Phytochemistry of Argemone ochroleuca Sweet Extracts and Their Inhibitory Effects on Maize Seed Germination
<p>Phytotoxic effects of the <span class="html-italic">Argemone ochroleuca</span> acetone extracts on the maize germination percentage.</p> "> Figure 2
<p>Phytotoxic effects of the <span class="html-italic">Argemone ochroleuca</span> acetone extracts on the maize radicle length.</p> "> Figure 3
<p>Effect of <span class="html-italic">Argemone ochroleuca</span> acetone extracts on the maize plumule length (mm).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Collection and Preparation of Argemone ochroleuca Plant Extracts
2.3. Preparation of Crude Extracts
2.4. Germination Bioassay
2.5. Phytochemical Analysis
2.6. Phytochemical Analysis Using Gas Chromatography-Mass Spectrometry (GC-MS)
2.7. Statistical Analysis
3. Results
3.1. Effects of Argemone ochroleuca Water Extracts on Maize Seed Germination
3.2. Effects of Argemone ochroleuca Hexane Extracts on Maize Seed Germination
3.3. Effects of Argemone ochroleuca Acetone Extracts on Maize Seed Germination
3.4. Phytochemicals in Argemone ochroleuca
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadava, P.; Abhishek, A.; Singh, R.; Singh, I.; Kaul, T.; Pattanayak, A.; Agrawal, P.K. Advances in maize transformation technologies and development of transgenic maize. Front. Plant Sci. 2017, 7, 19–49. [Google Scholar] [CrossRef] [PubMed]
- Nuss, E.T.; Tanumihardjo, S.A. Maize: A paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9, 417–436. [Google Scholar] [CrossRef] [PubMed]
- Murdia, L.K.; Wadhwani, R.; Wadhawan, N.; Bajpai, P.; Shekhawat, S. Maize utilization in India: An overview. Am. J. Food Nutr. 2016, 4, 169–176. [Google Scholar]
- Fanadzo, M.; Chiduza, C.; Mnkeni, P.N.S. Effect of inter-row spacing and plant population on weed dynamics and maize (Zea mays L.) yield at Zanyokwe irrigation scheme, Eastern Cape, South Africa. Afr. J. Agric. Res. 2010, 5, 518–523. [Google Scholar]
- Adisa, O.M.; Botai, J.O.; Adeola, A.M.; Hassen, A.; Botai, C.M.; Darkey, D.; Tesfamariam, E. Application of artificial neural network for predicting maize production in South Africa. Sustainability 2019, 11, 1145. [Google Scholar] [CrossRef]
- Gouse, M.; Pray, C.; Schimmelpfennig, D.; Kirsten, J. Three seasons of subsistence insect-resistant maize in South Africa: Have smallholders benefited. AgBioForum 2006, 9, 15–22. [Google Scholar]
- Food and Agricultural Organization of the United Nations (FAO). The State of Food Insecurity in the World 2008: High Food Prices and Food Security-Threats and Opportunities. 2008. Available online: http://www.fao.org/docrep/011/i0291e/i0291e00.htm (accessed on 3 May 2021).
- Moshia, M.E.; Newete, S.W. Mexican poppy (Argemone mexicana) control in cornfield using deep learning neural networks: A perspective. Acta Agric. Scand. B Soil Plant Sci. 2018, 69, 1–7. [Google Scholar] [CrossRef]
- Muche, M.; Molla, E.; Teshome, H. Phytotoxicity of Argemone ochroleuca L. on germination and seedling growth of Sorghum bicolor L. varieties under in vitro condition. Am. Eurasian J. Agric. Environ. Sci. 2018, 18, 185–192. [Google Scholar]
- Dar, B.A.; Al-Rowaily, S.L.; Assaeed, A.M.; El-Bana, M.I.; Hegazy, A.K.; Malik, J.A. Allelopathic potential of Argemone ochroleuca from different habitats on seed germination of native species and cultivated crops. Pak. J. Bot. 2017, 49, 1841–1848. [Google Scholar]
- Abd-ElGawad, A.M.; El Gendy, A.E.N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Omer, E.A.; Dar, B.A.; Al-Taisan, W.A.A.; Elshamy, A.I. Essential oil enriched with oxygenated constituents from invasive plant Argemone ochroleuca exhibited potent phytotoxic effects. Plants 2020, 9, 998. [Google Scholar] [CrossRef]
- Mlombo, N.; Dube, Z.P.; Ganyani, L.; Nxumalo, H.; Mnyambo, N.M.; Timana, M. Argemone ochrolueca extracts suppression of germination and early growth of bean (Phaseolus vulgaris). Res. Crops 2021, 22, 508–515. [Google Scholar]
- Nxumalo, H.; Dube, Z.P.; Ganyani, L.; Mlombo, N.T.; Timana, M.; Mnyambo, N.M. Potential suppressive effects of Mexican poppy weed residues on germination and early growth of maize and pearl millet crops. Afr. J. Food Agric. Nutr. Dev. 2022, 22, 19909–19928. [Google Scholar] [CrossRef]
- Paul, N.K.; Begum, N. Influence of root and leaf extracts of Argemone mexicana on germination and seedling growth of blackgram, rapeseed and wheat. Bangladesh J. Sci. Ind. Res. 2007, 42, 229–234. [Google Scholar] [CrossRef]
- Namkeleja, H.S.; Tarimo, M.T.; Ndakidemi, P.A. Allelopathic effect of aqueous extract of Argemone mexicana L on germination and growth of Brachiaria dictyoneura L. and Clitoria ternatea L. Am. J. Plant Sci. 2013, 4, 2138–2147. [Google Scholar] [CrossRef]
- Miranda-Arámbula, M.; Reyes-Chilpa, R.; Anaya, A.L. Phytotoxic activity of aqueous extracts of ruderal plants and its potential application to tomato crop. Bot. Sci. 2021, 99, 487–498. [Google Scholar] [CrossRef]
- Brahmachari, G.; Gorai, D.; Roy, R. Argemone mexicana: Chemical and pharmacological aspects. Rev. Bras. Farmacogn. 2013, 23, 559–567. [Google Scholar] [CrossRef]
- Joshi, N.; Bhatt, S.; Dhyani, S.; Nain, J. Phytochemical screening of secondary metabolites of Argemone mexicana linn. Flowers. Int. J. Curr. Pharm. Res. 2013, 5, 144–147. [Google Scholar]
- Namkeleja, H.S.; Tarimo, M.T.C.; Ndakidemi, P.A. Allelopathic effects of Argemone mexicana to growth of native plant species. Am. J. Plant Sci. 2014, 5, 1336–1344. [Google Scholar] [CrossRef]
- Tarzi, B.G.; Gharachorloo, M.; Baharinia, M.; Mortazavi, S.A. The effect of germination on phenolic content and antioxidant activity of chickpea. Iran. J. Pharm. Sci. 2012, 11, 1137–1143. [Google Scholar]
- Jones, S. Future seed testing needs for seed analysts and researchers-A personal view. Seed Technol. 2003, 35, 15–20. [Google Scholar]
- Gairola, K.C.; Nautiyal, A.R.; Dwivedi, A.K. Effect of temperatures and germination media on seed germination of Jatropha curcas Linn. Adv. Biores. 2011, 2, 66–71. [Google Scholar]
- Gomez, A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1984. [Google Scholar]
- Rodríguez-Caballero, G.; Caravaca, F.; Alguacil, M.M.; Fernández-López, M.; Fernández González, A.J.; Roldán, A. Striking alterations in the soil bacterial community structure and functioning of the biological N cycle induced by Pennisetum setaceum invasion in a semiarid environment. Soil Biol. Biochem. 2017, 109, 176–187. [Google Scholar] [CrossRef]
- Tahir, N.A.; Qader, K.O.; Azeez, H.A.; Rashid, J.S. Inhibitory allelopathic effects of Moringa oleifera Lamk plant extracts on wheat and Sinapis arvensis L. Allelopath. J. 2018, 44, 35–48. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Zhang, R.; Huang, Y.; Feng, S.; Ma, X.; Zhang, Y.; Sikdar, A.; Roy, R. Allelopathic effects of aqueous leaf extracts from four shrub species on seed germination and initial growth of Amygdalus pedunculata Pall. Forests 2018, 9, 711. [Google Scholar] [CrossRef]
- Gella, D.; Ashagre, H.; Negewo, T. Allelopathic effect of aqueous extracts of major weed species plant parts on germination and growth of wheat. J. Agric. Crop Res. 2013, 1, 30–35. [Google Scholar]
- Kawawa, R.C.A.; Muyekho, F.N.; Obiri, J.F.; Agevi, H.; Obiet, L. The allelopathic impact of Psidium guajava L., leaf extracts on the germination and growth of Cassia occidentalis L., seeds. J. Agric. Vet. Sci. 2016, 9, 101–105. [Google Scholar]
- Akter, P.; Siddiqua, T.; Begum, R.; Ahmed, A.A. Evaluation of the allelopathic activity of aqueous and methanol extracts of Heliotropium indicum leaves and roots on eight Cucurbit crops. Horticulturae 2024, 10, 135. [Google Scholar] [CrossRef]
- Sayed, M.A.; Haque, M.M.; Roy, B.; Hossain, S.M.J.; Das, S.R. Allelopathic effects of different extracts of honeyweed (Leonurus siribicus) on seeds germination and seedlings growth of some selected vegetables. J. Nat. Prod. 2012, 5, 243–250. [Google Scholar]
- M‘barek, K.; Zribi, I.; Haouala, R. Allelopathic effects of Tetraclinis articulata on barley, lettuce, radish and tomato. Allelopath. J. 2018, 43, 187–202. [Google Scholar] [CrossRef]
- Ashrafi, Z.Y.; Sadeghi, S.; Alizade, H.M.; Mashhadi, H.R.; Mohamadi, E.R. Study of bioassay the allelopathical effect of Neem (Azadirachta indica) n-hexane, acetone and water-soluble extracts on six weeds. Int. J. Biol. 2009, 1, 71–77. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ge, Y.; Wang, Q.; Zhou, H.; Liu, W.; Christie, P. Allelopathic effects of aqueous extracts of Alternanthera philoxeroides on the growth of Zoysia matrella. Pol. J. Environ. Stud. 2017, 26, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Sitthinoi, P.; Lertmongkol, S.; Chanprasert, W.; Vajrodaya, S. Allelopathic effects of jungle rice (Echinochloa colona (L.) Link) extract on seed germination and seedling growth of rice. Agric. Nat. Resour. 2017, 51, 74–78. [Google Scholar] [CrossRef]
- Netsere, A. Allelopathic effects of aqueous extracts of an invasive alien weed Parthenium hysterophorus L. on maize and sorghum seed germination and seedling growth. J. Biol. Agric. Health Sci. 2015, 5, 120–124. [Google Scholar]
- Favaretto, A.; Chini, S.; Scheffer-basso, S.; Sobottka, A.; Bertol, C.; Perez, N. Pattern of allelochemical distribution in leaves and roots of tough lovegrass (Eragrostis plana Nees.). Aust. J. Crop Sci. 2015, 9, 1119–1125. [Google Scholar]
- Facchini, P.J. Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation and metabolic engineering applications. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 9–66. [Google Scholar] [CrossRef]
- Cheng, F.; Cheng, Z. Research progress on the use of plant allelopathy in agriculture and physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 2015, 6, 10–20. [Google Scholar] [CrossRef]
- Burhan, N.; Shaukat, S.S. Allelopathic potential of Argemone Mexicana L. A tropical weed. Pak. J. Biol. Sci. 1999, 2, 1268–1273. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Zhu, X.; Zhang, Z.; Huang, X. Identify potential allelochemicals from Humulus scandens (Lour.) Merr. root extracts that induce allelopathy on Alternanthera philoxeroides (Mart.) Griseb. Sci. Rep. 2021, 11, 1–8. [Google Scholar]
- Verma, P.; Blaise, D.; Sheeba, J.A.; Manikandan, A. Allelopathic potential and allelochemicals in different intercrops for weed management in rainfed cotton. Curr. Sci. 2021, 120, 1035–1039. [Google Scholar] [CrossRef]
- Formisano, C.; Rigano, D.; Senatore, F.; Feo, V.D.; Bruno, M.; Rosselli, S. Composition and allelopathic effect of essential oils of two thistles: Cirsium creticum (Lam.) D.U’rv. ssp. triumfetti (Lacaita) Werner and Carduus nutans L. J. Plant Interact. 2007, 2, 115–120. [Google Scholar] [CrossRef]
- Zhang, D.; Ye, Y.; Li, J.; Dong, L. Allelopathic pathways, isolation and identification of an allelopathic substance from Solidago canadensis L. Allelopath. J. 2014, 33, 201–212. [Google Scholar]
- Yuan, R.; Li, Y.; Li, J.; Ji, S.; Wang, S.; Kong, F. The allelopathic effects of aqueous extracts from Spartina alterniflora on controlling the Microcystis aeruginosa blooms. Sci. Total Environ. 2020, 712, 136332. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Bi, H.H.; Liu, Y.Z.; Zhang, M.; Zhou, Z.Y.; Tan, J.W. Phenolic compounds from Merremia umbellata subsp. orientalis and their allelopathic effects on Arabidopsis seed germination. Molecules 2010, 15, 8241–8250. [Google Scholar] [CrossRef] [PubMed]
- Sheela, D.; Uthayakumari, F. GC-MS analysis of bioactive constituents from coastal sand dune taxon—Sesuvium portulacastrum (L.). Biosci. Discov. 2013, 4, 47–53. [Google Scholar]
- Sweetlin, P.; Daniel, R.R. Determination of bioactive compounds in ethanolic extract of callus derived from Mucuna pruriens using gas chromatography and mass spectroscopic technique. J. Nat. Remedies 2020, 21, 11–16. [Google Scholar]
Concentration (%) | Plant Part | Germination Percentage | Germination Speed | Mean Germination Time | Mean Daily Germination | Germination Index | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean x | RI y | Mean | RI | Mean | RI | Mean | RI | Mean | RI | ||
0 | Roots | 1.34 (92.22) a | - | 1.22 (15.80) a | - | 1.69 (48.40) a | - | 0.28 (0.92) a | - | 1.05 (10.14) a | - |
0 | Shoots | 1.13 (76.67) bcde | - | 1.12 (12.60) abcd | - | 1.59 (39.22) abcde | - | 0.24 (0.77) abc | - | 0.96 (8.43) ab | - |
10 | Roots | 1.24 (86.67) abcd | −7 | 1.18 (14.42) ab | −3 | 1.66 (44.92) ab | −2 | 0.27 (0.87) ab | −5 | 1.02 (9.53) a | −2 |
10 | Shoots | 1.27 (86.67) abcd | 12 | 1.20 (14.86) ab | 7 | 1.66 (45.61) ab | 5 | 0.27 (0.87) ab | 11 | 1.02 (9.53) a | 6 |
20 | Roots | 1.30 (88.89) abc | −3 | 1.21 (15.18) ab | −1 | 1.67 (46.52) a | −1 | 0.28 (0.89) ab | −3 | 1.03 (9.78) a | −2 |
20 | Shoots | 0.94 (64.44) efgh | −16 | 1.04 (10.34) cdefg | −7 | 1.52 (33.59) bcdef | −4 | 0.21 (0.64) cde | −13 | 0.89 (7.09) bc | −7 |
30 | Roots | 1.36 (92.22) a | 1 | 1.20 (14.94) ab | −2 | 1.69 (47.96) a | −0 | 0.28 (0.92) a | −0 | 1.05 (10.14) a | −0 |
30 | Shoots | 0.93 (61.11) efgh | −17 | 1.01 (9.90) defg | −10 | 1.49 (31.37) def | −6 | 0.20 (0.61) de | −17 | 0.87 (6.72) bc | −9 |
40 | Roots | 1.32 (92.22) ab | −1 | 1.20 (14.92) ab | −2 | 1.69 (48.34) a | 0 | 0.28 (0.92) a | 0 | 1.05 (10.14) a | 0 |
40 | Shoots | 0.80 (51.11) hij | −30 | 0.91 (7.72) gh | −18 | 1.41 (26.08) fg | −11 | 0.18 (0.51) ef | −28 | 0.81 (5.62) cd | −16 |
50 | Roots | 1.21 (85.56) abcd | −10 | 1.16 (13.70) abc | −5 | 1.65 (44.18) ab | −3 | 0.27 (0.86) ab | −6 | 1.01 (9.41) a | −3 |
50 | Shoots | 0.90 (60.00) gh | −21 | 1.00 (9.45) defg | −10 | 1.49 (31.39) cdef | −6 | 0.20 (0.60) de | −17 | 0.87 (6.60) bc | −10 |
60 | Roots | 1.23 (85.56) abcd | −8 | 1.14 (12.96) abc | −7 | 1.65 (43.94) abc | −3 | 0.27 (0.86) ab | −6 | 1.01 (9.41) a | −3 |
60 | Shoots | 0.83 (54.44) hi | −26 | 0.95 (8.61) fg | −14 | 1.44 (28.22) ef | −9 | 0.19 (0.54) e | −24 | 0.82 (5.99) c | −14 |
70 | Roots | 1.10 (76.67) cdef | −18 | 1.09 (11.49) bcde | −11 | 1.60 (39.20) abcd | −6 | 0.25 (0.77) abc | −13 | 0.97 (8.43) ab | −7 |
70 | Shoots | 0.67 (38.89) ijk | −41 | 0.79 (5.74) hi | −29 | 1.28 (19.62) gh | −19 | 0.14 (0.39) fg | −43 | 0.70 (4.28) de | −27 |
80 | Roots | 1.08 (74.44) defg | −19 | 1.08 (11.09) bcdef | −12 | 1.58 (37.61) abcde | −7 | 0.24 (0.74) bcd | −15 | 0.96 (8.19) ab | −9 |
80 | Shoots | 0.62 (34.44) jk | −45 | 0.70 (4.18) ij | −37 | 1.20 (16.23) hi | −24 | 0.13 (0.34) gh | −48 | 0.65 (3.79) ef | −32 |
90 | Roots | 0.92 (60.00) fgh | −36 | 0.96 (8.64) efg | −21 | 1.47 (30.12) def | −13 | 0.20 (0.60) de | −29 | 0.87 (6.60) bc | −17 |
90 | Shoots | 0.48 (26.67) k | −56 | 0.58 (3.84) j | −48 | 0.96 (13.60) j | −40 | 0.10 (0.27) h | −60 | 0.51 (2.93) g | −47 |
100 | Roots | 0.90 (60.00) gh | −33 | 0.97 (8.80) efg | −21 | 1.48 (30.41) def | −13 | 0.20 (0.60) de | −29 | 0.87 (6.60) bc | −17 |
100 | Shoots | 0.51 (24.44) k | −55 | 0.58 (2.95) j | −48 | 1.07 (11.48) ij | −32 | 0.09 (0.24) h | −62 | 0.55 (2.69) fg | −43 |
p-value | 0.0260 | 0.0001 | 0.0003 | 0.0013 | 0.0003 | ||||||
F-value | 2.11 | 3.82 | 3.56 | 3.05 | 3.51 | ||||||
LSD0.05 | 0.2043 | 0.1300 | 0.1559 | 0.0396 | 0.1121 |
Concentrations (%) | Plumule | Radicle | ||||||
---|---|---|---|---|---|---|---|---|
Plant Part | ||||||||
Shoots x | RI y | Roots | RI | Shoots | RI | Roots | RI | |
0 | 1.24 (34.98) defg | - | 1.58 (48.72) a | - | 1.15 (32.52) bc | - | 1.46 (41.32) a | - |
10 | 1.61 (73.94) a | 29 | 1.46 (46.63) abcd | −7 | 1.52 (57.11) a | 33 | 1.41 (45.11) a | −4 |
20 | 1.22 (60.61) efg | −2 | 1.44 (42.12) abcde | −9 | 1.07 (37.89) bcd | −6 | 1.48 (47.92) a | 1 |
30 | 1.14 (56.67) fgh | −9 | 1.54 (45.21) ab | −2 | 1.01 (39.03) bcde | −12 | 1.43 (38.09) a | −2 |
40 | 0.95 (46.66) hij | −24 | 1.47 (38.26) abc | −7 | 0.79 (22.67) fg | −32 | 1.42 (36.53) a | −3 |
50 | 1.10 (48.62) fghi | −11 | 1.27 (30.12) cdefg | −20 | 0.83 (19.16) efg | −28 | 1.13 (23.57) bc | −23 |
60 | 1.05 (49.26) ghij | −16 | 1.32 (33.89) bcdef | −16 | 0.82 (19.59) efg | −28 | 1.16 (22.61) b | −21 |
70 | 0.67 (28.59) kl | −46 | 1.19 (28.92) fg | −24 | 0.54 (12.94) hi | −53 | 0.95 (17.61) cdef | −35 |
80 | 0.58 (24.47) l | −53 | 1.10 (25.53) fghi | −30 | 0.44 (8.72) ij | −62 | 0.89 (15.23) defg | −39 |
90 | 0.48 (20.07) lm | −62 | 0.91 (20.84) ij | −42 | 0.30 (5.33) jk | −74 | 0.71 (11.50) gh | −52 |
100 | 0.33 (9.38) m | −73 | 0.88 (19.60) jk | −44 | 0.21 (3.62) k | −82 | 0.70 (11.21) gh | −52 |
p-value | 0.0002 | 0.0002 | ||||||
F-value | 3.42 | 3.35 | ||||||
LSD0.05 | 0.2218 | 0.1977 |
Concentration (g/L) | Plant Part | Germination Percentage | Germination Speed | Mean Germination Time | Mean Daily Germination | ||||
---|---|---|---|---|---|---|---|---|---|
Mean x | RI y | Mean | RI | Mean | RI | Mean | RI | ||
0 | Roots | 1.04 (73.33) abc | - | 12.48 bc | - | 1.57 (36.57) abc | - | 0.24 (0.73) abc | - |
0 | Shoots | 1.32 (86.67) a | - | 17.30 a | - | 1.66 (46.73) a | - | 0.27 (0.87) a | - |
2.5 | Roots | 1.24 (83.33) ab | 19 | 14.93 ab | 20 | 1.64 (44.05) ab | 5 | 0.26 (0.83) ab | 10 |
2.5 | Shoots | 0.95 (61.67) bc | −27 | 11.99 bc | −31 | 1.50 (32.90) bc | −10 | 0.20 (0.62) bc | −24 |
5 | Roots | 1.05 (73.33) abc | 1 | 13.18 abc | 7 | 1.58 (38.20) abc | 0 | 0.24 (0.73) abc | −1 |
5 | Shoots | 1.10 (75.00) abc | −16 | 13.55 abc | −22 | 1.60 (40.13) abc | −4 | 0.24 (0.75) abc | −10 |
7.5 | Roots | 1.14(81.67) ab | 10 | 14.78 ab | 18 | 1.64 (43.48) ab | 5 | 0.26 (0.82) ab | 9 |
7.5 | Shoots | 0.82 (53.33) c | −38 | 9.89 c | −43 | 1.46 (28.42) c | −12 | 0.18 (0.53) c | −31 |
p-value | 0.0238 | 0.0300 | 0.0322 | 0.0492 | |||||
F-value | 3.51 | 3.30 | 3.23 | 2.85 | |||||
LSD0.05 | 0.3078 | 0.1422 | 0.1483 | 0.0591 |
Concentrations (g/L) | Plumule | Radicle | ||||||
---|---|---|---|---|---|---|---|---|
Plant Part | ||||||||
Shoots x | RI y | Roots | RI | Shoots | RI | Roots | RI | |
0 | 1.40 (43.35) a | - | 1.22 (41.43) ab | - | 1.41 (44.08) a | - | 1.10 (36.93) bc | - |
2.5 | 1.20 (60.35) ab | −15 | 1.36 (46.25) a | 12 | 1.18 (59.92) abc | −16 | 1.34 (40.42) abc | 21 |
5 | 1.37 (60.13) a | −3 | 1.20 (37.57) ab | −2 | 1.39 (63.05) ab | −1 | 1.26 (45.18) abc | 14 |
7.5 | 1.03 (55.55) b | −27 | 1.37 (48.87) a | 12 | 1.04 (53.00) c | −26 | 1.42 (53.92) a | 29 |
p-value | 0.0335 | 0.0081 | ||||||
F-value | 2.92 | 3.98 | ||||||
LSD0.05 | 0.2955 | 0.2987 |
Name of Compound | Molecular Weight | Molecular Formula | CAS | Similarity (%) | Retention Time | Area | Plant Part |
---|---|---|---|---|---|---|---|
n-Hexadecanoic acid | 256 | C16H32O2 | 57-10-3 | 92 | 9775.3 | 3 | Shoot |
Phytol | 296 | C20H40O | 150-86-7 | 93 | 6374 | 1 | Shoot |
9,12-Octadecadienoic acid (Z,Z)- | 280 | C18H32O2 | 60-33-3 | 88 | 1105.2 | 2 | Shoot |
9,12,15-Octadecatrienoic acid, (Z,Z,Z)- | 278 | C18H30O2 | 463-40-1 | 89 | 7307.8 | 6 | Shoot |
9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)- | 292 | C19H32O2 | 301-00-8 | 86 | 423.97 | 1 | Shoot |
Neophytadiene | 278 | C20H38 | 504-96-1 | 90 | 912.19 | 1 | Shoot |
1-Penten-3-yne, 2-methyl- | 80 | C6H8 | 926-55-6 | 92 | 2437.4 | 1 | Root |
4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | 144 | C6H8O4 | 28564-83-2 | 85 | 3990.6 | 2 | Root |
Hexadecenoic acid, Z-11- | 254 | C16H30O2 | 2416-20-8 | 97 | 109.94 | 1 | Root |
1,2-Benzenedicarboxylic acid, butyl 2-ethylhexyl ester | 334 | C20H30O4 | 85-69-8 | 94 | 44,027 | 1 | Root |
n-Hexadecanoic acid | 256 | C16H32O2 | 57-10-3 | 91 | 12,411 | 5 | Root |
9,12-Octadecadienoic acid (Z,Z)- | 280 | C18H32O2 | 60-33-3 | 92 | 2260.6 | 8 | Root |
Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | 330 | C19H38O4 | 23470-00-0 | 86 | 1570.3 | 1 | Root |
9,12-Octadecadienoic acid (Z,Z)-, 2-hydroxy-1-(hydroxymethyl)ethyl ester | 354 | C21H38O4 | 3443-82-1 | 86 | 1022.5 | 1 | Root |
Stigmasterol | 412 | C29H48O | 83-48-7 | 88 | 1128.4 | 1 | Root |
á-Sitosterol | 414 | C29H50O | 83-46-5 | 88 | 4169.5 | 4 | Root |
Name of Compound | Molecular Weight | Molecular Formula | CAS | Similarity (%) | Retention Time | Area | Plant Part |
---|---|---|---|---|---|---|---|
Nonane, 4-ethyl-5-methyl- | 170 | C12H26 | 1632-71-9 | 88 | 1250 | 3 | Shoot |
Undecane, 2,2-dimethyl- | 184 | C13H28 | 17312-64-0 | 89 | 503.98 | 3 | Root |
3-Pyridinecarbonitrile, 1,4-dihydro-1-methyl- | 120 | C7H8N2 | 19424-15-8 | 87 | 2585.7 | 1 | Root |
Benzaldehyde, 3-bromo-5-methoxy-4-[(3-methylphenyl)methoxy]- | 334 | C16H15BrO3 | 0-00-0 | 88 | 409.28 | 1 | Root |
1H-Indene, 2,3-dihydro-1,3-dimethyl- | 146 | C11H14 | 4175-53-5 | 85 | 203.74 | 1 | Root |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mlombo, N.T.; Dube, Z.P.; Makhubu, F.N.; Nxumalo, H. Phytochemistry of Argemone ochroleuca Sweet Extracts and Their Inhibitory Effects on Maize Seed Germination. Agronomy 2024, 14, 1912. https://doi.org/10.3390/agronomy14091912
Mlombo NT, Dube ZP, Makhubu FN, Nxumalo H. Phytochemistry of Argemone ochroleuca Sweet Extracts and Their Inhibitory Effects on Maize Seed Germination. Agronomy. 2024; 14(9):1912. https://doi.org/10.3390/agronomy14091912
Chicago/Turabian StyleMlombo, Nezelo T., Zakheleni P. Dube, Fikile N. Makhubu, and Hellen Nxumalo. 2024. "Phytochemistry of Argemone ochroleuca Sweet Extracts and Their Inhibitory Effects on Maize Seed Germination" Agronomy 14, no. 9: 1912. https://doi.org/10.3390/agronomy14091912
APA StyleMlombo, N. T., Dube, Z. P., Makhubu, F. N., & Nxumalo, H. (2024). Phytochemistry of Argemone ochroleuca Sweet Extracts and Their Inhibitory Effects on Maize Seed Germination. Agronomy, 14(9), 1912. https://doi.org/10.3390/agronomy14091912