Adsorption Properties of Fishbone and Fishbone-Derived Biochar for Cadmium in Aqueous Solution
<p>The DTA/TGA analysis of fish bone powder at different heating rates (<b>a</b>); FTIR spectra of fishbone and fishbone biochar (<b>b</b>); and Cd-absorbed biochar (<b>c</b>). FBM represents fishbone; B<sub>200</sub>, B<sub>400</sub>, B<sub>600</sub>, and B<sub>800</sub> represent fishbone biochar prepared at 200 °C, 400 °C, 600 °C, and 800 °C, respectively; B<sub>600</sub>-Cd represents Cd-absorbed biochar prepared at 600 °C.</p> "> Figure 2
<p>The N<sub>2</sub> adsorption–desorption isotherms (<b>a</b>) and pore size distribution of fishbone and fishbone biochar (<b>b</b>). FBM represents fishbone; B<sub>200</sub>, B<sub>400</sub>, B<sub>600</sub>, and B<sub>800</sub> represent fishbone biochar prepared at 200 °C, 400 °C, 600 °C, and 800 °C, respectively.</p> "> Figure 3
<p>Kinetics and isotherm models describing the Cd<sup>2+</sup> adsorption: (<b>a</b>) Fitting results of the pseudo-first-order and pseudo-second-order kinetics model fitting curves for Cd<sup>2+</sup> adsorption; (<b>b</b>) Fitting results of the Langmuir and Freundlich isotherm models for Cd<sup>2+</sup> adsorption. FBM represents fishbone; B<sub>200</sub>, B<sub>400</sub>, B<sub>600</sub>, and B<sub>800</sub> represent fishbone biochar prepared at 200 °C, 400 °C, 600 °C, and 800 °C, respectively.</p> "> Figure 4
<p>The adsorption capacity of Cd<sup>2+</sup> by fishbone-derived biochar under different initial pH values. FBM represents fishbone; B<sub>200</sub>, B<sub>400</sub>, B<sub>600</sub>, and B<sub>800</sub> represent fishbone biochar prepared at 200 °C, 400 °C, 600 °C, and 800 °C, respectively.</p> "> Figure 5
<p>SEM–EDS spectra of (<b>a</b>) FBM-Cd, (<b>b</b>) B<sub>200</sub>-Cd, (<b>c</b>) B<sub>400</sub>-Cd, (<b>d</b>) B<sub>600</sub>-Cd, and (<b>e</b>) B<sub>800</sub>-Cd. FBM-Cd represents Cd-absorbed fishbone; B<sub>200</sub>-Cd, B<sub>400</sub>-Cd, B<sub>600</sub>-Cd, and B<sub>800</sub>-Cd represent Cd-absorbed fishbone biochar that was prepared at 200 °C, 400 °C, 600 °C, and 800 °C, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Preparation of Fishbone and Fishbone-Derived Biochar
2.3. Characterization of Fishbone and Fishbone-Derived Biochar
2.4. Adsorption Experiments
2.5. Analysis Methods
3. Results and Discussion
3.1. Characterization of Fishbone and Fishbone-Derived Biochar
3.2. Adsorption Performance
3.2.1. Adsorption Kinetics
3.2.2. Adsorption Isotherms
3.2.3. Influence of Initial pH Value on Cd2+ Adsorption
3.3. Adsorption Mechanisms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Teng, D.; Zhang, B.; Xu, G.; Wang, B.; Mao, K.; Wang, J.; Sun, J.; Feng, X.; Yang, Z.; Zhang, H. Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms. Environ. Pollut. 2020, 265, 115001. [Google Scholar] [CrossRef] [PubMed]
- Si, H.C.; Yuen, L.C.; Si, L.N.; Adeline, S.Y.T. Influence of Dyes on Metal Removal: A Study Using Live and Dead Cells of Penicillium simplicissimum in Single-Metal and Dye-Metal Mixtures. Water Air Soil Poll. 2018, 229, 271. [Google Scholar]
- Yan, Y.L.; Sam, S.S.L.; Jonathan, W.C.W. Removal of Cd(II) from aqueous solutions using plant-derived biochar: Kinetics, isotherm and characterization. Bioresour. Technol. Rep. 2019, 8, 100323. [Google Scholar]
- Abdin, Y.; Usman, A.; Ok, Y.S.; Tsang, Y.F.; Al-Wabel, M. Competitive sorption and availability of coexisting heavy metals in mining-contaminated soil: Contrasting effects of mesquite and fishbone biochars. Environ. Res. 2020, 181, 108846. [Google Scholar] [CrossRef]
- Liu, P.; Rao, D.; Zou, L.; Teng, Y.; Yu, H. Capacity and potential mechanisms of Cd(II) adsorption from aqueous solution by blue algae-derived biochars. Sci. Total Environ. 2021, 767, 145447. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Cao, J.; Yang, H.; Li, D.; Qiao, Y.; Zhao, J.; Zhang, Z.; Huang, L. Pb2+ biosorption from aqueous solutions by live and dead biosorbents of the hydrocarbon-degrading strain Rhodococcus sp. HX-2. PLoS ONE 2020, 15, e0226557. [Google Scholar] [CrossRef]
- Seyed, A.Z.; Robiah, Y.; Samsuri, A.W.; Mohd Salleh, M.A.; Bahareh, A. Removal of zinc from aqueous solution by optimized oil palm empty fruit bunches biochar as low cost adsorbent. Bioinorg. Chem. Appl. 2017, 1, 7914714. [Google Scholar]
- Iqbal, J.; Shah, N.S.; Sayed, M.; Niazi, N.K.; Imran, M.; Khan, J.A.; Khan, Z.U.H.; Hussien, A.G.S.; Polychronopoulou, K.; Howari, F. Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions. J. Hazard Mater. 2021, 403, 123854. [Google Scholar] [CrossRef]
- Idrees, M.; Batool, S.; Hussain, Q.; Ullah, H.; Al-Wabel, M.I.; Ahmad, M.; Kong, J. High-efficiency remediation of cadmium (Cd2+) from aqueous solution using poultry manure- and farmyard manure-derived biochars. Separ. Sci. Technol. 2016, 51, 2307–2317. [Google Scholar] [CrossRef]
- Sun, T.; Xu, Y.; Sun, Y.; Wang, L.; Liang, X.; Jia, H. Crayfish shell biochar for the mitigation of Pb contaminated water and soil: Characteristics, mechanisms, and applications. Environ. Pollut. 2021, 271, 116308. [Google Scholar] [CrossRef]
- Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X.; Chu, H. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. J. Anal. Appl. Pyrol. 2021, 155, 105081. [Google Scholar] [CrossRef]
- Yang, T.; Xu, Y.; Huang, Q.; Sun, Y.; Liang, X.; Wang, L.; Qin, X.; Zhao, L. Adsorption characteristics and the removal mechanism of two novel Fe-Zn composite modified biochar for Cd(II) in water. Bioresour. Technol. 2021, 333, 125078. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Gao, L.; Wu, R.; Wang, H.; Xiao, R. Qualitative and quantitative characterization of adsorption mechanisms for Cd2+ by silicon-rich biochar. Sci. Total Environ. 2020, 731, 139163. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Steele, J.C.; Meng, X. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Valencia Junca, M.A.; Valencia, C.; Florez Lopez, E.; Delgado-Ospina, J.; Zapata, P.A.; Solano, M.; Grande Tovar, C.D. Chitosan Beads Incorporated with Essential Oil of Thymus capitatus: Stability Studies on Red Tilapia Fillets. Biomolecules 2019, 9, 458. [Google Scholar] [CrossRef]
- Qin, J.; Wang, Z.; Wang, X.; Shi, W. Effects of microwave time on quality of grass carp fillets processed through microwave combined with hot-air drying. Food Sci. Nutr. 2020, 8, 4159–4171. [Google Scholar] [CrossRef]
- Cao, L.; Naylor, R.; Henriksson, P.; Leadbitter, D.; Metian, M.; Troell, M.; Zhang, W. China’s aquaculture and the world’s wild fisheries. Science 2015, 347, 133–135. [Google Scholar] [CrossRef]
- Mo, W.Y.; Man, Y.B.; Wong, M.H. Use of food waste, fish waste and food processing waste for China’s aquaculture industry: Needs and challenge. Sci. Total Environ. 2018, 613, 635–643. [Google Scholar] [CrossRef]
- Dimovic, S.; Smiciklas, I.; Plecas, I.; Antonovic, D.; Mitric, M. Comparative study of differently treated animal bones for Co2+ removal. J. Hazard Mater. 2009, 164, 279–287. [Google Scholar] [CrossRef]
- Wan, K.; Huang, L.; Yan, J.; Ma, B.; Huang, X.; Luo, Z.; Zhang, H.; Xiao, T. Removal of fluoride from industrial wastewater by using different adsorbents: A review. Sci. Total Environ. 2021, 773, 145535. [Google Scholar] [CrossRef]
- Hernandez-Cocoletzi, H.; Salinas, R.A.; Aguila-Almanza, E.; Rubio-Rosas, E.; Chai, W.S.; Chew, K.W.; Mariscal-Hernandez, C.; Show, P.L. Natural hydroxyapatite from fishbone waste for the rapid adsorption of heavy metals of aqueous effluent. Environ. Technol. Innov. 2020, 20, 101109. [Google Scholar] [CrossRef]
- Sun, T.; Pei, P.G.; Sun, Y.B.; Xu, Y.M.; Jia, H.T. Performance and mechanism of As(III/V) removal from aqueous solution by novel positively charged animal-derived biochar. Sep. Purif. Technol. 2022, 290, 120836. [Google Scholar] [CrossRef]
- Ran, J.; Hu, J.; Sun, G.; Chen, S.; Chen, L.; Shen, X.; Tong, H. Comparisons between gelatin-tussah silk fibroin/hydroxyapatite and gelatin-Bombyx mori silk fibroin/hydroxyapatite nano-composites for bone tissue engineering. RSC Adv. 2015, 5, 76526–76537. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; Da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Zolfi Bavariani, M.; Ronaghi, A.; Ghasemi, R. Influence of Pyrolysis Temperatures on FTIR Analysis, Nutrient Bioavailability, and Agricultural use of Poultry Manure Biochars. Commun. Soil Sci. Plan. 2019, 50, 402–411. [Google Scholar] [CrossRef]
- Kara, A.; Demirbel, E.; Tekin, N.; Osman, B.; Besirli, N. Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: Kinetic, isotherm and thermodynamic studies. J. Hazard Mater. 2015, 286, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Inyang, H.I.; Onwawoma, A.; Bae, S. The Elovich equation as a predictor of lead and cadmium sorption rates on contaminant barrier minerals. Soil. Till. Res. 2016, 155, 124–132. [Google Scholar] [CrossRef]
- Bing, L.; Lan, Y.; Wang, C.Q.; Zhang, Q.P.; Liu, Q.C.; Li, Y.D.; Rui, X. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 2017, 175, 332–340. [Google Scholar]
- Cleide, S.T.A.; Ione, L.S.A.; Hélen, C.R.; Suzana, M.L.O.M.; José, J.L.L.; Túlio, N.D.M. Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem. J. 2018, 137, 348–354. [Google Scholar]
- Lin, L.; Qiu, W.; Wang, D.; Huang, Q.; Song, Z.; Chau, H.W. Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism. Ecotoxicol. Environ. Saf. 2017, 144, 514–521. [Google Scholar] [CrossRef]
- Li, S.; Barreto, V.; Li, R.; Chen, G.; Hsieh, Y.P. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures. J. Anal. Appl. Pyrol. 2018, 133, 136–146. [Google Scholar] [CrossRef]
- Hasanpour, M.; Hatami, M. Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Adv. Colloid Interfac. 2020, 284, 102247. [Google Scholar] [CrossRef] [PubMed]
- Mnasri-Ghnimi, S.; Frini-Srasra, N. Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Appl. Clay. Sci. 2019, 179, 105151. [Google Scholar] [CrossRef]
- Jung, K.W.; Lee, S.Y.; Choi, J.W.; Lee, Y.J. A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption behavior and mechanisms for the removal of copper (II) from aqueous media. Chem. Eng. J. 2019, 369, 529–541. [Google Scholar] [CrossRef]
- Kizilkaya, B.; Tekinay, A.A.; Dilgin, Y. Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones. Desalination 2010, 264, 37–47. [Google Scholar] [CrossRef]
- Zhao, B.; O’Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.W.; Hou, D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- Wystalska, K.; Kwarciak-Kozlowska, A. The Effect of Biodegradable Waste Pyrolysis Temperatures on Selected Biochar Properties. Materials 2021, 14, 1644. [Google Scholar] [CrossRef]
- Goh, C.L.; Sethupathi, S.; Bashir, M.J.; Ahmed, W. Adsorptive behaviour of palm oil mill sludge biochar pyrolyzed at low temperature for copper and cadmium removal. J. Environ. Manag. 2019, 237, 281–288. [Google Scholar] [CrossRef]
Sample | Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Average Pore Diameter (nm) | pHZPC |
---|---|---|---|---|
FBM | 2.274 | 0.004 | 4.811 | 6.05 |
B200 | 4.159 | 0.007 | 4.678 | 6.40 |
B400 | 1.651 | 0.007 | 15.27 | 6.95 |
B600 | 2.855 | 0.014 | 17.97 | 9.44 |
B800 | 2.472 | 0.014 | 22.33 | 10.78 |
Element (mg·kg−1) | FBM | B200 | B400 | B600 | B800 |
---|---|---|---|---|---|
Ca | 16.79 | 16.64 | 16.59 | 17.32 | 24.84 |
P | 9793.90 | 9622.82 | 13,117.19 | 11,895.36 | 10,486.47 |
K | 1.06 | 1.08 | 1.19 | 1.20 | 1.18 |
Na | 0.81 | 0.78 | ND | ND | 1.63 |
Mg | 1.24 | 1.23 | 2.26 | 2.77 | 3.68 |
S | 5980.80 | 6016.09 | 6651.71 | 6394.74 | 6113.43 |
Cl | 78,805.95 | 80,596.73 | 102,077.70 | 105,665.70 | 68,138.16 |
Cd | ND | ND | ND | ND | ND |
C0 (mg/L) | qe, Exp (mg/g) | Pseudo-First-Order Model | Pseudo-Second-Order Model | |||||
---|---|---|---|---|---|---|---|---|
qe, Cal (mg/g) | k1 (1/min) | R2 | qe, Cal (mg/g) | k2 (g/(mg·min)) | ||||
FBM | 250 | 8.163 | 6.3312 | 0.0641 | 0.7823 | 6.9282 | 0.0109 | 0.8635 |
B200 | 250 | 8.926 | 8.3675 | 0.0738 | 0.8966 | 8.7806 | 0.0139 | 0.9406 |
B400 | 250 | 14.518 | 12.638 | 0.1254 | 0.8446 | 13.346 | 0.0134 | 0.9270 |
B600 | 250 | 32.834 | 31.199 | 0.0230 | 0.9747 | 34.696 | 0.0009 | 0.9841 |
B800 | 250 | 22.383 | 18.413 | 0.0343 | 0.6192 | 19.702 | 0.0029 | 0.7830 |
Isotherm Model | Constants | Sorbents | ||||
---|---|---|---|---|---|---|
FBM | B200 | B400 | B600 | B800 | ||
Langmuir | qm (mg·g−1) | 9.284 | 11.2267 | 17.194 | 37.799 | 29.267 |
KL (L·mg−1) | 0.0281 | 0.0271 | 0.0161 | 0.0591 | 0.0316 | |
R2 | 0.9656 | 0.9650 | 0.9892 | 0.9892 | 0.9413 | |
RL | 0.1511–0.5426 | 0.1558–0.5516 | 0.2370–0.6743 | 0.0780–0.3606 | 0.3876–3.7115 | |
Freundlich | KF (mg·g−1 (L·g−1)1/n) | 1.4075 | 1.5791 | 1.2211 | 7.4522 | 0.2404 |
n | 2.9957 | 2.8729 | 2.1786 | 3.1546 | 0.1742 | |
R2 | 0.9479 | 0.9623 | 0.9441 | 0.9362 | 0.1366 |
Element (wt %) | FBM-Cd | B200-Cd | B400-Cd | B600-Cd | B800-Cd |
---|---|---|---|---|---|
Ca | 62.83 | 45.42 | 41.60 | 31.92 | 49.34 |
Na | 0.04 | 0.40 | 0.78 | 0.29 | 0.61 |
C | 7.35 | 9.55 | 12.45 | 13.47 | 9.58 |
O | 13.64 | 16.88 | 11.10 | 10.62 | 5.71 |
Si | 3.29 | 8.53 | 9.54 | 13.48 | 5.70 |
Cd | 12.85 | 19.21 | 22.39 | 30.21 | 24.06 |
Al | ND | ND | 2.13 | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, N.; Luo, W.; Huang, Q.; Sun, Y. Adsorption Properties of Fishbone and Fishbone-Derived Biochar for Cadmium in Aqueous Solution. Agronomy 2024, 14, 2717. https://doi.org/10.3390/agronomy14112717
Pei N, Luo W, Huang Q, Sun Y. Adsorption Properties of Fishbone and Fishbone-Derived Biochar for Cadmium in Aqueous Solution. Agronomy. 2024; 14(11):2717. https://doi.org/10.3390/agronomy14112717
Chicago/Turabian StylePei, Nan, Wenwen Luo, Qingqing Huang, and Yuebing Sun. 2024. "Adsorption Properties of Fishbone and Fishbone-Derived Biochar for Cadmium in Aqueous Solution" Agronomy 14, no. 11: 2717. https://doi.org/10.3390/agronomy14112717