Non-Thermal Plasma-Activated Water Enhances Nursery Production of Vegetables: A Species-Specific Study
<p>Schematic representation of the water activation system using a non-thermal plasma generator.</p> "> Figure 2
<p>Effects of cultivation cycle (I cycle: May–June; II cycle: June–July; III cycle: September–October) and plasma-activated water treatment (CTR: control, PAW-LI: low-intensity, PAW-HI: high-intensity) on plant height (<b>A</b>), collar diameter (<b>B</b>), sturdiness index (<b>C</b>), and aerial biomass fresh weight (<b>D</b>) in tomato. Different letters indicate significant differences (<span class="html-italic">p</span> < 0.05) between treatments according to Tukey’s HSD test.</p> "> Figure 3
<p>Effects of cultivation cycle (I cycle: May–June; II cycle: June–July; III cycle: September–October) and plasma-activated water treatment (CTR: control; PAW-LI: low-intensity; PAW-HI: high-intensity) on plant height (<b>A</b>), collar diameter (<b>B</b>), sturdiness index (<b>C</b>), and aerial biomass fresh weight (<b>D</b>) in basil. Different letters indicate significant differences (<span class="html-italic">p</span> < 0.05) between treatments according to Tukey’s HSD test. ns = not significant differences.</p> "> Figure 4
<p>Effects of cultivation cycle (I cycle: May–June; II cycle: June–July; III cycle: September–October) and plasma-activated water treatment (CTR: control; PAW-LI: low-intensity; PAW-HI: high-intensity) on plant height (<b>A</b>), collar diameter (<b>B</b>), sturdiness index (<b>C</b>), and aerial biomass fresh weight (<b>D</b>) in Swiss chard. Different letters indicate significant differences (<span class="html-italic">p</span> < 0.05) between treatments according to Tukey’s HSD test.</p> "> Figure 5
<p>Effects of cultivation cycle (I cycle: May–June; II cycle: June–July; III cycle: September–October) and plasma-activated water treatment (CTR: control; PAW-LI: low-intensity; PAW-HI: high-intensity) on plant height (<b>A</b>), collar diameter (<b>B</b>), sturdiness index (<b>C</b>), and aerial biomass fresh weight (<b>D</b>) in cabbage. Different letters indicate significant differences (<span class="html-italic">p</span> < 0.05) between treatments according to Tukey’s HSD test.</p> "> Figure 6
<p>Effects of cultivation cycle (I cycle: May–June; II cycle: June–July; III cycle: September–October) and plasma-activated water treatment (CTR: control; PAW-LI: low-intensity; PAW-HI: high-intensity) on plant height (<b>A</b>), collar diameter (<b>B</b>), sturdiness index (<b>C</b>), and aerial biomass fresh weight (<b>D</b>) in lettuce. Different letters indicate significant differences (<span class="html-italic">p</span> < 0.05) between treatments according to Tukey’s HSD test.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Non-Thermal Plasma Treatment Implementation
2.3. Morphological and Aerial Biomass Traits
2.4. Statistical Analysis
3. Results
3.1. Tomato
3.2. Basil
3.3. Swiss Chard
3.4. Cabbage
3.5. Lettuce
3.6. Aerial Biomass Minerals and Ions Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caicedo Solano, N.E.; García Llinás, G.A.; Montoya-Torres, J.R. Towards the integration of lean principles and optimization for agricultural production systems: A conceptual review proposition. J. Sci. Food Agric. 2020, 100, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Balliu, A.; Sallaku, G.; Nasto, T. Nursery management practices influence the quality of vegetable seedlings. Italus Hortus 2017, 24, 39–52. [Google Scholar] [CrossRef]
- Pascual, J.A.; Ceglie, F.; Tuzel, Y.; Koller, M.; Koren, A.; Hitchings, R.; Tittarelli, F. Organic substrate for transplant production in organic nurseries. A review. Agron. Sustain. Dev. 2018, 38, 35. [Google Scholar] [CrossRef]
- Almansa, E.M.; Espín, A.; Chica, R.M.; Lao, M.T. Bioassimilation behaviour of tomato seedling cultivars under different sources of artificial light. Aust. J. Crop Sci. 2014, 8, 873–880. Available online: https://search.informit.org/doi/10.3316/informit.477666034809822 (accessed on 7 July 2024).
- Chappell, M.; Dove, S.K.; van Iersel, M.W.; Thomas, P.A.; Ruter, J. Implementation of wireless sensor networks for irrigation control in three container nurseries. HortTechnology 2013, 23, 747–753. [Google Scholar] [CrossRef]
- Krishnan, P.R.; Kalia, R.K.; Tewari, J.C.; Roy, M.M. Plant Nursery Management: Principles and Practices; Central Arid Zone Research Institute: Jodhpur, India, 2014. [Google Scholar]
- Prunty, R.M.; Ramon, A.A. Characteristics of Good Quality Transplants. Agricultural Research and Extension Center, Virginia Tech. 2015, 2906–1383. Available online: https://vtechworks.lib.vt.edu/bitstreams/18c1cd8f-3469-4606-9ed7-80fff3114675/download (accessed on 20 June 2024).
- Hong, C.X.; Moorman, G.W. Plant pathogens in irrigation water: Challenges and opportunities. Crit. Rev. Plant Sci. 2005, 24, 189–208. [Google Scholar] [CrossRef]
- Schnabel, U.; Niquet, R.; Schmidt, C.; Stachowiak, J.; Schlüter, O.; Andrasch, M.; Ehlbeck, J. Antimicrobial efficiency of non-thermal atmospheric pressure plasma processed water (PPW) against agricultural relevant bacteria suspensions. Int. J. Environ. Agric. Res. 2016, 2, 212–224. [Google Scholar]
- Bogaerts, A.; Neyts, E.; Gijbels, R.; Van der Mullen, J. Gas discharge plasmas and their applications. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 609–658. [Google Scholar] [CrossRef]
- Khan, M.N.; Alamri, S.; Al-Amri, A.A.; Alsubaie, Q.D.; Al-Munqedi, B.; Ali, H.M.; Singh, V.P.; Siddiqui, M.H. Effect of nitric oxide on seed germination and seedling development of tomato under chromium toxicity. J. Plant Growth Regul. 2021, 40, 2358–2370. [Google Scholar] [CrossRef]
- Li, L.; Jiang, J.; Li, J.; Shen, M.; He, X.; Shao, H.; Dong, Y. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci. Rep. 2014, 4, 5859. [Google Scholar] [CrossRef]
- Alves Junior, C.; de Oliveira Vitoriano, J.; da Silva DL, S.; de Lima Farias, M.; de Lima Dantas, N.B. Water uptake mechanism and germination of Erythrina velutina seeds treated with atmospheric plasma. Sci. Rep. 2016, 6, 33722. [Google Scholar] [CrossRef] [PubMed]
- Scholtz, V.; Šerá, B.; Khun, J.; Šerý, M.; Julák, J. Effects of nonthermal plasma on wheat grains and products. J. Food Qual. 2019, 2019, 7917825. [Google Scholar] [CrossRef]
- Than, H.A.Q.; Pham, T.H.; Nguyen, D.K.V.; Pham, T.H.; Khacef, A. Non-thermal plasma activated water for increasing germination and plant growth of Lactuca sativa L. Plasma Chem. Plasma Process. 2022, 42, 73–89. [Google Scholar] [CrossRef]
- Zhang, J.J.; Jo, J.O.; Huynh, D.L.; Mongre, R.K.; Ghosh, M.; Singh, A.K.; Lee, S.B.; Mok, Y.S.; Hyuk, P.; Jeong, D.K. Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes. Sci. Rep. 2017, 7, 41917. [Google Scholar] [CrossRef]
- Abedi, S.; Iranbakhsh, A.; Oraghi Ardebili, Z.; Ebadi, M. Seed priming with cold plasma improved early growth, flowering, and protection of Cichorium intybus against selenium nanoparticle. J. Theor. Appl. Phys. 2020, 14, 113–119. [Google Scholar] [CrossRef]
- Adhikari, B.; Pangomm, K.; Veerana, M.; Mitra, S.; Park, G. Plant disease control by non-thermal atmospheric-pressure plasma. Front. Plant Sci. 2020, 11, 77. [Google Scholar] [CrossRef] [PubMed]
- Park, D.P.; Davis, K.; Gilani, S.; Alonzo, C.A.; Dobrynin, D.; Friedman, G.; Fridman, A.; Rabinovich, A.; Fridman, G. Reactive nitrogen species produced in water by non-equilibrium plasma increase plant growth rate and nutritional yield. Curr. Appl. Phys. 2013, 13, S19–S29. [Google Scholar] [CrossRef]
- Takahata, J.; Takaki, K.; Satta, N.; Takahashi, K.; Fujio, T.; Sasaki, Y. Improvement of growth rate of plants by bubble discharge in water. Jpn. J. Appl. Phys. 2014, 54, 01AG07. [Google Scholar] [CrossRef]
- Lindsay, A.; Byrns, B.; King, W.; Andhvarapou, A.; Fields, J.; Knappe, D.; Fonteno, W.; Shannon, S. Fertilization of radishes, tomatoes, and marigolds using a large-volume atmospheric glow discharge. Plasma Chem. Plasma Process. 2014, 34, 1271–1290. [Google Scholar] [CrossRef]
- Ji, W.; Li, M.; Yang, T.; Li, H.; Li, W.; Wang, J.; Ma, M. Effect of cold plasma on physical–biochemical properties and nutritional components of soybean sprouts. Food Res. Int. 2022, 161, 111766. [Google Scholar] [CrossRef]
- Šerá, B.; Scholtz, V.; Jirešová, J.; Khun, J.; Julák, J.; Šerý, M. Effects of non-thermal plasma treatment on seed germination and early growth of leguminous plants—A review. Plants 2021, 10, 1616. [Google Scholar] [CrossRef]
- Kučerová, K.; Henselová, M.; Slováková, Ľ.; Bačovčinová, M.; Hensel, K. Effect of plasma activated water, hydrogen peroxide, and nitrates on lettuce growth and its physiological parameters. Appl. Sci. 2021, 11, 1985. [Google Scholar] [CrossRef]
- Takaki, K.; Takahata, J.; Watanabe, S.; Satta, N.; Yamada, O.; Fujio, T.; Sasaki, Y. Improvements in plant growth rate using underwater discharge. J. Phys. Conf. Ser. 2013, 418, 012140. [Google Scholar] [CrossRef]
- Adhikari, B.; Adhikari, M.; Ghimire, B.; Park, G.; Choi, E.H. Cold atmospheric plasma-activated water irrigation in-duces defense hormone and gene expression in tomato seedlings. Sci. Rep. 2019, 9, 16080. [Google Scholar] [CrossRef]
- Cannazzaro, S.; Traversari, S.; Cacini, S.; Di Lonardo, S.; Pane, C.; Burchi, G.; Massa, D. Non-thermal plasma treatment influences shoot biomass, flower production and nutrition of gerbera plants depending on substrate composition and fertigation level. Plants 2021, 10, 689. [Google Scholar] [CrossRef]
- Nicoletto, C.; Falcioni, V.; Locatelli, S.; Sambo, P. Non-Thermal Plasma and Soilless Nutrient Solution Application: Effects on Nutrient Film Technique Lettuce Cultivation. Horticulturae 2023, 9, 208. [Google Scholar] [CrossRef]
- Leti, L.I.; Gerber, I.C.; Mihaila, I.; Galan, P.M.; Strajeru, S.; Petrescu, D.E.; Cimpeanu, M.M.; Topala, I.; Gorgan, D.L. The modulatory effects of non-thermal plasma on seed’s morphology, germination and genetics—A review. Plants 2022, 11, 2181. [Google Scholar] [CrossRef]
- Formisano, L.; Miras-Moreno, B.; Ciriello, M.; Zhang, L.; De Pascale, S.; Lucini, L.; Rouphael, Y. Between light and shading: Morphological, biochemical, and metabolomics insights into the influence of blue photoselective shading on vegetable seedlings. Front. Plant Sci. 2022, 13, 890830. [Google Scholar] [CrossRef]
- Savi, P.J.; Mantri, A.; Khodaverdi, H.; Zou, Y.; de Moraes, G.J.; Nansen, C. Indirect effects of plasma-activated water irrigation on Tetranychus urticae populations. J. Pest Sci. 2024, 95, 1–14. [Google Scholar] [CrossRef]
- Sivachandiran, L.; Khacef, A. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: Combined effect of seed and water treatment. RSC Adv. 2017, 7, 1822–1832. [Google Scholar] [CrossRef]
- Davis, W. Plasma Agriculture: Characterization of DBD Plasma Jet and Analysis of Effects When Treated on Sweet Basil (Ocimum basilicum). Master’s Thesis, Seton Hall University, Village, NJ, USA, 2021. [Google Scholar]
- Date, M.B.; Rivero, W.C.; Tan, J.; Specca, D.; Simon, J.E.; Salvi, D.A.; Karwe, M.V. Growth of hydroponic sweet basil (O. basilicum L.) using plasma-activated nutrient solution (PANS). Agriculture 2023, 13, 443. [Google Scholar] [CrossRef]
- Stolárik, T.; Henselová, M.; Martinka, M.; Novák, O.; Zahoranová, A.; Černák, M. Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem. Plasma Process. 2015, 35, 659–676. [Google Scholar] [CrossRef]
- Hayashi, N.; Ono, R.; Shiratani, M.; Yonesu, A. Antioxidative activity and growth regulation of Brassicaceae induced by oxygen radical irradiation. Jpn. J. Appl. Phys. 2015, 54, 06GD01. [Google Scholar] [CrossRef]
- Terebun, P.; Kwiatkowski, M.; Hensel, K.; Kopacki, M.; Pawłat, J. Influence of plasma activated water generated in a gliding arc discharge reactor on germination of beetroot and carrot seeds. Appl. Sci. 2021, 11, 6164. [Google Scholar] [CrossRef]
- Chalise, R.; Shrestha, P.; Sharma, S.; Basnet, S.; Mishra, L.N.; Khanal, R. Enhancing seed germination and growth parameters of cauliflower (Brassica oleracea, variety Botrytis) using plasma-activated water. J. Phys. D Appl. Phys. 2023, 56, 505201. [Google Scholar] [CrossRef]
- Stoleru, V.; Burlica, R.; Mihalache, G.; Dirlau, D.; Padureanu, S.; Teliban, G.C.; Astanei, D.; Cojocaru, A.; Beniuga, O.; Patras, A. Plant growth promotion effect of plasma activated water on Lactuca sativa L. cultivated in two different volumes of substrate. Sci. Rep. 2020, 10, 20920. [Google Scholar] [CrossRef]
- Thirumdas, R.; Kothakota, A.; Annapure, U.; Siliveru, K.; Blundell, R.; Gatt, R.; Valdramidis, V.P. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci. Technol. 2018, 77, 21–31. [Google Scholar] [CrossRef]
- Kučerová, J.; Konôpková, A.; Pšidová, E.; Kurjak, D.; Jamnická, G.; Slugenová, K.; Gömöry, D.; Ditmarová, L. Adaptive variation in physiological traits of beech provenances in Central Europe. Iforest-Biogeosci. For. 2018, 11, 24–31. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Sinclair, A.J.; Cahill, D.M.; Wang, X.; Dai, X.J. Nitrate and hydrogen peroxide generated in water by electrical discharges stimulate wheat seedling growth. Plasma Chem. Plasma Process. 2017, 37, 1393–1404. [Google Scholar] [CrossRef]
- Ihsan, M.Z.; Khaliq, A.; Siddiqui, M.H.; Ali, L.; Kumar, R.; Ali, H.M.; Matloob, A.; Fahad, S. The response of Triticum aes-tivum treated with plant growth regulators to acute day/night temperature rise. J. Plant Growth Regul. 2022, 41, 2020–2033. [Google Scholar] [CrossRef]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Judée, F.; Simon, S.; Bailly, C.; Dufour, T. Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms. Water Res. 2018, 133, 47–59. [Google Scholar] [CrossRef]
- Zhou, R.; Zhou, R.; Wang, P.; Xian, Y.; Mai-Prochnow, A.; Lu, X.; Cullen, P.J.; Ostrikov, K.K.; Bazaka, K. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 2020, 53, 303001. [Google Scholar] [CrossRef]
- Guo, D.; Liu, H.; Zhou, L.; Xie, J.; He, C. Plasma-activated water production and its application in agriculture. J. Sci. Food Agric. 2021, 101, 4891–4899. [Google Scholar] [CrossRef]
- Škarpa, P.; Klofáč, D.; Krčma, F.; Šimečková, J.; Kozáková, Z. Effect of plasma activated water foliar application on selected growth parameters of maize (Zea mays L.). Water 2020, 12, 3545. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Q.; Chen, F.; Yuan, L.; Mi, G. Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage. Front. Plant Sci. 2016, 7, 699. [Google Scholar] [CrossRef]
- Herianto, S.; Hou, C.Y.; Lin, C.M.; Chen, H.L. Nonthermal plasma-activated water: A comprehensive review of this new tool for enhanced food safety and quality. Compr. Rev. Food Sci. Food Saf. 2021, 20, 583–626. [Google Scholar] [CrossRef]
- Jin, Y.S.; Cho, C.; Kim, D.; Sohn, C.H.; Ha, C.S.; Han, S.T. Mass production of plasma activated water by an atmospheric pressure plasma. Jpn. J. Appl. Phys. 2020, 59, SHHF05. [Google Scholar] [CrossRef]
- Kooshki, S.; Pareek, P.; Janda, M.; Machala, Z. Selective reactive oxygen and nitrogen species production in plasma-activated water via dielectric barrier discharge reactor: An innovative method for tuning and its impact on dye degradation. J. Water Process Eng. 2024, 63, 105477. [Google Scholar] [CrossRef]
Treatments | Water Redox Potential (mV) | Duration Timing (min) |
---|---|---|
Control (CTR) | 150–200 | 0 |
Low Intensity (PAW-LI) | 450 | 5 |
High Intensity (PAW-HI) | 600 | 10 |
Tomato | PAW Treatment 1 | Cycle 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Unit | CTR | LI | HI | SEM | p-Value | I | II | III | SEM | p-Value | |
Plant height (PH) | Cm | 12.9 b | 13.5 b | 14.5 a | 0.97 | <0.0001 | 17.7 a | 10.7 c | 12.5 b | 0.97 | <0.0001 |
Collar diameter (CD) | Mm | 2.13 b | 2.19 b | 2.30 a | 0.06 | <0.0001 | 2.49 a | 2.37 b | 1.77 c | 0.06 | <0.0001 |
Sturdiness index (SI) | 61.1 b | 61.8 ab | 63.5 a | 2.73 | 0.0531 | 71.4 a | 45.6 b | 69.4 a | 2.73 | <0.0001 | |
Biomass | g plant−1 | 1.08 b | 1.16 b | 1.26 a | 0.08 | <0.0001 | 1.68 a | 0.86 b | 0.96 c | 0.08 | <0.0001 |
SPAD index | 30.9 a | 30.7 a | 30.0 a | 0.80 | 0.2105 | 35.6 a | 29.9 b | 26.2 c | 0.80 | <0.0001 | |
Dry matter content (DM) | % | 17.9 a | 17.8 a | 17.3 a | 0.61 | 0.0888 | 16.8 b | 17.2 b | 19.1 a | 0.61 | <0.0001 |
Basil | PAW Treatment 1 | Cycle 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Unit | CTR | LI | HI | SEM | p-Value | I | II | III | SEM | p-Value | |
Plant height (PH) | cm | 7.86 a | 7.63 a | 7.16 b | 0.28 | <0.0001 | 11.8 a | 7.21 b | 3.66 c | 0.28 | <0.0001 |
Collar diameter (CD) | mm | 1.50 b | 1.62 a | 1.51 b | 0.06 | <0.0001 | 1.68 a | 1.59 b | 1.37 c | 0.06 | <0.0001 |
Sturdiness index (SI) | 51.6 a | 46.7 b | 45.7 b | 0.62 | <0.0001 | 71.3 a | 45.8 b | 26.9 c | 0.62 | <0.0001 | |
Biomass | g plant−1 | 1.06 a | 1.05 a | 1.01 a | 0.05 | 0.2994 | 1.82 a | 0.60 c | 0.71 b | 0.05 | <0.0001 |
SPAD index | 22.1 a | 21.4 a | 21.8 a | 0.28 | 0.1264 | 24.2 a | 21.3 b | 19.9 c | 0.28 | <0.0001 | |
Dry matter content | % | 16.2 a | 16.4 a | 16.2 a | 0.34 | 0.8480 | 17.0 a | 17.5 a | 14.3 b | 0.34 | <0.0001 |
Swiss Chard | PAW Treatment 1 | Cycle 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Unit | CTR | LI | HI | SEM | p-Value | I | II | III | SEM | p-Value | |
Plant height (PH) | cm | 6.82 a | 7.20 a | 6.85 a | 0.23 | 0.0391 | 8.86 a | 6.83 b | 5.19 c | 0.23 | <0.0001 |
Collar diameter (CD) | mm | 2.25 a | 2.31 a | 2.35 a | 0.09 | 0.2843 | 2.28 b | 2.57 a | 2.06 c | 0.09 | <0.0001 |
Sturdiness index (SI) | 31.8 a | 32.4 a | 30.9 a | 1.22 | 0.2696 | 40.5 a | 28.0 b | 26.6 b | 1.22 | <0.0001 | |
Biomass | g plant−1 | 0.80 a | 0.86 a | 0.79 a | 0.04 | 0.1865 | 1.19 a | 0.70 b | 0.55 c | 0.04 | <0.0001 |
SPAD index | 22.8 a | 22.8 a | 22.7 a | 0.86 | 0.9980 | 24.7 a | 25.5 a | 18.1 b | 0.86 | <0.0001 | |
Dry matter content | % | 14.8 a | 15.1 a | 15.4 a | 0.33 | 0.4282 | 15.9 a | 15.8 a | 13.6 b | 0.33 | <0.0001 |
Cabbage | PAW Treatment 1 | Cycle 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Unit | CTR | LI | HI | SEM | p-Value | I | II | III | SEM | p-Value | |
Plant height (PH) | cm | 7.16 b | 7.09 b | 7.51 a | 0.20 | 0.0011 | 10.2 a | 4.05 c | 7.48 b | 0.20 | <0.0001 |
Collar diameter (CD) | mm | 1.28 a | 1.22 b | 1.25 ab | 0.02 | 0.0624 | 1.39 a | 1.15 b | 1.20 b | 0.02 | <0.0001 |
Sturdiness index (SI) | 55.8 b | 58.9 ab | 61.6 a | 0.28 | 0.0003 | 75.0 a | 36.5 c | 64.9 b | 0.28 | <0.0001 | |
Biomass | g plant−1 | 0.61 a | 0.58 a | 0.62 a | 0.17 | 0.1624 | 1.00 a | 0.25 c | 0.57 b | 0.17 | <0.0001 |
SPAD index | 33.4 b | 34.4 ab | 34.9 a | 0.63 | 0.0316 | 34.5 a | 34.1 a | 34.1 a | 0.63 | 0.7413 | |
Dry matter content | % | 22.6 a | 23.6 a | 23.1 a | 0.41 | 0.1244 | 22.5 b | 21.8 b | 25.0 a | 0.41 | <0.0001 |
Lettuce | PAW Treatment 1 | Cycle 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Unit | CTR | LI | HI | SEM | p-Value | I | II | III | SEM | p-Value | |
Plant height (PH) | cm | 6.42 a | 6.27 a | 5.28 b | 0.30 | <0.0001 | 8.21 a | 3.77 c | 5.99 b | 0.30 | <0.0001 |
Collar diameter (CD) | mm | 3.55 a | 3.26 b | 3.11 b | 0.08 | <0.0001 | 3.45 a | 3.18 b | 3.28 ab | 0.08 | 0.0038 |
Sturdiness index (SI) | 18.0 b | 19.4 a | 17.1 b | 0.06 | <0.0001 | 24.2 a | 12.4 c | 18.1 b | 0.06 | <0.0001 | |
Biomass | g plant−1 | 1.63 a | 1.15 b | 0.88 c | 0.10 | <0.0001 | 1.63 a | 0.56 b | 1.48 a | 0.10 | <0.00001 |
SPAD index | 10.2 a | 9.8 ab | 9.2 b | 0.42 | 0.0132 | 10.0 b | 11.3 a | 7.9 c | 0.42 | <0.0001 | |
Dry matter content | % | 14.8 a | 14.8 a | 15.2 a | 0.51 | 0.6861 | 14.5 b | 16.0 a | 14.3 b | 0.59 | 0.0123 |
PO43− | SO42− | Cl− | NO2− | NO3− | NH4+ | Na+ | K+ | Mg2+ | Ca2+ | TKN | |
---|---|---|---|---|---|---|---|---|---|---|---|
% from the Control | |||||||||||
Tomato | |||||||||||
PAW-LI | −1.17 | −0.95 | 4.26 | −61.59 | 46.16 | −12.33 | −15.30 | 4.99 | −0.94 | −8.86 | 6.64 |
PAW-HI | 7.38 | 5.37 | −0.72 | −22.49 | 7.44 | 10.12 | −24.22 | 0.78 | −6.80 | −0.81 | −2.58 |
Basil | |||||||||||
PAW-LI | −4.11 | −0.47 | −2.81 | −11.20 | −14.51 | 9.52 | −1.34 | 2.07 | 2.97 | 1.38 | −3.27 |
PAW-HI | −3.71 | −2.76 | −6.23 | 1.11 | −17.22 | 46.23 | −5.99 | −3.49 | 30.08 | 4.49 | −5.05 |
Swiss chard | |||||||||||
PAW-LI | 17.99 | 6.22 | 4.80 | −38.72 | 18.31 | 12.91 | −0.52 | 1.53 | 0.49 | 2.13 | 5.40 |
PAW-HI | −6.21 | 0.39 | 7.34 | 0.69 | −4.99 | 12.59 | −19.03 | −5.13 | −13.42 | 104.64 | 0.42 |
Cabbage | |||||||||||
PAW-LI | −3.30 | −3.42 | 0.36 | −48.23 | −32.94 | −7.93 | −7.00 | 2.86 | −8.57 | −8.51 | −5.79 |
PAW-HI | 7.06 | −5.10 | 17.27 | 5.03 | 108.40 | −9.36 | 2.47 | 8.89 | −9.93 | −10.82 | 1.78 |
Lettuce | |||||||||||
PAW-LI | −6.15 | 8.01 | −9.31 | −21.65 | −5.41 | 11.40 | 1.16 | −2.88 | 0.03 | 0.45 | 3.39 |
PAW-HI | −6.63 | 10.76 | −1.98 | −2.91 | 7.38 | −4.15 | 6.56 | −0.83 | 3.83 | 3.26 | −0.35 |
PO43− | SO42− | Cl− | NO2− | NO3− | NH4+ | Na+ | K+ | Mg2+ | Ca2+ | TKN | |
---|---|---|---|---|---|---|---|---|---|---|---|
g kg−1 dw | mg kg−1 dw | g kg−1 dw | % dw | ||||||||
Tomato | |||||||||||
I | 6.9 ab | 19.2 a | 9.3 b | 33.5 b | 614.4 a | 98.1 b | 1.70 a | 29.9 a | 2.5 b | 4.8 c | 1.39 a |
II | 4.8 b | 20.1 a | 15.6 a | 44.6 b | 24.8 b | 162.9 a | 0.75 b | 21.7 b | 3.5 a | 10.7 a | 0.79 b |
III | 9.1 a | 17.0 b | 5.9 c | 96.8 a | 18.0 b | 95.9 b | 0.72 b | 20.7 b | 2.3 b | 8.4 b | 0.75 b |
Basil | |||||||||||
I | 7.5 a | 13.5 b | 6.9 a | 47.0 b | 46.6 a | 32.3 b | 0.37 b | 28.7 b | 2.2 b | 5.0 b | 1.06 b |
II | 3.6 b | 21.7 a | 7.1 a | 37.3 b | 17.8 a | 107.4 a | 0.41 ab | 14.1 c | 5.2 a | 18.0 a | 0.80 c |
III | 7.5 a | 11.7 c | 7.7 a | 207.3 a | 105.7 a | 76.7 a | 0.44 a | 34.9 a | 2.8 b | 5.7 b | 1.39 a |
Swiss chard | |||||||||||
I | 22.3 a | 11.0 a | 11.2 a | 47.2 b | 32.7 a | 110.3 a | 8.61 b | 39.8 a | 6.8 a | 0.8 a | 1.30 a |
II | 13.6 a | 9.9 a | 12.1 a | 48.7 b | 21.4 ab | 70.8 b | 9.76 a | 46.8 a | 8.8 a | 0.8 a | 1.05 b |
III | 23.7 a | 9.3 a | 6.0 b | 95.5 a | 9.3 b | 68.8 b | 4.47 c | 58.5 a | 8.1 a | 1.3 a | 0.94 b |
Cabbage | |||||||||||
I | 13.5 a | 34.4 b | 4.8 a | 31.6 b | 50.1 a | 167.9 a | 0.85 a | 24.9 a | 3.5 b | 14.5 b | 1.22 a |
II | 8.8 b | 42.3 a | 3.5 b | 39.4 ab | 32.7 b | 143.9 ab | 0.65 b | 19.8 b | 7.4 a | 29.4 a | 1.04 b |
III | 10.0 ab | 19.9 c | 2.4 c | 48.4 a | 20.9 b | 121.3 b | 0.48 c | 21.0 b | 2.7 c | 11.7 b | 0.97 b |
Lettuce | |||||||||||
I | 6.2 a | 16.8 a | 10.8 a | 45.0 a | 23.0 b | 124.5 b | 1.57 a | 37.2 a | 2.4 b | 5.7 b | 1.19 a |
II | 5.2 b | 16.7 a | 11.0 a | 49.7 ab | 39.3 a | 210.5 a | 1.98 a | 35.9 a | 3.9 a | 10.6 a | 1.13 ab |
III | 5.7 ab | 8.5 b | 8.0 b | 69.5 a | 19.4 b | 88.5 c | 1.10 b | 26.8 b | 1.6 c | 5.0 b | 0.89 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Locatelli, S.; Triolone, S.; De Bonis, M.; Zanin, G.; Nicoletto, C. Non-Thermal Plasma-Activated Water Enhances Nursery Production of Vegetables: A Species-Specific Study. Agronomy 2025, 15, 209. https://doi.org/10.3390/agronomy15010209
Locatelli S, Triolone S, De Bonis M, Zanin G, Nicoletto C. Non-Thermal Plasma-Activated Water Enhances Nursery Production of Vegetables: A Species-Specific Study. Agronomy. 2025; 15(1):209. https://doi.org/10.3390/agronomy15010209
Chicago/Turabian StyleLocatelli, Silvia, Stefano Triolone, Marina De Bonis, Giampaolo Zanin, and Carlo Nicoletto. 2025. "Non-Thermal Plasma-Activated Water Enhances Nursery Production of Vegetables: A Species-Specific Study" Agronomy 15, no. 1: 209. https://doi.org/10.3390/agronomy15010209
APA StyleLocatelli, S., Triolone, S., De Bonis, M., Zanin, G., & Nicoletto, C. (2025). Non-Thermal Plasma-Activated Water Enhances Nursery Production of Vegetables: A Species-Specific Study. Agronomy, 15(1), 209. https://doi.org/10.3390/agronomy15010209