.003 | 21.13/2.38 | 0.002 |
Species Comparison | Average Cut Severity Rating | p-Value |
---|---|---|
M. coronaria/M. baccata | 2.23/1.04 | 0.014 |
M. domestica/M. angustifolia | 2.88/1.66 | 0.004 |
M. domestica/M. baccata | 2.88/1.04 | 1.67 × 10−13 |
M. domestica/M. floribunda | 2.88/0.50 | 2.75 × 10−4 |
M. domestica/M. fusca | 2.88/1.55 | 0.004 |
M. domestica/M. halliana | 2.88/1.00 | 0.006 |
M. domestica/Malus hybrid | 2.88/1.98 | 6.01 × 10−17 |
M. domestica/M. orientalis | 2.88/1.19 | 1.92 × 10−11 |
M. domestica/M. sargentii | 2.88/1.44 | 0.049 |
M. domestica/M. sieversii | 2.88/1.74 | 4.86 × 10−35 |
M. domestica/M. sikkimensis | 2.88/1.23 | 0.034 |
Malus hybrid/M. baccata | 1.98/1.04 | 0.014 |
M. ioensis/M. baccata | 2.27/1.04 | 0.038 |
M. toringo/M. baccata | 2.54/1.04 | 0.012 |
M. toringo/M. orientalis | 2.54/1.19 | 0.048 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dougherty, L.; Wallis, A.; Cox, K.; Zhong, G.-Y.; Gutierrez, B. Phenotypic Evaluation of Fire Blight Outbreak in the USDA Malus Collection. Agronomy 2021, 11, 144. https://doi.org/10.3390/agronomy11010144
Dougherty L, Wallis A, Cox K, Zhong G-Y, Gutierrez B. Phenotypic Evaluation of Fire Blight Outbreak in the USDA Malus Collection. Agronomy. 2021; 11(1):144. https://doi.org/10.3390/agronomy11010144
Chicago/Turabian StyleDougherty, Laura, Anna Wallis, Kerik Cox, Gan-Yuan Zhong, and Benjamin Gutierrez. 2021. "Phenotypic Evaluation of Fire Blight Outbreak in the USDA Malus Collection" Agronomy 11, no. 1: 144. https://doi.org/10.3390/agronomy11010144
APA StyleDougherty, L., Wallis, A., Cox, K., Zhong, G.-Y., & Gutierrez, B. (2021). Phenotypic Evaluation of Fire Blight Outbreak in the USDA Malus Collection. Agronomy, 11(1), 144. https://doi.org/10.3390/agronomy11010144