Impact of Polymer-Coated Controlled-Release Fertilizer on Maize Growth, Production, and Soil Nitrate in Sandy Soils
<p>Graphical weather data depicting lines of maximum (red), minimum (blue), and average (grey) temperatures along with bars of total daily rainfall (orange) throughout 2022 and 2023 maize growing seasons.</p> "> Figure 2
<p>Crop health and growth parameters including (<b>A</b>) plant height, (<b>B</b>) leaf area index, (<b>C</b>) leaf tissue nitrogen, and (<b>D</b>) aboveground biomass (AGB) for 2022 and 2023 maize growing seasons across fertilizer treatments.</p> "> Figure 3
<p>Soil nitrate-nitrogen (NO<sub>3</sub>-N, mg kg<sup>−1</sup>) at various soil profile depths including (<b>A</b>) 0–30 cm, (<b>B</b>) 30–60 cm, (<b>C</b>) 60–90 cm, and (<b>D</b>) 90–120 cm for the 2022 and 2023 maize growing seasons across fertilizer treatments.</p> "> Figure 4
<p>The mean soil nitrate-nitrogen (NO<sub>3</sub>-N) within the 60–120 cm soil profile for 2022 and 2023 maize growing seasons; this figure shows the color gradient of the growth stages, with the youngest stage (V6) being the darkest purple and progressively getting lighter until the R5 growth stage.</p> "> Figure 5
<p>Violin plot graph of grain yield under different nitrogen fertilizer treatments for 2022 and 2023 maize growing seasons. Treatments with same letters within each year are not significantly different at <span class="html-italic">p</span> < 0.05.</p> "> Figure 6
<p>A correlation matrix illustrating the relationships between climatic factors, soil moisture, nitrate-nitrogen (NO<sub>3</sub>-N) concentrations at different depths, and plant growth attributes at the vegetative (V12) and reproductive (R3 and R5) growth stages during the 2022 and 2023 maize growing seasons. The variables include soil moisture (VWC) at 30 cm, 60 cm, and 90 cm depths (VWC_30, VWC_60, VWC_90, respectively); NO<sub>3</sub>-N concentrations at three soil depths (NO<sub>3</sub>-N_30: 0–30 cm, NO<sub>3</sub>-N_60: 30–60 cm, NO<sub>3</sub>-N_90: 60–90 cm); and plant growth parameters including plant height (Height) and the leaf area index (LAI). Positive correlations are shown in red, while negative correlations are represented in blue, with the intensity of the color corresponding to the strength of the correlation.</p> "> Figure 7
<p>A Principal Component Analysis (PCA) biplot showing the relationships between soil nitrate-nitrogen concentrations (NO<sub>3</sub>_30, NO<sub>3</sub>_60, NO<sub>3</sub>_90), soil moisture (VWC_30, VWC_60, VWC_90), cumulative rainfall (RAIN_sum, RAIN_cum), and crop performance metrics (LAI, height, yield) during the 2022 (red) and 2023 (blue) maize growing seasons.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characteristics
2.2. Experimental Design, Treatments, and Management Practices
2.3. Irrigation Management and Weather
2.4. Crop Health and Growth Sampling
2.5. Quantifying Maize Production
2.6. Soil Sampling
2.7. Statistical Analysis
3. Results and Discussion
3.1. Weather Conditions
3.2. Crop Growth and Health Parameters
3.3. Soil Nitrate-Nitrogen (NO3-N)
3.4. Grain Yield
3.5. Nitrogen Release Dynamics and Multivariate Analysis of CRF Performance
3.5.1. Correlation Analysis: Relationships Between Soil NO3-N, Soil Moisture, Crop Performance Indicators, and Environmental Variables
3.5.2. Comparative Insights Across Growth Stages and Seasons
3.5.3. Growth Stage PCA: Variance Drivers and NO3-N Dynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Święcick, W.K.; Surma, M. The big five in the world of plants–the species that have changed the course of history. Pol. J. Agron. 2021, 47, 68–77. [Google Scholar] [CrossRef]
- FAO & U.S. Department of Agriculture. Worldwide Production of Grain in 2021/22, by Type (in Million Metric Tons) [Graph]. Statista. 2023. Available online: https://www.statista.com/statistics/263977/world-grain-production-by-type/ (accessed on 10 November 2023).
- Qiu, S.J.; He, P.; Zhao, S.C.; Li, W.J.; Xie, J.G.; Hou, Y.P.; Grant, C.A.; Zhou, W.; Jin, J.Y. Impact of nitrogen rate on maize yield and nitrogen use efficiencies in Northeast China. Agron. J. 2015, 107, 305–313. [Google Scholar] [CrossRef]
- Moreno, F.; Cayuela, J.A.; Fernández, J.E.; Fernández-Boy, E.; Murillo, J.M.; Cabrera, F. Water balance and nitrate leaching in an irrigated maize crop in SW Spain. Agric. Water Manag. 1996, 32, 71–83. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Panda, R.K.; Chakraborty, A.; Halder, D. Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions. Field Crops Res. 2018, 221, 339–349. [Google Scholar] [CrossRef]
- Verhoeven, J.T.A.; Arheimer, B.; Yin, C.; Hefting, M.M. Regional and global concerns over wetlands and water quality. Trends Ecol. Evol. 2006, 21, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Rath, S.; Zamora-Re, M.; Graham, W.; Dukes, M.; Kaplan, D. Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety of irrigation and nutrient management practices in the Suwannee River Basin, Florida. Agric. Water Manag. 2021, 246, 106634. [Google Scholar] [CrossRef]
- Matczuk, D.; Siczek, A. Effectiveness of the use of urease inhibitors in agriculture: A review. Int. Agrophys. 2021, 35, 197–208. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, W.; Wang, X.; Zhang, L.; Zhang, W.; Liu, D.; Chen, X. Agronomic, environmental, and ecosystem economic benefits of controlled-release nitrogen fertilizers for maize production in Southwest China. J. Clean. Prod. 2021, 312, 127611. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, Z.; He, X.; Wang, X.; Shi, X.; Zou, C.; Chen, X. The effects of controlled release urea on maize productivity and reactive nitrogen losses: A meta-analysis. Environ. Pollut. 2019, 246, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, B.; Venterea, R.T.; Rosen, C. Fertilizer and irrigation management effects on nitrous oxide emissions and nitrate leaching. Agron. J. 2014, 106, 703–714. [Google Scholar] [CrossRef]
- Shi, N.; Zhang, Y.; Li, Y.; Luo, J.; Gao, X.; Jing, Y.; Bo, L. Water pollution risk from nitrate migration in the soil profile as affected by fertilization in a wheat-maize rotation system. Agric. Water Manag. 2018, 210, 124–129. [Google Scholar] [CrossRef]
- Morgan, K.T.; Cushman, K.E.; Sato, S. Release mechanisms for slow- and controlled-release fertilizers and strategies for their use in vegetable production. HortTechnology 2009, 19, 10–12. [Google Scholar] [CrossRef]
- Du, C.-W.; Zhou, J.-M.; Shaviv, A. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers. J. Polym. Environ. 2006, 14, 223–230. [Google Scholar] [CrossRef]
- Adams, C.; Frantz, J.; Bugbee, B. Macro- and micronutrient-release characteristics of three polymer-coated fertilizers: Theory and measurements. J. Plant Nutr. Soil Sci. 2013, 176, 76–88. [Google Scholar] [CrossRef]
- Xie, Y.; Tang, L.; Han, Y.; Yang, L.; Xie, G.; Peng, J.; Tian, C.; Zhou, X.; Liu, Q.; Rong, X.; et al. Reduction in nitrogen fertilizer applications by the use of polymer-coated urea: Effect on maize yields and environmental impacts of nitrogen losses. J. Sci. Food Agric. 2019, 99, 2259–2266. [Google Scholar] [CrossRef] [PubMed]
- Rui, Y.; Ruark, M.D.; Andraski, T.W.; Bundy, L.G. Assessing the benefit of polymer-coated urea for corn production on irrigated sandy soils. Agron. J. 2019, 111, 473–481. [Google Scholar] [CrossRef]
- Maharjan, B.; Ferguson, R.B.; Slater, G.P. Polymer-coated urea improved corn response compared to urea-ammonium-nitrate when applied on a coarse-textured soil. Agron. J. 2016, 108, 509–518. [Google Scholar] [CrossRef]
- Cahill, S.; Osmond, D.; Weisz, R.; Heiniger, R. Evaluation of alternative nitrogen fertilizers for corn and winter wheat production. Agron. J. 2010, 102, 1226–1236. [Google Scholar] [CrossRef]
- Noellsch, A.J.; Motavalli, P.P.; Nelson, K.A.; Kitchen, N.R. Corn response to conventional and slow-release nitrogen fertilizers across a claypan landscape. Agron. J. 2009, 101, 607–614. [Google Scholar] [CrossRef]
- Derby, N.E.; Steele, D.D.; Terpstra, J.; Knighton, R.E.; Casey, F.X.M. Interactions of nitrogen, weather, soil, and irrigation on corn yield. Agron. J. 2005, 97, 1342–1351. [Google Scholar] [CrossRef]
- Shoji, S.; Delgado, J.; Mosier, A.; Miura, Y. Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality. Commun. Soil Sci. Plant Anal. 2001, 32, 1051–1070. [Google Scholar] [CrossRef]
- Sun, X.; Niu, L.; Zhang, H.; Wang, Q.; Zhou, W.; Tang, H.; Wang, J. Exploring sustainable agriculture: Investigating the impact of controlled release fertilizer damage through bonded particle modeling. J. Clean. Prod. 2024, 468, 143095. [Google Scholar] [CrossRef]
- Zheng, W.; Sui, C.; Liu, Z.; Geng, J.; Tian, X.; Yang, X.; Li, C.; Zhang, M. Long-term effects of controlled-release urea on crop yields and soil fertility under wheat–corn double cropping systems. Agron. J. 2016, 108, 1703–1716. [Google Scholar] [CrossRef]
- Li, G.; Zhao, B.; Dong, S.; Zhang, J.; Liu, P.; Lu, W. Controlled-release urea combining with optimal irrigation improved grain yield, nitrogen uptake, and growth of maize. Agric. Water Manag. 2020, 227, 105834. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Y.; Blaylock, A.D.; Chen, X. Mixture of controlled release and normal urea to optimize nitrogen management for high-yielding (>15 Mg ha−1) maize. Field Crops Res. 2017, 204, 23–30. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Z.; Hu, Y.; Schmidhalter, U.; Zhang, W.; Ruan, S.; Chen, X. Integrated assessment of agronomic, environmental and ecosystem economic benefits of blending use of controlled-release and common urea in wheat production. J. Clean. Prod. 2021, 287, 125572. [Google Scholar] [CrossRef]
- Shivay, Y.S.; Pooniya, V.; Pal, M.; Ghasal, P.C.; Bana, R.; Jat, S.L. Coated urea materials for improving yields, profitability, and nutrient use efficiencies of aromatic rice. Glob. Chall. 2019, 3, 1900013. [Google Scholar] [CrossRef]
- Alva, A.K.; Paramasivam, S.; Fares, A.; Obreza, T.A.; Schumann, A.W. Nitrogen best management practice for citrus trees: II. Nitrogen fate, transport, and components of N budget. Sci. Hortic. 2006, 109, 223–233. [Google Scholar] [CrossRef]
- Sexton, B.T.; Moncrief, J.F.; Rosen, C.J.; Gupta, S.C.; Cheng, H.H. Optimizing Nitrogen and Irrigation Inputs for Corn Based on Nitrate Leaching and Yield on a Coarse-Textured Soil. J. Environ. Qual. 1996, 25, 982–992. [Google Scholar] [CrossRef]
- Wilson, M.L.; Rosen, C.J.; Moncrief, J.F. Effects of polymer-coated urea on nitrate leaching and nitrogen uptake by potato. J. Environ. Qual. 2010, 39, 492–499. [Google Scholar] [CrossRef] [PubMed]
- PRISM Climate Group, Oregon State University. Available online: https://prism.oregonstate.edu (accessed on 16 September 2023).
- Shieh, G.; Jan, S.L. The effectiveness of randomized complete block design. Stat. Neerl. 2004, 58, 111–124. [Google Scholar] [CrossRef]
- Mylavarapu, R.; Wright, D.; Kidder, G. UF/IFAS Standardized Fertilization Recommendations for Agronomic Crops (SL129); University of Florida Institute of Food and Agricultural Sciences, EDIS: Gainesville, FL, USA, 2021; Available online: https://edis.ifas.ufl.edu/publication/SS163 (accessed on 15 January 2020).
- UF/IFAS Extension University of Florida. Report Generator. Florida Automated Weather Network (FAWN). 2023. Available online: https://fawn.ifas.ufl.edu/data/reports/ (accessed on 5 October 2023).
- Koide, R.T.; Peoples, M.S. On the nature of temporary yield loss in maize following canola. Plant Soil 2012, 360, 259–269. [Google Scholar] [CrossRef]
- Acharya, B.; Sharma, V.; Barrett, C.; Sidhu, S.S.; Zotarelli, L.; Dukes, M.D. Methods to Quantify In-Field Nutrient Leaching (AE581); University of Florida Institute of Food and Agricultural Sciences EDIS: Gainesville, FL, USA, 2022; Available online: https://edis.ifas.ufl.edu/publication/AE581 (accessed on 30 January 2023).
- Knepel, K. Determination of Nitrate in 2M KCl Soil Extracts by Flow Injection Analysis; QuikChem Method 12-107-04-1-B; Lachat Instruments: Loveland, CO, USA, 2003. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing, version 4.2.3; [X86_64, linux-gnu]; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 15 October 2023).
- Pinheiro, J.C.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. {nlme}: Linear and Nonlinear Mixed Effects Models. Version 3.1-152. 2021. Available online: https://CRAN.R-project.org/package=nlme (accessed on 15 October 2023).
- Goode, K.; Rey, K. ggResidpanel: Panels and Interactive Versions of Diagnostic Plots Using “ggplot2”. Version 0.3.0. 2019. Available online: https://CRAN.R-project.org/package=ggResidpanel (accessed on 15 October 2023).
- Lenth, R.V.; Bolker, B.; Buerkner, P.; Giné-Vázquez, I.; Herve, M.; Jung, M.; Love, J.; Miguez, F.; Riebl, H.; Singmann, H. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. Version 1.8.5. 2023. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 15 October 2023).
- Brooks, M.; Bolker, B.; Kristensen, K.; Maechler, M.; Magnusson, A.; McGillycuddy, M.; Skaug, H.; Nielsen, A.; Berg, C.; Bentham, K.; et al. glmmTMB: Generalized Linear Mixed Models Using Template Model Builder. Version 1.1.5. 2022. Available online: https://CRAN.R-project.org/package=glmmTMB (accessed on 15 October 2023).
- Hartig, F.; Lohse, L. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. Version 0.4.5. 2022. Available online: https://CRAN.R-project.org/package=DHARMa (accessed on 15 October 2023).
- Stroup, W.W. Analysis of Non-Gaussian Data. In Applied Statistics in Agricultural, Biological, and Environmental Sciences; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 449–509. [Google Scholar] [CrossRef]
- Gbur, E.; Stroup, W.; McCarter, K.; Durham, S.; Young, L.; Christman, M.; West, M.; Kramer, M. Linear mixed models. In Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 59–107. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V. corrplot: Visualization of a Correlation Matrix. Version 0.84. 2017. Available online: https://cran.r-project.org/web/packages/corrplot/index.html (accessed on 15 October 2023).
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. 2020. Available online: https://cran.r-project.org/web/packages/factoextra/index.html (accessed on 15 October 2023).
- Florida Department of Agriculture and Consumer Services (FDACS). Water Quality/Quantity Best Management Practices for Florida Vegetable and Agronomic Crops; Florida Department of Agriculture and Consumer Services: Tallahassee, FL, USA, 2015. Available online: https://ccmedia.fdacs.gov/content/download/77230/file/vegAgCropBMP-loRes.pdf (accessed on 1 March 2020).
- Muchow, R.C.; Davis, R. Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment II. Radiation interception and biomass accumulation. Field Crops Res. 1988, 18, 17–30. [Google Scholar] [CrossRef]
- Wajid, A.; Ghaffar, A.; Maqsood, M.; Hussain, K.; Nasim, W. Yield response of maize hybrids to varying nitrogen rates. Pak. J. Agric. Sci. 2007, 44, 217–220. [Google Scholar]
- Różewicz, M.; Grabiński, J.; Wyzińska, M. Effect of strip-till and cultivar on photosynthetic parameters and grain yield of winter wheat. Int. Agrophys. 2024, 38, 279–291. [Google Scholar] [CrossRef]
- Gastal, F.; Lemaire, G. N uptake and distribution in crops: An agronomical and ecophysiological perspective. J. Exp. Bot. 2002, 53, 789–799. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Q.; Chen, F.; Yuan, L.; Mi, G. Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage. Front. Plant Sci. 2016, 7, 699. [Google Scholar] [CrossRef] [PubMed]
- Hammer, G.L.; Dong, Z.; McLean, G.; Doherty, A.; Messina, C.; Schussler, J.; Zinselmeier, C.; Paszkiewicz, S.; Cooper, M. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Sci. 2009, 49, 299–312. [Google Scholar] [CrossRef]
- Piazza, P.; Jasinski, S.; Tsiantis, M. Evolution of leaf developmental mechanisms. New Phytol. 2005, 167, 693–710. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO J. Hum. Environ. 2002, 31, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.; Coulter, J.A.; Pagliari, P.H. Timing and rate of nitrogen fertilization influence maize yield and nitrogen use efficiency. PLoS ONE 2020, 15, e0233674. [Google Scholar] [CrossRef]
- English, E.; Ketterings, Q.; Czymmek, K.; Gabriel, A.; Flis, F.; Lawrence, J. Agronomy Fact Sheet Series Fact Sheet #98: Nitrogen Uptake by Corn; Cornell University Cooperative Extension: Ithaca, NY, USA, 2017; Available online: http://nmsp.cals.cornell.edu/publications/factsheets/factsheet98.pdf (accessed on 1 March 2020).
- Varvel, G.E.; Schepers, J.S.; Francis, D.D. Ability for in-season correction of nitrogen deficiency in corn using chlorophyll meters. Soil Sci. Soc. Am. J. 1997, 61, 1233–1239. [Google Scholar] [CrossRef]
- Teixeira, E.I.; George, M.; Herreman, T.; Brown, H.; Fletcher, A.; Chakwizira, E.; de Ruiter, J.; Maley, S.; Noble, A. The impact of water and nitrogen limitation on maize biomass and resource-use efficiencies for radiation, water and nitrogen. Field Crops Res. 2014, 168, 109–118. [Google Scholar] [CrossRef]
- Carpici, E.B.; Celik, N.; Bayram, G. Yield and quality of forage maize as influenced by plant density and nitrogen rate. Turk. J. Field Crops 2010, 15, 128–132. [Google Scholar]
- Mukhtar, T.; Arif, M.; Hussain, S.; Tariq, M.; Mehmood, K. Effect of different rates of nitrogen and phosphorus fertilizers on growth and yield of maize. J. Agric. Res. 2011, 49, 333–339. [Google Scholar]
- Amissah, S.; Ankomah, G.; Agyei, B.K.; Lee, R.D.; Harris, G.H.; Cabrera, M.; Franklin, D.H.; Diaz-Perez, J.C.; Habteselassie, M.Y.; Sintim, H.Y. Nutrient sufficiency ranges for corn at the early growth stage: Implications for nutrient management. Plants 2023, 12, 713. [Google Scholar] [CrossRef]
- Amin, M.E.M.H. Effect of different nitrogen sources on growth, yield and quality of fodder maize (Zea mays L.). J. Saudi Soc. Agric. Sci. 2011, 10, 17–23. [Google Scholar] [CrossRef]
- Imran, S.; Arif, M.; Khan, A.; Khan, M.A.; Shah, W.; Latif, A. Effect of nitrogen levels and plant population on yield and yield components of maize. Adv. Crop Sci. Technol. 2015, 3, 1000170. [Google Scholar] [CrossRef]
- Strachan, I.B.; Pattey, E.; Boisvert, J.B. Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance. Remote Sens. Environ. 2002, 80, 213–224. [Google Scholar] [CrossRef]
- Asibi, A.E.; Chai, Q.; Coulter, J.A. Mechanisms of nitrogen use in maize. Agronomy 2019, 9, 775. [Google Scholar] [CrossRef]
- Grant, C.A.; Wu, R.; Selles, F.; Harker, K.N.; Clayton, G.W.; Bittman, S.; Zebarth, B.J.; Lupwayi, N.Z. Crop yield and nitrogen concentration with controlled release urea and split applications of nitrogen as compared to non-coated urea applied at seeding. Field Crops Res. 2012, 127, 170–180. [Google Scholar] [CrossRef]
- Martinez, C.; Clarke, D.; Dang, Y.P.; Janke, C.; Bell, M.J. Integrated field assessment of nitrogen release dynamics and crop recovery of band-applied controlled-release fertilisers. Plant Soil 2021, 466, 257–273. [Google Scholar] [CrossRef]
- Feldman, L. The maize root. In The Maize Handbook; Freeling, M., Walbot, V., Eds.; Springer: New York, NY, USA, 1994; pp. 29–37. [Google Scholar] [CrossRef]
- Mengel, D.B.; Barber, S.A. Development and distribution of the corn root system under field conditions. Agron. J. 1974, 66, 341–344. [Google Scholar] [CrossRef]
- Sweeney, D.W.; Ruiz-Diaz, D.; Jardine, D.J. Nitrogen management and uptake by corn on no-till and ridge-till claypan soil. Agrosystems Geosci. Environ. 2018, 1, 180034. [Google Scholar] [CrossRef]
- Peng, Y.; Niu, J.; Peng, Z.; Zhang, F.; Li, C. Shoot growth potential drives N uptake in maize plants and correlates with root growth in the soil. Field Crops Res. 2010, 115, 85–93. [Google Scholar] [CrossRef]
- Zotarelli, L.; Scholberg, J.M.; Dukes, M.D.; Muñoz-Carpena, R. Monitoring of nitrate leaching in sandy soils. J. Environ. Qual. 2007, 36, 953–962. [Google Scholar] [CrossRef]
- Gehl, R.J.; Schmidt, J.P.; Maddux, L.D.; Gordon, W.B. Corn yield response to nitrogen rate and timing in sandy irrigated soils. Agron. J. 2005, 97, 1230–1238. [Google Scholar] [CrossRef]
- Johnson, C.; Albrecht, G.; Ketterings, Q.; Beckman, J.; Stockin, K. Agronomy Fact Sheet Series Fact Sheet #2: Nitrogen Basics—The Nitrogen Cycle; Cornell University Cooperative Extension: Ithaca, NY, USA, 2005; Available online: http://nmsp.cals.cornell.edu/publications/factsheets/factsheet2.pdf (accessed on 15 October 2023).
- Lu, J.; Bai, Z.; Velthof, G.L.; Wu, Z.; Chadwick, D.; Ma, L. Accumulation and leaching of nitrate in soils in wheat-maize production in China. Agric. Water Manag. 2019, 212, 407–415. [Google Scholar] [CrossRef]
- Ning, P.; Fritschi, F.B.; Li, C. Temporal dynamics of post-silking nitrogen fluxes and their effects on grain yield in maize under low to high nitrogen inputs. Field Crops Res. 2017, 204, 249–259. [Google Scholar] [CrossRef]
- Binder, D.L.; Sander, D.H.; Walters, D.T. Maize response to time of nitrogen application as affected by level of nitrogen deficiency. Agron. J. 2000, 92, 1228–1236. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Li, Y.; Zhu, L.; Cao, Y.; Zhao, X.; Feng, G.; Gao, Q. Mixture of controlled-release and normal urea to improve nitrogen management for maize across contrasting soil types. Agron. J. 2020, 112, 3101–3113. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Parkin, T.B. Enhanced efficiency fertilizers: Effect on agronomic performance of corn in Iowa. Agron. J. 2014, 106, 771–780. [Google Scholar] [CrossRef]
- Nelson, K.A.; Paniagua, S.M.; Motavalli, P.P. Effect of polymer coated urea, irrigation, and drainage on nitrogen utilization and yield of corn in a claypan soil. Agron. J. 2009, 101, 681–687. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, J.; Zhai, S.; Ding, X.; Zhang, H.; Sun, S.; Tian, X. Optimal blends of controlled-release urea and conventional urea improved nitrogen use efficiency in wheat and maize with reduced nitrogen application. J. Soil Sci. Plant Nutr. 2021, 21, 1103–1111. [Google Scholar] [CrossRef]
- Zhao, B.; Dong, S.; Zhang, J.; Liu, P. Effects of controlled-release fertiliser on nitrogen use efficiency in summer maize. PLoS ONE 2013, 8, e70569. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Canqui, H.; Claassen, M.M.; Presley, D.R. Summer cover crops fix nitrogen, increase crop yield, and improve soil–crop relationships. Agron. J. 2012, 104, 137–147. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Zhao, W.; Zheng, J.; Guo, J.; Xiang, Y.; Wu, L. Combined effects of irrigation level and fertilization practice on yield, economic benefit and water-nitrogen use efficiency of drip-irrigated greenhouse tomato. Agric. Water Manag. 2022, 262, 107401. [Google Scholar] [CrossRef]
- Ergo, V.V.; Lascano, R.; Vega, C.R.; Parola, R.; Carrera, C.S. Heat and water stressed field-grown soybean: A multivariate study on the relationship between physiological-biochemical traits and yield. Environ. Exp. Bot. 2018, 148, 1–11. [Google Scholar] [CrossRef]
- Crista, L.; Radulov, I.; Crista, F.; Imbrea, F.; Manea, D.N.; Boldea, M.; Gergen, I.; Ienciu, A.A.; Lațo, A. Utilizing Principal Component Analysis to Assess the Effects of Complex Foliar Fertilizers Regarding Maize (Zea mays L.) Productivity. Agriculture 2024, 14, 1428. [Google Scholar] [CrossRef]
Year | Soil Texture | Residual Soil NO3-N | |||||
---|---|---|---|---|---|---|---|
Soil Series | Sand | Silt | Clay | 0–30 cm | 30–60 cm | 60–90 cm | |
— — — — — % — — — — — | — — — — — mg kg−1 — — — — | ||||||
2022 | Blanton–Foxworth–Alpin complex | 88.3 | 1.6 | 10.1 | 6.2 | 6.5 | 7.4 |
2023 | Hurricane, Albany, and Chipley soils | 92.4 | 2.2 | 5.4 | 3.8 | 0.6 | 0.5 |
Treatment | Total N application | Fertilizer Type | Source | Description |
---|---|---|---|---|
1 | 0 | Control | - | No N fertilizer added |
2 | 168 | CRF | Harrell’s, LLC POLYON® CRF (43-0-0) | Total of 168 kg N ha−1—this includes 34 kg N ha−1 liquid fertilizer as a starter fertilizer and the remaining 134 kg N ha−1 of CRF added at planting (all upfront—no fertilizer added during season) |
3 | 224 | CRF | Harrell’s, LLC POLYON® CRF (43-0-0) | Total of 224 kg N ha−1—this includes 34 kg N ha−1 liquid fertilizer as a starter fertilizer and the remaining 190 kg N ha−1 of CRF added at planting (all upfront—no fertilizer added during season) |
4 | 280 | CRF | Harrell’s, LLC POLYON® CRF (43-0-0) | Total of 280 kg N ha−1—this includes 34 kg N ha−1 liquid fertilizer as a starter fertilizer and the remaining 246 kg N ha−1 of CRF added at planting (all upfront—no fertilizer added during season) |
5 | 336 | CRF | Harrell’s, LLC POLYON® CRF (43-0-0) | Total of 336 kg N ha−1—this includes 34 kg N ha−1 liquid fertilizer as a starter fertilizer and the remaining 302 kg N ha−1 of CRF added at planting (all upfront—no fertilizer added during season) |
6 | 269 | Conventional * | UAN (32-0-0) | Total of 269 kg N ha−1—this includes 34 kg N ha−1 liquid fertilizer as a starter fertilizer and the remaining 235 kg N ha−1 applied throughout the growing season based on growth stage needs (V4, V8, V10, V12, V14, VT, and R1-R2) |
Year | Seed Variety | Seeding Rate | Planting Date | Harvest Date | Herbicide | Fungicide | Insecticide | |||
---|---|---|---|---|---|---|---|---|---|---|
Seeds ha−1 | a Name | Amount (L ha−1) | a Name | Amount (L ha−1) | a Name | Amount (L ha−1) | ||||
2022 | Pioneer ‘1870 YHR’ | 80,309 | 25 March | 19 August | Dual II Magnum | 1.75 | Headline AMP | 0.73 | Counter | 6.05 |
Atrazine | 4.68 | |||||||||
Roundup | 1.61 | |||||||||
2023 | Pioneer ‘1870 YHR’ | 79,074 | 20 March | 17 August | Dual II Magnum | 1.75 | Headline AMP | 0.73 | Counter | 6.05 |
Atrazine | 4.68 | |||||||||
Roundup | 1.61 |
Year | Treatment | * Plant Height | * Leaf Area Index | * Leaf Tissue Nitrogen | £ Aboveground Biomass | £ Yield |
---|---|---|---|---|---|---|
—m— | —m2 m−2— | —%— | ———— Mg ha−1 ——— | |||
2022 | No Nitrogen | 2.26 a | 2.79 a | 2.13 a | 15.1 a | 6.1 a |
CRF 168 | 2.92 c | 4.04 bc | 2.59 b | 23.7 b | 12.9 b | |
CRF 224 | 2.91 c | 3.92 bc | 2.52 ab | 28.8 cd | 13.6 b | |
CRF 280 | 2.95 c | 3.86 bc | 2.91 b | 31.0 d | 14.5 b | |
CRF 336 | 2.98 c | 4.27 c | 2.68 b | 29.9 d | 14.2 b | |
CONV 269 | 2.69 b | 3.60 b | 2.78 b | 25.6 bc | 13.1 b | |
2023 | No Nitrogen | 1.92 a | 2.38 a | 1.03 a | 14.9 a | 2.4 a |
CRF 168 | 2.69 b | 3.89 b | 2.14 b | 20.7 ab | 10.9 bc | |
CRF 224 | 2.75 b | 3.77 b | 2.43 b | 23.9 b | 12.9 cd | |
CRF 280 | 2.75 b | 3.94 b | 2.53 b | 24.1 b | 14.1 d | |
CRF 336 | 2.72 b | 4.11 b | 3.13 c | 23.8 b | 14.3 d | |
CONV 269 | 2.61 b | 3.54 b | 2.37 b | 20.6 ab | 8.6 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morrow, M.; Sharma, V.; Singh, R.K.; Watson, J.A.; Maltais-Landry, G.; Hochmuth, R.C. Impact of Polymer-Coated Controlled-Release Fertilizer on Maize Growth, Production, and Soil Nitrate in Sandy Soils. Agronomy 2025, 15, 455. https://doi.org/10.3390/agronomy15020455
Morrow M, Sharma V, Singh RK, Watson JA, Maltais-Landry G, Hochmuth RC. Impact of Polymer-Coated Controlled-Release Fertilizer on Maize Growth, Production, and Soil Nitrate in Sandy Soils. Agronomy. 2025; 15(2):455. https://doi.org/10.3390/agronomy15020455
Chicago/Turabian StyleMorrow, Morgan, Vivek Sharma, Rakesh K. Singh, Jonathan Adam Watson, Gabriel Maltais-Landry, and Robert Conway Hochmuth. 2025. "Impact of Polymer-Coated Controlled-Release Fertilizer on Maize Growth, Production, and Soil Nitrate in Sandy Soils" Agronomy 15, no. 2: 455. https://doi.org/10.3390/agronomy15020455
APA StyleMorrow, M., Sharma, V., Singh, R. K., Watson, J. A., Maltais-Landry, G., & Hochmuth, R. C. (2025). Impact of Polymer-Coated Controlled-Release Fertilizer on Maize Growth, Production, and Soil Nitrate in Sandy Soils. Agronomy, 15(2), 455. https://doi.org/10.3390/agronomy15020455