Anthracocystis panici-leucophaei: A Potential Biological Control Agent for the Grassy Weed Digitaria insularis
<p>Collection sites (red triangles) [IBGE (Instituto Brasileiro de Geografia e Estatística 2021). Design ilustration: Xavier, L. C. M. (2023)].</p> "> Figure 2
<p>Sourgrass (<span class="html-italic">Digitaria insularis</span>) showing smut symptoms (growth reduction and formation of sori) on <span class="html-italic">Anthracocystis panici-leucophaei</span> in a field situation in Monte Carmelo, Minas Gerais (Brazil).</p> "> Figure 3
<p><span class="html-italic">Anthracocystis panici-leucophaei.</span> (<b>a</b>,<b>b</b>) Sori on live plants (<span class="html-italic">D. insularis</span>). (<b>c</b>,<b>d</b>) Teliospores produced on fertile hyphae forming chains while immature (SEM). (<b>e</b>) Verruculose teliospores (SEM); (<b>f</b>) Detail of teliospores production. Scale bar = 2 µm.</p> "> Figure 4
<p>Multilocus phylogenetic tree of <span class="html-italic">Anthracocystis</span> species inferred from RAxML and Bayesian analysis based on ITS sequences. The bootstraps ≥ 70 and Bayesian posterior probabilities ≥ 0.90 are indicated above the nodes, respectively. Isolate from the study are highlighted in bold. The tree was rooted with <span class="html-italic">Langdonia confusa</span> and <span class="html-italic">Triodiomyces triodiae</span>. The type isolate was identified as “t”, isotype as “i”, and holotype as “h” during isolates identification.</p> "> Figure 5
<p><span class="html-italic">D. insularis</span> plants 37 days after sowing. Control on the left followed by examples of plants inoculated with <span class="html-italic">Anthracocystis panici-leucophaei</span> on the right. Inoculated plants as follows: teliospores in the soil (TS1), sporidia in the soil (ES3), teliospores on 3–4 leaves plants (TA1), sporidia on 3–4 leaves plants (EA3), teliospores on newly emerged plants (TRE1), and sporidia on newly emerged plants (ERE3).</p> "> Figure 6
<p>Examples of impact of isolates of <span class="html-italic">A. panici-leucophaei</span> on sourgrass growth 90 days after sowing 80 days after inoculation with sporidial suspension on one pair of leaves-plants. (<b>A</b>) Sourgrass plants inoculated with isolate BSV2; (<b>B</b>) Sourgrass plants inoculated with isolate 46.</p> "> Figure 7
<p>Host-specificity evaluation of <span class="html-italic">A. panici-leucophaei.</span> Treated plants appearance at 90 days if age, 60 days after inoculation. (<b>A</b>) Non-inoculated (control) wheat; (<b>B</b>) wheat plants inoculated with the smut fungus; (<b>C</b>) sorghum control; (<b>D</b>) sorghum inoculated with the smut fungus; (<b>E</b>) rice control; and (<b>F</b>) rice inoculated with <span class="html-italic">A. panici-leucophaei</span>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey
2.2. Isolation
2.3. Taxonomy
2.3.1. Morphological Studies
2.3.2. DNA Extraction, PCR Amplification, and Sequencing of Isolates
2.4. Evaluation of Anthracocystis panici-leucophaei as a Biological Control Agent for Digitaria insularis
2.4.1. Preparation of Teliospores for Use as Inoculum
2.4.2. Sporidial Production
2.4.3. Comparative Effect of Teliospores vs. Sporidia Inoculations of BSV1 and BSV2 on Digitaria insularis at Different Phenological Stages
2.4.4. Effect of Post-Emergence Inoculation of Sporidia and Teliospores of Anthracocystis panici-leucophaei on Digitaria insularis
2.4.5. Comparative Virulence of A. panici-leucophaei Isolates on Digitaria insularis
2.4.6. Evaluation of Specificity of A. panici-leucophaei to Sourgrass
3. Results
3.1. Survey
3.2. Taxonomy
3.3. Phylogenetic Analysis
3.4. Evaluation of Anthracocystis panici-leucophaei as a Biological Control Agent for Digitaria insularis
3.4.1. Comparative Effect of Teliospores vs. Sporidia Inoculations of BSV1 and BSV2 on D. insularis at Different Phenological Stages
3.4.2. Effect of Post-Emergence Inoculation of Sporidia and Teliospores of Anthracocystis panici-leucophaei on Digitaria insularis
3.4.3. Comparative Virulence of A. panici-leucophaei Isolates on Digitaria insularis
3.4.4. Evaluation of Specificity of A. panici-leucophaei to Sourgrass
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cimmino, A.; Masi, M.; Evidente, M.; Superchi, S.; Evidente, A. Fungal phytotoxins with potential herbicidal activity: Chemical and biological characterization. Nat. Prod. Rep. 2015, 32, 1629–1653. [Google Scholar] [CrossRef] [PubMed]
- Mondo, V.H.V.; Carvalho, S.J.P.; Dias, A.C.R.; Filho, J.M. Efeitos da luz e temperatura na germinação de sementes de quatro espécies de plantas daninhas do gênero. Digitaria. Rev. Bras. Sementes 2010, 32, 131–137. [Google Scholar] [CrossRef]
- Kissmann, K.G.; Groth, D. Plantas Infestantes e Nocivas, 2nd ed.; BASF: São Paulo, Brazil, 1997. [Google Scholar]
- Gemelli, A.; Junior, R.S.O.; Constantin, J.; Braz, G.B.P.; Jumes, T.M.C.; Neto, A.M.O.; Dan, H.A.; Biffe, D.F. Aspectos da biologia de Digitaria insularis resistente ao glyphosate e implicações para o seu controle. Rev. Bras. Herb. 2012, 11, 231–240. [Google Scholar] [CrossRef]
- Lopes-Ovejero, R.F.L.; Takano, H.K.; Nicolai, M.; Ferreira, A.; Melo, M.S.C.; Cavenaghi, A.L.; Christoffoleti, P.J.; Oliveira, R.S. Frequency and dispersal of glyphosate-resistant sourgrass (Digitaria insularis) populations across Brazilian agricultural production areas. Weed Sci. 2017, 65, 285–294. [Google Scholar] [CrossRef]
- Takano, H.K.; Melo, M.S.C.; Ovejero, R.F.L.; Westra, P.H.; Gaines, T.A.; Dayan, F.E. Trp2027Cys mutation evolves in Digitaria insularis with cross-resistance to ACCase inhibitors. Pestic. Biochem. Physiol. 2020, 164, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Timossi, P.C. Manejo de rebrotes de Digitaria insularis no plantio direto de milho. Planta Daninha 2009, 27, 175–179. [Google Scholar] [CrossRef]
- Peterson, M.A.; Collavo, A.; Ovejero, R.; Shivrain, V.; Walsh, M.J. The challenge of herbicide resistance around the world: A current summary. Pest Manag. Sci. 2018, 74, 2246–2259. [Google Scholar] [CrossRef] [PubMed]
- Charudattan, R. Biological control of weeds by means of plant pathogens: Significance for integrated weed management in modern agro-ecology. BioControl 2001, 46, 229–260. [Google Scholar] [CrossRef]
- Klaic, R.; Kuhn, R.C.; Foletto, E.L.; Prá, V.D.; Jacques, R.J.S.; Guedes, J.V.C.; Treichel, H.; Mossi, A.J.; Oliveira, D.; Oliveira, J.V.; et al. An overview regarding bioherbicide and their production methods by fermentation. In Fungal Biomolecules, 1st ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 183–199. [Google Scholar] [CrossRef]
- Saxena, S.; Kumar, M. Evaluation of Alternaria alternata ITCC4896 for use as mycoherbicide to control Parthenium hysterophorus. Arch. Phytopathol. Plant Protect. 2010, 43, 1160–1164. [Google Scholar] [CrossRef]
- Kremer, R.J. Bioherbicide development and commercialization: Challenges and benefits. In Development and Commercialization of Biopesticides; Academic Press: Cambridge, MA, USA, 2023; Volume 1, pp. 119–148. [Google Scholar] [CrossRef]
- Smith, M.C.; Reeder, R.H.; Thomas, M.B. A model to determine the potential for biological control of Rottboellia cochinchinensis with the head smut Sporisorium ophiuri. J. Appl. Ecol. 1997, 34, 388–398. [Google Scholar] [CrossRef]
- Millhollon, R. Loose kernel smut for biocontrol of Sorghum halepense in Saccharum sp. hybrids. Weed Sci. 2000, 48, 645–652. [Google Scholar] [CrossRef]
- Xia, W.; Yu, X.; Ye, Z. Smut fungal strategies for the successful infection. Microb. Pathog. 2020, 142, 104039. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press: Cambridge, MA, USA, 1990; Volume 18, pp. 315–322. [Google Scholar] [CrossRef]
- Hepperle, D. SeqAssem©. Win32–Version. A Sequence Analysis Tool Contig Assembler and Trace Data Visualization Tool for Molecular Sequences. 2004. Available online: http://www.sequentix.de (accessed on 23 February 2023).
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. The CIPRES science gateway: A community resource for phylogenetic analyses. In Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, Salt Lake City, UT, USA, 18 July 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree, version 1.2.2; Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, UK, 2009. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 23 February 2023).
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Posada, D.; Buckley, T.R. Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 2004, 53, 793–808. [Google Scholar] [CrossRef] [PubMed]
- Banuett, F.; Herskowitz, I. Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc. Natl. Acad. Sci. USA 1989, 86, 5878–5882. [Google Scholar] [CrossRef] [PubMed]
- Santiago, R.; Alarcón, B.; Armas, R.; Vicente, C.; Legaz, M.E. Changes in cinnamyl alcohol dehydrogenase activities from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. Physiol. Plant. 2012, 145, 245–259. [Google Scholar] [CrossRef]
- Ferreira, E.B.; Cavalcanti, P.P.; Nogueira, D.A. Package ‘ExpDes.pt’. 2010. Available online: https://cran.r-project.org/web/packages/ExpDes.pt/index.html (accessed on 23 February 2023).
- Gross, J.; Ligges, U. Package ‘nortest_1.0-4.tar.gz’. 2015. Available online: https://cran.r-project.org/web/packages/nortest/index.html (accessed on 23 February 2023).
- Hothorn, T. Package ‘multcomp_1.4-19.tar.gz’. 2022. Available online: https://cran.r-project.org/src/contrib/Archive/multcomp/ (accessed on 23 February 2023).
- Mctaggart, A.R.; Shivas, R.G.; Geering, A.D.W.; Callaghan, B.; Vánky, K.; Scharaschkin, T. Soral synapomorphies are significant for the systematics of the Ustilago-Sporisorium-Macalpinomyces complex (Ustilaginaceae). Pers. Mol. Phylogeny Evol. Fungi 2012, 29, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Vánky, K. New smut fungi (Ustilaginomycetes) from Mexico, and the genus Lundquistia. Fungal Divers. 2004, 17, 159–190. [Google Scholar]
- Correia, N.M.; Durigan, J.C. Manejo químico de plantas adultas de Digitaria insularis com glyfosate isolado e em misturas com chlorimuronethyl ou quizalofop-p tefuril em área de plantio direto. Bragantia 2009, 68, 689–697. [Google Scholar] [CrossRef]
- Machado, A.F.L.; Ferreira, L.R.; Ferreira, F.A.; Fialho, C.M.T.; Santos, L.D.T.; Machado, M.S. Análise de crescimento de Digitaria insularis. Planta Daninha 2006, 24, 641–647. [Google Scholar] [CrossRef]
- Brefeld, O. Hemibasidii. Brandpilze III. Cultur der Brandpilzen in Nährlösungen. Untersuchungen Aus Dem Gesammtgebiete Der Mykol. 1895, 12, 99–236. [Google Scholar]
- Cunnington, J.H.; Vánky, K.; Shivas, R.G. Lundquistia is a synonym of Sporisorium (Ustilaginomycetes). Mycol. Balc. 2005, 2, 95–100. [Google Scholar]
- Piątek, M. Sporisorium kenyanum, a new smut fungus with long twisted sori on Setaria pallide-fusca in Kenya. Pol. Bot. J. 2006, 51, 159–164. [Google Scholar]
- Farr, D.F.; Rossman, A.Y. Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Available online: https://nt.ars-grin.gov/fungaldatabases/ (accessed on 4 January 2022).
- Piątek, M.; Lutz, M.; Yorou, N.S. A molecular phylogenetic framework for Anthracocystis (Ustilaginales), including five new combinations (inter alia for the asexual Pseudozyma flocculosa), and description of Anthracocystis grodzinskae sp. nov. Mycol. Prog. 2015, 14, 88. [Google Scholar] [CrossRef]
- Stoll, M.; Piepenbring, M.; Begerow, D.; Oberwinkler, F. Molecular phylogeny of Ustilago and Sporisorium species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences. Can. J. Bot. 2003, 81, 976–984. [Google Scholar] [CrossRef]
- Benevenuto, J.; Longatto, D.P.; Reis, G.V.; Mielnichuk, N.; Palhares, A.C.; Carvalho, G.; Saito, S.; Quecine, M.C.; Sanguino, A.; Vieira, M.L.C.; et al. Molecular variability and genetic relationship among Brazilian strains of the sugarcane smut fungus. FEMS Microbiol. Lett. 2016, 363, fnw277. [Google Scholar] [CrossRef] [PubMed]
- Alexander, K.; Srinivasan, K. Sexuality in Ustilago scitaminea Syd. Curr. Sci. 1966, 35, 603–604. [Google Scholar]
- Massion, C.L.; Lindow, S.E. Effects of Sphacelotheca holci infection on morphology and competitiveness of johnsongrass (Sorghum halepense). Weed Sci. 1986, 34, 883–888. [Google Scholar] [CrossRef]
- Gassó, M.M.A.; Lovisolo, M.; Perelló, A. Effects of loose kernel smut caused by Sporisorium cruentum onrhizomes of Sorghum halepense. J. Plant Prot. Res. 2017, 57, 62–71. [Google Scholar] [CrossRef]
- Mendonça, G.S.; Martins, C.C.; Martins, D.; Costa, N.V. Ecophysiology of seed germination in Digitaria insularis ((L.) Fedde). Rev. Ciência Agron. 2014, 45, 823–832. [Google Scholar] [CrossRef]
- Coradin, J.; Braz, G.B.P.; Machado, F.G.; Silva, A.G.; Sousa, J.V.A. Herbicidas aplicados em pré-emergência para o Controle de milho voluntário e capim-amargoso. Rev. Cient. Rural 2019, 21, 51–64. [Google Scholar] [CrossRef]
- Johnson, D.A.; Baudoin, A.B. Mode of infection and factors affecting disease incidence of loose smut of crabgrass. Biol. Control 1997, 10, 92–97. [Google Scholar] [CrossRef]
- Gomes, F.M.; Fortes, A.M.T.; Silva, J.; Bonamigo, T.; Pinto, T.T. Efeito Alelopático da Fitomassa de Lipinus angistifolius (L.) sobre a germinação e o desenvolvimento inicial de Zea mays (L.) e Bidens pilosa (L.). Rev. Bras. Agroecol. 2013, 8, 48–56. [Google Scholar]
- Galon, L.; Mossi, A.J.; Junior, F.W.R.; Reik, G.G.; Treichel, H.; Forte, C.T. Biological weed management-a short review. Rev. Bras. Herb. 2016, 15, 116–125. [Google Scholar] [CrossRef]
- Fischer, G.W.; Holton, C.S. Biology and Control of the Smut Fungi; The Ronald Press Company: New York, NY, USA, 1957. [Google Scholar]
- Kimati, L.H.; Filho, A.B.; Camargo, L.E.A.; Rezende, J.A.M. (Eds.) Manual de Fitopatologia, 3rd ed.; Agronômica Ceres: São Paulo, Brazil, 1997; Volume 2. [Google Scholar]
- Auld, B.A. 1997 Bioherbicides. In Biological Control of Weeds: Theory and Practical Application; Julien, M., White, G., Eds.; ACIAR Monograph: Bruce, ACT, Australia; pp. 129–134.
- Charudattan, R. A Reflection on My Research in Weed Biological Control: Using What We Have Learned for Future Applications. Weed Technol. 2010, 24, 208–217. [Google Scholar] [CrossRef]
- Zhanzg, W.M.; Watson, A.K. Characterization of growth and conidia production of Exserohilum monoceras on different substrates. Biocontrol Sci. Technol. 1997, 7, 75–86. [Google Scholar] [CrossRef]
Species | Commom Name |
---|---|
Cynodon spp. cv. Tifton 85 | Bermuda grass |
Eleusine indica | Yard-grass |
Oryza sativa | Rice |
Panicum maximum cv. BRS Zuri | Guinea grass |
Panicum maximum cv. híbrida BRS Quênia | Guinea grass |
Panicum maximum cv. Massai | Guinea grass |
Panicum maximum cv. Mombaça | Guinea grass |
Panicum maximum cv. Tanzânia | Guinea grass |
Pennisetum glaucum | Millet |
Saccharum officinarum | Sugarcane |
Sorghum bicolor | Sorghum |
Triticum spp. | Wheat |
Urochloa brizantha | Grass |
Urochloa brizantha cv. Marandu | Grass |
Urochloa brizantha cv. MG-4 | Grass |
Urochloa brizantha cv. MG-5 Vitória | Grass |
Urochloa brizantha cv.BRS Piatã | Grass |
Urochloa cv. Cayana | Grass |
Urochloa híbrida cv. Sabiá | Grass |
Urochloa ruziziensis cv Ruziziensis | Grass |
Zea mays | Corn |
Isolate | Locality | State | Date |
---|---|---|---|
BSV1 | Monte Carmelo | MG | 21 April |
BSV2 | Monte Carmelo | MG | 21 June |
3.1 | MG-223, Romaria | MG | 21December |
11.1 | Patrocínio | MG | 21 December |
15.1 | Ibiá | MG | 21 December |
16.1 | Ibiá | MG | 21 December |
30 | Carmo do Paranaíba | MG | 21 December |
31 | BR-354—Patos de Minas | MG | 21 December |
36.1 | São João da Serra Negra, Patrocínio | MG | 21 December |
37.1 | Patrocínio | MG | 21 December |
46 | Tupaciguara | MG | 22 January |
47 | Tupaciguara | MG | 22 January |
49 | Centralina | MG | 22 January |
57 | Rio Verde | GO | 22 January |
64 | Rio Verde | GO | 22 January |
65 | Rio Verde | GO | 22 January |
Treatments | PH | RL | SD | DRM | DAPM | Clo A | NL |
---|---|---|---|---|---|---|---|
Control | 19.48 a | 24.92 a | 1.98 a | 0.0786 a | 0.1436 a | 24.16 a | 4.50 bc |
PRE-EMERGENCE | |||||||
TS1 | 7.70 b | 17.07 b | 1.93 a | 0.0131 b | 0.0754 b | 6.38 c | 5.35 a |
ES3 | 9.14 b | 17.64 b | 1.08 b | 0.0159 b | 0.0621 bc | 11.01 b | 4.80 ab |
NEWLY EMERGED (10 DAS)—2 leaves | |||||||
TRE1 | 7.55 b | 15.37 b | 1.28 b | 0.0167 b | 0.0380 cd | 11.17 b | 3.95 c |
ERE3 | 6.82 b | 14.72 b | 1.07 b | 0.0150 b | 0.0278 d | 10.47 b | 4.20 bc |
POST-EMERGENCE (25 DAS)—3 to 4 leaves | |||||||
TA1 | 7.38 b | 19.12 b | 1.28 b | 0.0107 b | 0.0521 bcd | 10.40 b | 4.80 ab |
EA3 | 7.67 b | 18.21 b | 1.42 b | 0.0103 b | 0.0516 bcd | 12.41 b | 4.70 b |
CV% | 37.28 | 25.66 | 26.54 | 93.31 | 41.88 | 33.81 | 13.93 |
Treatments | PH | RL | SD | NP | NI | NPC | DRM | DAPM | NF |
---|---|---|---|---|---|---|---|---|---|
CONTROL | 1.14 a | 0.428 a | 2.85 a | 3.00 ab | 0.56 a | 0.00 b | 1.090 a | 5.553 a | 12.4 a |
TRE | 1.04 a | 0.336 b | 2.43 b | 2.36 b | 0.12 b | 0.00 b | 0.633 b | 3.088 b | 10.2 ab |
BSV1 | 1.05 a | 0.334 b | 2.45 ab | 2.72 ab | 0.36 ab | 0.00 b | 0.747 b | 3.485 b | 10.9 a |
BSV2 | 0.68 b | 0.327 b | 2.40 b | 3.56 a | 0.20 ab | 2.16 a | 0.373 c | 2.703 b | 8.6 b |
BSV1 + BSV2 | 1.11 a | 0.428 a | 2.56 ab | 2.76 ab | 0.36 ab | 0.00 b | 0.714 b | 3.164 b | 11.8 a |
CV% | 19.86 | 25.54 | 20.24 | 38.11 | 152.09 | 201.28 | 38.13 | 51.47 | 26.61 |
Treatment | PH | RL | SD | NF | NP |
---|---|---|---|---|---|
cm | mm p | Leaves Plant−1 | Tillers Plant−1 | ||
3-1 | 45.13 b * | 30.95 c | 2.32 b | 8.30 a | 1.52 b |
11-1 | 41.11 b | 30.77 c | 1.75 b | 4.94 a | 0.52 a |
15-1 | 40.62 b | 24.96 b | 2.01 b | 10.60 b | 1 2.52 b |
16-1 | 55.24 c | 30.45 c | 2.08 b | 10.22 b | 1.94 b |
30 | 45.29 b | 23.35 b | 1.76 b | 7.00 a | 1.08 a |
31 | 34.09 a | 25.75 b | 1 1.15 a | 7.26 a | 0.56 a |
36-1 | 37.86 b | 27.94 c | 1.90 b | 8.52 a | 1.92 b |
37-1 | 34.36 a | 22.10 b | 1 1.42 a | 7.52 a | 0.54 a |
46 | 24.72 a | 1 11.36 a | 1 1.21 a | 5.12 a | 1.72 b |
47 | 40.55 b | 29.81 c | 1.56 a | 8.62 a | 1.30 a |
49 | 41.01 b | 22.25 b | 1 1.14 a | 9.62 b | 1.34 a |
57 | 44.29 b | 23.43 b | 1.84 b | 7.34 a | 0.84 a |
64 | 39.11 b | 29.66 c | 1.68 a | 7.56 a | 1.46 b |
65 | 45.57 b | 33.03 c | 2.18 b | 8.46 a | 1.90 b |
BSV1 | 59.61 c | 24.41 b | 2.21 b | 1 12.66 b | 2.28 b |
BSV2 | 26.01 a | 29.04 c | 1.56 a | 6.50 a | 1.14 a |
Control 1 | 44.58 b | 29.02 c | 2.26 b | 6.78 a | 1.14 a |
CV (%) | 26.11 | 18.21 | 21.47 | 25.76 | 45.60 |
Normality 2 | 0.99 ns | 0.98 ns | 0.99 ns | 0.99 ns | 0.97 ns |
Homogeneity 3 | 19.55 ns | 20.83 ns | 0.82 ns | 23.92 ns | 16.50 ns |
Treatment | DAPM | DRM | Smut | Inflorescence |
---|---|---|---|---|
g Plant−1 | Sori Plant−1 | Inflorescence Plant−1 | ||
3-1 | 1.1316 b | 0.3302 b | 1 0.34 c | 0.94 b |
11-1 | 1 0.4701 a * | 0.1310 a | 0.24 c | 0.34 a |
15-1 | 1.0352 b | 0.2434 a | 1 0.70 b | 0.54 b |
16-1 | 0.9890 b | 0.2058 a | 1 0.66 b | 0.76 b |
30 | 1 0.7772 a | 0.1386 a | 0.06 d | 0.94 b |
31 | 1 0.3944 a | 0.1137 a | 0.18 c | 0.26 a |
36-1 | 0.7848 a | 0.2545 b | 1 0.90 d | 0.40 a |
37-1 | 1 0.5966 a | 0.2000 a | 1 0.50 b | 0.28 a |
46 | 1 0.3053 a | 0.1640 a | 1 0.26 c | 1 0.10 a |
47 | 1 0.3905 a | 0.1602 a | 1 0.74 b | 0.34 a |
49 | 1.0904 b | 0.1999 a | 1 1.46 a | 0.48 a |
57 | 1.3462 b | 0.2854 b | 1 1.22 a | 0.90 b |
64 | 1.5536 c | 0.5042 b | 1 1.36 a | 0.82 b |
65 | 0.8700 b | 0.2650 b | 1 0.30 c | 0.42 a |
BSV1 | 2.0834 c | 0.3914 b | 0.04 d | 0.92 b |
BSV2 | 1 0.4476 a | 0.1228 a | 1 0.42 b | 0.24 a |
Control 1 | 1.6156 c | 0.2666 b | 0.00 d | 0.68 b |
CV (%) | 24.20 | 26.23 | 22.07 | 25.57 |
Nomality 2 | 0.97 ns | 0.98 ns | 0.98 ns | 9.97 ns |
Homogeneity 3 | 3 21.58 ns | 3 20.32 ns | 4 0.74 ns | 4 0.70 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, A.P.d.; Alves, J.F.; Inokuti, E.M.; Garcia, F.; Ferreira, B.W.; Nobrega, T.F.d.; Barreto, R.W.; Vieira, B.S.; Moreira, C.C. Anthracocystis panici-leucophaei: A Potential Biological Control Agent for the Grassy Weed Digitaria insularis. Agronomy 2024, 14, 2926. https://doi.org/10.3390/agronomy14122926
Souza APd, Alves JF, Inokuti EM, Garcia F, Ferreira BW, Nobrega TFd, Barreto RW, Vieira BS, Moreira CC. Anthracocystis panici-leucophaei: A Potential Biological Control Agent for the Grassy Weed Digitaria insularis. Agronomy. 2024; 14(12):2926. https://doi.org/10.3390/agronomy14122926
Chicago/Turabian StyleSouza, Adriany Pena de, Juliana Fonseca Alves, Eliane Mayumi Inokuti, Fernando Garcia, Bruno Wesley Ferreira, Thaisa Ferreira da Nobrega, Robert Weingart Barreto, Bruno Sérgio Vieira, and Camila Costa Moreira. 2024. "Anthracocystis panici-leucophaei: A Potential Biological Control Agent for the Grassy Weed Digitaria insularis" Agronomy 14, no. 12: 2926. https://doi.org/10.3390/agronomy14122926
APA StyleSouza, A. P. d., Alves, J. F., Inokuti, E. M., Garcia, F., Ferreira, B. W., Nobrega, T. F. d., Barreto, R. W., Vieira, B. S., & Moreira, C. C. (2024). Anthracocystis panici-leucophaei: A Potential Biological Control Agent for the Grassy Weed Digitaria insularis. Agronomy, 14(12), 2926. https://doi.org/10.3390/agronomy14122926