Carbon and Nitrogen Stocks in Vineyard Soils Amended with Grape Pomace Residues
<p>Accumulated monthly rainfall (mm), shown in bars, and monthly mean temperatures (°C), shown in lines, from January 2020 to February 2023, obtained from an automatic meteorological station (National Institute of Meteorology conventional station) located 150 m from the vineyards.</p> "> Figure 2
<p>C stocks on 0.0–0.05 m, 0.05–0.10 m, 0.10–0.20 m, and 0.20–0.40 m soil layers, in Vineyard 1 (‘Isabella’) (<b>a</b>) and Vineyard 2 (‘Chardonnay’) (<b>b</b>), after three years of the following treatment applications: C—control (no organic fertilization), VC—fertilization with grape pomace vermicompost, and CO—fertilization with grape pomace compost. Darker colors indicate the MAOC fraction and the lighter colors indicate the POC fraction. <span class="html-italic">p</span>-values of ANOVA test are shown and different letters indicate different means among treatments (Tukey test, α = 5%).</p> "> Figure 3
<p>N stocks on 0.0–0.05 m, 0.05–0.10 m, 0.10–0.20 m, and 0.20–0.40 m soil layers, in Vineyard 1 (‘Isabella’) (<b>a</b>) and Vineyard 2 (‘Chardonnay’) (<b>b</b>), after three years of the following treatment applications: C—control (no organic fertilization), VC—fertilization with grape pomace vermicompost, and CO—fertilization with grape pomace compost. Darker colors indicate the MAN fraction and the lighter colors indicate the PN fraction. <span class="html-italic">p</span>-values of ANOVA test are shown and different letters indicate different means among treatments (Tukey test, α = 5%).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Soil Characterization and Physical and Physicochemical Attribrutes
2.3. Grape Pomace Residue Composition
2.4. Soil Sampling and Granulometric Fractionation of SOM
2.5. Soil C and N Stocks
- X: C or N fraction (SOC, POC, MAOC, TN, PN, or MAN) (g kg–1);
- V: soil volume (m³), which is each layer thickness multiplied by 1 ha;
- Ds: soil bulk density (kg m−3);
- SS: soil stoniness (g g−1);
- 1–4: each of the four analyzed soil layers: 0–0.05, 0.05–0.1, 0.1–0.2, and 0.2–0.4 m.
2.6. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batjes, N.H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 2016, 269, 61–68. [Google Scholar] [CrossRef]
- Aouadi, N.; Younsi, S.; Ben Mimoun, M. Physico-chemical characterization of composted grape marc and its use in organic farming. Compost. Sci. Util. 2021, 12, 1003–1033. [Google Scholar] [CrossRef]
- Nematchoua, M.K.; Sadeghi, M.; Reiter, S. Strategies and scenarios to reduce energy consumption and CO2 emission in the urban, rural and sustainable neighborhoods. Sustain. Cities Soc. 2021, 72, 103053. [Google Scholar] [CrossRef]
- Baldi, E.; Polidori, G.; Germani, M.; Larocca, G.N.; Mazzon, M.; Allegro, G.; Pastore, C.; Quartieri, M.; Marzadori, C.; Filippetti, I.; et al. Fertilizer potential of organic-based soil amendments on cv. Sangiovese (V. vinifera L.) vines: Preliminary results. Agronomy 2022, 12, 1604. [Google Scholar] [CrossRef]
- Brunetto, G.; Ceretta, C.A.; De Melo, G.W.B.; Miotto, A.; Ferreira, P.A.A.; Da Rosa Couto, R.; Da Silva, L.O.S.; Garlet, L.P.; Somavilla, L.M.; Cancian, A.; et al. Grape Yield and Must Composition of “Cabernet Sauvignon” Grapevines with Organic Compost and Urea Fertilization. Rev. De Cienc. Agrovet. 2018, 17, 212–218. [Google Scholar] [CrossRef]
- Brunori, E.; Farina, R.; Biasi, R. Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem. Agric. Ecosyst. Environ. 2016, 223, 10–21. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Bellin, L.; Nardi, S.; Francioso, O.; Squartini, A.; Concheri, G. Wood-based compost affects soil fertility and the content of available forms of nutrients in vineyard and field-scale agroecosystems. Agronomy 2021, 11, 518. [Google Scholar] [CrossRef]
- Meissner, G.; Athmann, M.E.; Fritz, J.; Kauer, R.; Stoll, M.; Schultz, H.R. Conversion to organic and biodynamic viticultural practices: Impact on soil, grapevine development and grape quality. Oeno One 2019, 53, 639–659. [Google Scholar] [CrossRef]
- Chiriacò, M.V.; Belli, C.; Chiti, T.; Trotta, C.; Sabbatini, S. The potential carbon neutrality of sustainable viticulture showed through a comprehensive assessment of the greenhouse gas (GHG) budget of wine production. J. Clean. Prod. 2019, 225, 435–450. [Google Scholar] [CrossRef]
- Araujo, M.V.; Da Silva, M.A.C.; De Menezes, D.C.; Bruch, K.L.; Aurand, J.M. The perspective of organic wine in Brazil—trends, demands and production. BIO Web Conf. 2017, 9, 03011. [Google Scholar] [CrossRef]
- Fornes, F.; Belda, R.M.; Abad, M. Composting Versus Vermicomposting: A Comparative Study of Organic Waste Characteristics and Process Efficiency. J. Environ. Manag. 2012, 95, S109–S113. [Google Scholar]
- Vione, E.L.B.; Silva, L.S.D.; Cargnelutti Filho, A.; Aita, N.T.; Morais, A.D.F.; Silva, A.A.K. Caracterização química de compostos e vermicompostos produzidos com casca de arroz e dejetos animais. Revista Ceres 2018, 65, 65–73. [Google Scholar] [CrossRef]
- von Lützow, M.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. SOM Fractionation Methods: Relevance to Functional Pools and to Stabilization Mechanisms. Soil Biol. Biochem. 2007, 39, 2183–2207. [Google Scholar] [CrossRef]
- Maillard, É.; Angers, D.A.; Chantigny, M.; Bittman, S.; Rochette, P.; Lévesque, G.; Hun, D.; Parent, L.E. milie. Carbon accumulates in organo-mineral complexes after long-term liquid dairy manure application. Agric. Ecosyst. Environ. 2015, 202, 108–119. [Google Scholar] [CrossRef]
- Santos, C.; Loss, A.; Piccolo, M.d.C.; Girotto, E.; Ludwig, M.P.; Decarli, J.; Torres, J.L.R.; Lourenzi, C.R.; Brunetto, G. Changes in Dry Matter and Carbon, Nitrogen, and Sulfur Stocks after Applications of Increasing Doses of Pig Slurry to Soils with Tifton-85 for Six Years in Southern Brazil. Agronomy 2022, 12, 2058. [Google Scholar] [CrossRef]
- Marín-Martínez, A.; Sanz-Cobeña, A.; Bustamante, M.A.; Agulló, E.; Paredes, C. Effect of Organic Amendment Addition on Soil Properties, Greenhouse Gas Emissions and Grape Yield in Semi-Arid Vineyard Agroecosystems. Agronomy 2021, 11, 1477. [Google Scholar] [CrossRef]
- Loss, A.; Couto, R.D.R.; Brunetto, G.; Veiga, M.D.; Toselli, M.; Baldi, E. Animal manure as fertilizer: Changes in soil attributes, productivity and food composition. Int. J. Res. Granthaalayah 2019, 9, 307. [Google Scholar] [CrossRef]
- Loss, A.; Ventura, B.S.; Müller, V.; Gonzatto, R.; Battisti, L.Z.; Lintemani, M.G.; Erthal, M.E.C.; Vidal, R.F.; Scopel, G.; Lourenzi, C.R.; et al. Carbon, nitrogen, and aggregation index in Ultisol with 11 years of application of animal manures and mineral fertilizer. J. Soil Water Conserv. 2021, 76, 547–557. [Google Scholar] [CrossRef]
- Yagüe, M.R.; Domingo-Olivé, F.; Bosch-Serra, À.D.; Poch, R.M.; Boixadera, J. Dairy Cattle Manure Effects on Soil Quality: Porosity, Earthworms, Aggregates and Soil Organic Carbon Fractions. Land. Degrad. Dev. 2016, 27, 1753–1762. [Google Scholar] [CrossRef]
- Rodrigues, L.A.T.; Giacomini, S.J.; Aita, C.; Lourenzi, C.R.; Brunetto, G.; Bacca, A.; Ceretta, C.A. Short-and long-term effects of animal manures and mineral fertilizer on carbon stocks in subtropical soil under no-tillage. Geoderma 2021, 386, 114913. [Google Scholar] [CrossRef]
- Kuneski, A.C.; Loss, A.; dos Santos, T.S.; Giumbelli, L.D.; Lima, A.P.; Piccolo, M.C.; Brunetto, G.; Kurtz, C.; Lovato, P.E.; Lourenzi, C.R.; et al. Total Carbon and Nitrogen and Granulometric Fractions of Soil Organic Matter Under No-Till System and Conventional Tillage with Onion Cultivation. Rev. De Gestão Soc. E Ambient. 2023, 17, e04144. [Google Scholar]
- Ferreira, L.B.; Loss, A.; Giumbelli, L.D.; Ventura, B.S.; Souza, M.; Mafra, Á.L.; Kurtz, C.; Comin, J.J.; Brunetto, G. Organic carbon and nitrogen contents and their fractions in soils with onion crops in different management systems. Soil Res. 2018, 56, 846–855. [Google Scholar] [CrossRef]
- Conceição, P.C.; Amado, T.J.C.; Mielniczuk, J.; Spagnollo, E. Qualidade Do Solo Em Sistemas de Manejo Avaliada Pela Dinâmica Da Matéria Orgânica e Atributos Relacionados. Rev. Bras. Cienc. Solo 2005, 29, 777–788. [Google Scholar] [CrossRef]
- IUSS Working Group WRB World Reference Base for Soil Resources. International Soil Classification for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; ISBN 979-8-9862451-1-9. [Google Scholar]
- Tedesco, M.J.; Gianello, C.; Bissani, C.A.; Bohnen, H.; Volkweiss, S.J. Análises de Solo, Plantas e Outros Materiais, 2nd ed.; UFRGS: Porto Alegre, Brazil, 1995; Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/330496/1/Manual-de-analises-quimicas-de-solos-plantas-e-fertilizantes-ed02-reimpressao-2014.pdf (accessed on 2 March 2022).
- Murphy, J.; Riley, J.P. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Sensitivity of Soil Organic Carbon Stocks and Fractions to Different Land-Use Changes Across Europe. Geoderma 2018, 292, 66–78. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- Ferreira, E.B.; Cavalcanti, P.P.; Nogueira, D.A. Package ‘ExpDes.Pt’ 2021. Available online: https://rpkg.net/package/ExpDes.pt (accessed on 2 November 2023).
- R Core Team R: A Language and Environment for Statistical Computing. 2023. Available online: https://www.r-project.org/ (accessed on 2 November 2023).
- Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Kleber, M. What Is Recalcitrant Soil Organic Matter? Environ. Chem. 2010, 7, 320. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Elliott, E.T. Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence. Soil. Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Rodrigues, L.A.T.; Dieckow, J.; Giacomini, S.; Ottonelli, A.S.; Zorzo, G.P.P.; Bayer, C. Carbon sequestration capacity in no-till soil decreases in the long-term due to saturation of fine silt plus clay-size fraction. Geoderma 2022, 412, 115711. [Google Scholar] [CrossRef]
- Paradelo, R.; Moldes, A.B.; Barral, M.T. Carbon and Nitrogen Mineralization in a Vineyard Soil Amended with Grape Marc Vermicompost. Waste Manag. Res. 2011, 29, 1177–1184. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Domínguez, J. Recycling of Solid Organic Wastes Through Vermicomposting: Microbial Community Changes Throughout the Process and Use of Vermicompost as a Soil Amendment. Crit. Rev. Env. Sci. Technol. 2014, 44, 1289–1312. [Google Scholar] [CrossRef]
- Przemieniecki, S.W.; Zapałowska, A.; Skwiercz, A.; Damszel, M.; Telesiński, A.; Sierota, Z.; Gorczyca, A. An Evaluation of Selected Chemical, Biochemical, and Biological Parameters of Soil Enriched with Vermicompost. Environ. Sci. Pollut. Res. 2021, 28, 8117–8127. [Google Scholar] [CrossRef] [PubMed]
- Campitelli, P.; Ceppi, S. Chemical, Physical and Biological Compost and Vermicompost Characterization: A Chemometric Study. Chemom. Intell. Lab. Syst. 2008, 90, 64–71. [Google Scholar] [CrossRef]
- Schmatz, R.; Recous, S.; Aita, C.; Tahir, M.M.; Schu, A.L.; Chaves, B.; Giacomini, S.J. Crop Residue Quality and Soil Type Influence the Priming Effect but Not the Fate of Crop Residue C. Plant Soil. 2017, 414, 229–245. [Google Scholar] [CrossRef]
Clay (%) | pH | Exchang. K (mg dm−3) | Available P (mg dm−3) | Exchang. Ca (cmolc dm−3) | Exchang. Mg (cmolc dm−3) | |
---|---|---|---|---|---|---|
2020 | ||||||
Vineyard 1 | 33 | 6.7 | 229 | 26.29 | 10.85 | 1.87 |
Vineyard 2 | 30 | 5.3 | 137 | 4.48 | 4.74 | 1.35 |
2023 | ||||||
Vineyard 1 | ||||||
C | NA | 6.04 | 87.84 | 20.52 | 8.88 | 1.81 b 2 |
VC | 6.19 | 93.90 | 31.93 | 7.63 | 1.67 ab | |
CO | 5.93 | 90.53 | 19.59 | 8.40 | 2.16 a | |
p-value ¹ | 0.46 | 0.43 | 0.32 | 0.40 | 0.04 | |
Vineyard 2 | ||||||
C | NA | 4.71 | 101.59 | 10.66 | 5.91 | 2.50 |
VC | 5.52 | 115.59 | 20.03 | 4.76 | 1.92 | |
CO | 5.35 | 100.02 | 15.74 | 4.95 | 1.86 | |
p-value 1 | 0.82 | 0.78 | 0.07 | 0.83 | 0.71 |
Element | CO | VC |
---|---|---|
P (g kg−1) | 2.59 | 6.84 |
K (g kg−1) | 8.61 | 23.73 |
Ca (g kg−1) | 1.74 | 0.31 |
Mg (g kg−1) | 1.59 | 1.29 |
Cu (mg kg−1) | 49.88 | 120.35 |
Zn (mg kg−1) | 47.78 | 46.70 |
Organic Fertilizers | 2020/21 | 2021/22 | 2022/23 | |
---|---|---|---|---|
VC | N content 1 (dry base) | 0.57% | 1.59% | 1.48% |
Fertilizer dose (dry weight) (Mg ha−1) | 7.02 | 2.52 | 2.70 | |
C input (Mg ha−1) | 1.22 | 0.58 | 0.62 | |
C:N 1 ratio | 17.38 | 14.47 | 15.51 | |
CO | N content 1 (dry base) | 1.02% | 1.08% | 0.92% |
Fertilizer dose (dry weight) (Mg ha−1) | 3.92 | 3.70 | 4.35 | |
C input (Mg ha−1) | 0.94 | 0.89 | 1.04 | |
C:N 1 ratio | 23.51 | 22.27 | 25.99 |
Treatments | Soil Layers | |||||||
---|---|---|---|---|---|---|---|---|
0.0–0.05 m | 0.05–0.10 m | 0.10–0.20 m | 0.20–0.40 m | |||||
Ds (Mg m−3) | SS (g g−1) | Ds (Mg m−3) | SS (g g−1) | Ds (Mg m−3) | SS (g g−1) | Ds (Mg m−3) | SS (g g−1) | |
Vineyard 1 | ||||||||
C | 1.15 | 0.08 | 1.38 | 0.11 | 1.51 | 0.07 | 1.51 | 0.04 |
VC | 1.01 | 0.07 | 1.37 | 0.09 | 1.50 | 0.07 | 1.47 | 0.03 |
CO | 1.18 | 0.05 | 1.41 | 0.09 | 1.48 | 0.07 | 1.48 | 0.03 |
Vineyard 2 | ||||||||
C | 0.85 | 0.17 | 0.97 | 0.16 | 1.02 | 0.13 | 1.08 | 0.12 |
VC | 0.82 | 0.18 | 0.98 | 0.17 | 1.04 | 0.17 | 1.07 | 0.14 |
CO | 0.80 | 0.17 | 0.99 | 0.17 | 1.05 | 0.14 | 1.09 | 0.14 |
SOC (g kg–1) | MAOC (g kg–1) | POC (g kg–1) | ||
---|---|---|---|---|
0.0–0.05 m | C | 53.5 ± 0.54 a | 42.3 ± 0.63 a | 11.2 ± 0.51 a |
VC | 37.2 ± 0.89 b | 31.7 ± 0.76 b | 5.6 ± 0.14 b | |
CO | 48.9 ± 0.88 ab | 37.7 ± 0.70 ab | 11.2 ± 0.40 a | |
p-value | 0.01 | 0.04 | 0.03 | |
0.05–0.1 m | C | 30.2 ± 0.73 | 23.5 ± 0.24 | 0.67 ± 0.58 |
VC | 24.3 ± 0.30 | 21.3 ± 0.25 | 0.30 ± 0.09 | |
CO | 29.1 ± 0.48 | 24.5 ± 0.41 | 0.47 ± 0.21 | |
p-value | 0.18 | 0.22 | 0.27 | |
0.1–0.2 m | C | 21.0 ± 0.54 | 18.9 ± 0.52 | 2.10 ± 0.07 |
VC | 19.0 ± 0.18 | 17.6 ± 0.15 | 1.40 ± 0.05 | |
CO | 20.8 ± 0.20 | 19.3 ± 0.22 | 1.50 ± 0.03 | |
p-value | 0.61 | 0.14 | 0.94 | |
0.2–0.4 m | C | 17.7 ± 0.17 a | 16.9 ± 0.18 a | 0.80 ± 0.04 |
VC | 13.4 ± 0.43 b | 12.7 ± 0.40 b | 0.70 ± 0.05 | |
CO | 17.2 ± 0.12 ab | 16.3 ± 0.10 ab | 0.80 ± 0.06 | |
p-value | 0.04 | 0.03 | 0.89 |
SOC (g kg–1) | MAOC (g kg–1) | POC (g kg–1) | ||
---|---|---|---|---|
0.0–0.05 m | C | 41.1 ± 0.49 | 36.8 ± 0.43 | 4.2 ± 0.16 |
VC | 37.5 ± 0.84 | 31.6 ± 0.65 | 5.9 ± 0.32 | |
CO | 38.3 ± 0.52 | 33.6 ± 0.51 | 4.8 ± 0.10 | |
p-value | 0.62 | 0.28 | 0.46 | |
0.05–0.1 m | C | 29.9 ± 0.31 | 27.2 ± 0.24 | 2.7 ± 0.16 |
VC | 28.0 ± 0.29 | 25.4 ± 0.25 | 2.6 ± 0.14 | |
CO | 27.0 ± 0.35 | 25.0 ± 0.30 | 1.9 ± 0.07 | |
p-value | 0.36 | 0.38 | 0.59 | |
0.1–0.2 m | C | 26.7 ± 0.29 | 25.7 ± 0.28 | 0.9 ± 0.02 |
VC | 25.5 ± 0.11 | 24.6 ± 0.10 | 0.9 ± 0.02 | |
CO | 23.7 ± 0.29 | 22.7 ± 0.27 | 0.9 ± 0.03 | |
p-value | 0.16 | 0.14 | 0.94 | |
0.2–0.4 m | C | 25.9 ± 0.65 | 21.7 ± 0.55 | 0.42 ± 0.23 a |
VC | 25.6 ± 0.51 | 23.8 ± 0.48 | 0.18 ± 0.09 b | |
CO | 25.0 ± 0.41 | 21.2 ± 0.34 | 0.38 ± 0.25 ab | |
p-value | 0.96 | 0.64 | 0.04 |
TN (g kg–1) | MAN (g kg–1) | PN (g kg–1) | ||
---|---|---|---|---|
0.0–0.05 m | C | 4.65 ± 0.52 a | 3.62 ± 0.40 | 1.03 ± 0.20 |
VC | 3.22 ± 0.80 b | 2.29 ± 0.56 | 0.93 ± 0.20 | |
CO | 4.11 ± 0.74 ab | 2.97 ± 0.44 | 1.15 ± 0.31 | |
p-value | 0.01 | 0.08 | 0.26 | |
0.05–0.1 m | C | 2.63 ± 0.55 | 2.05 ± 0.44 | 0.58 ± 0.09 |
VC | 2.08 ± 0.25 | 1.48 ± 0.18 | 0.60 ± 0.05 | |
CO | 2.46 ± 0.42 | 1.77 ± 0.25 | 0.68 ± 0.05 | |
p-value | 0.18 | 0.49 | 0.82 | |
0.1–0.2 m | C | 1.77 ± 0.43 | 1.38 ± 0.25 | 0.39 ± 0.07 |
VC | 1.64 ± 0.16 | 1.17 ± 0.12 | 0.47 ± 0.06 | |
CO | 1.76 ± 0.17 | 1.27 ± 0.20 | 0.49 ± 0.05 | |
p-value | 0.29 | 0.25 | 0.08 | |
0.2–0.4 m | C | 1.44 ± 0.19 | 1.12 ± 0.15 | 0.32 ± 0.04 |
VC | 1.15 ± 0.32 | 0.82 ± 0.09 | 0.33 ± 0.02 | |
CO | 1.47 ± 0.17 | 1.06 ± 0.11 | 0.41 ± 0.05 | |
p-value | 0.07 | 0.43 | 0.14 |
TN (g kg–1) | MAN (g kg–1) | PN (g kg–1) | ||
---|---|---|---|---|
0.0–0.05 m | C | 3.41 ± 0.53 | 3.04 ± 0.42 | 0.37 ± 0.06 |
VC | 3.19 ± 0.75 | 2.69 ± 0.56 | 0.50 ± 0.13 | |
CO | 3.19 ± 0.49 | 2.80 ± 0.39 | 0.39 ± 0.08 | |
p-value | 0.77 | 0.61 | 0.36 | |
0.05–0.1 m | C | 2.38 ± 0.28 | 2.17 ± 0.11 | 0.22 ± 0.05 |
VC | 2.22 ± 0.24 | 2.02 ± 0.19 | 0.21 ± 0.02 | |
CO | 2.15 ± 0.29 | 1.99 ± 0.24 | 0.16 ± 0.02 | |
p-value | 0.36 | 0.53 | 0.17 | |
0.1–0.2 m | C | 2.10 ± 0.23 | 2.03 ± 0.25 | 0.07 ± 0.04 |
VC | 1.91 ± 0.22 | 1.84 ± 0.19 | 0.07 ± 0.02 | |
CO | 2.03 ± 0.05 | 1.95 ± 0.08 | 0.08 ± 0.02 | |
p-value | 0.29 | 0.60 | 0.05 | |
0.2–0.4 m | C | 2.26 ± 0.52 | 2.23 ± 0.41 | 0.02 ± 0.02 |
VC | 2.26 ± 0.43 | 2.24 ± 0.37 | 0.03 ± 0.01 | |
CO | 2.23 ± 0.31 | 2.19 ± 0.27 | 0.04 ± 0.01 | |
p-value | 0.99 | 0.67 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkonen, A.A.; Schemmer, S.; Brondani, R.; Fornari, J.F.; Papalia, D.G.; Baldi, E.; Toselli, M.; Moura-Bueno, J.M.; Loss, A.; Tiecher, T.L.; et al. Carbon and Nitrogen Stocks in Vineyard Soils Amended with Grape Pomace Residues. Agronomy 2024, 14, 2055. https://doi.org/10.3390/agronomy14092055
Kokkonen AA, Schemmer S, Brondani R, Fornari JF, Papalia DG, Baldi E, Toselli M, Moura-Bueno JM, Loss A, Tiecher TL, et al. Carbon and Nitrogen Stocks in Vineyard Soils Amended with Grape Pomace Residues. Agronomy. 2024; 14(9):2055. https://doi.org/10.3390/agronomy14092055
Chicago/Turabian StyleKokkonen, Allan Augusto, Samuel Schemmer, Rian Brondani, João Francisco Fornari, Daniéle Gonçalves Papalia, Elena Baldi, Moreno Toselli, Jean Michel Moura-Bueno, Arcângelo Loss, Tadeu Luis Tiecher, and et al. 2024. "Carbon and Nitrogen Stocks in Vineyard Soils Amended with Grape Pomace Residues" Agronomy 14, no. 9: 2055. https://doi.org/10.3390/agronomy14092055
APA StyleKokkonen, A. A., Schemmer, S., Brondani, R., Fornari, J. F., Papalia, D. G., Baldi, E., Toselli, M., Moura-Bueno, J. M., Loss, A., Tiecher, T. L., & Brunetto, G. (2024). Carbon and Nitrogen Stocks in Vineyard Soils Amended with Grape Pomace Residues. Agronomy, 14(9), 2055. https://doi.org/10.3390/agronomy14092055