Hyperspectral Imaging Combined with Deep Learning for the Early Detection of Strawberry Leaf Gray Mold Disease
<p>The schematic diagram of the hyperspectral imaging system.</p> "> Figure 2
<p>Healthy and gray leaf mold.</p> "> Figure 3
<p>Flowchart of the work.</p> "> Figure 4
<p>Spectral behaviors of different types of strawberry leaves: (<b>a</b>) the hyperspectral cube of the gray mold-infected strawberry leaf; (<b>b</b>) spectra of gray mold-infected strawberry leaves samples; (<b>c</b>) spectra of healthy strawberry leaves samples; and (<b>d</b>) the comparison of original spectra of healthy and disease leaves.</p> "> Figure 5
<p>(<b>a</b>) Regression coefficients of each variable; (<b>b</b>) spectral fingerprint feature distribution.</p> "> Figure 6
<p>(<b>a</b>) The correlation coefficients diagram of 40 vegetation indices; (<b>b</b>) the detail of the correlation coefficients diagram.</p> "> Figure 7
<p>The COSS of 21 VIs obtained by SPA.</p> "> Figure 8
<p>Classification accuracy comparison of various machine learning models based on different input features. (<b>a</b>) Full wavelength and fingerprint features; (<b>b</b>) full wavelength and significant vegetation index; (<b>c</b>) full wavelength and full vegetation index; and (<b>d</b>) fingerprint feature, significance, and fusion feature.</p> "> Figure 9
<p>The five models are based on the confusion matrix of mixed features.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strawberry Leaf Cultivation and Pathogen Inoculation
2.2. Hyperspectral Image Collection and Processing
2.2.1. Hyperspectral Imaging System
2.2.2. Image Acquisition and Calibration
2.3. Data Extraction and Selection
2.3.1. Extraction of Spectral Data
2.3.2. Selection of Spectral Fingerprint Features
2.3.3. Extraction of Vegetation Indices
2.3.4. Selection of Significant Vegetation Indices
2.4. Development of the Recognition Model for Strawberry Disease
2.5. Flowchart of the Work
3. Results and Discussion
3.1. Spectral Analysis and Modeling
3.1.1. Spectral Behaviors
3.1.2. Modeling Based on Spectral Features
3.2. Vegetation Indices Analysis and Modeling
3.2.1. Vegetation Indices
3.2.2. Modeling Based on Vegetation Indices
3.3. Modeling Based on Fusion Features and Comparison of Different Features in Modeling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, C.; Shao, Y.; Li, X.; He, Y. Detection of early blight and late blight Diseases on tomato leaves using hyperspectral imaging. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Meena, S.V.; Dhaka, V.S.; Sinwar, D. Exploring the role of Vegetation indices in Plant diseases Identification. In Proceedings of the 2020 IEEE Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, Solan, India, 6–8 November 2020; pp. 372–377. [Google Scholar] [CrossRef]
- Huang, M.Y.; Wang, J.H.; Huang, W.J.; Huang, Y.D.; Zhao, C.J.; Wan, A.M. Hyperspectral character of stripe rust on winter wheat and monitoring by remote sensing. Trans. Chin. Soc. Agric. Eng. 2003, 19, 154–158. [Google Scholar] [CrossRef]
- Bing, C.; Shaokun, L.; Keru, W. Spectrum characteristics of cotton single leaf infected by verticillium wilt and estimation on severity level of disease. Sci. Agric. Sin. 2007, 40, 2709–2715. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Ma, J.; Han, X.; Chen, B.; Li, G.; Xiong, Z.; Huang, F. Early warning and diagnostic visualization of Sclerotinia infected tomato based on hyperspectral imaging. Sci. Rep. 2022, 12, 21140. [Google Scholar] [CrossRef]
- Xie, C.; Yang, C.; He, Y. Detection of grey mold disease on tomato leaves at different infected stages using hyperspectral imaging. In Proceedings of the 2016 ASABE Annual International Meeting, Orlando, FL, USA, 17–20 July 2016; p. 162462686. [Google Scholar] [CrossRef]
- Mahlein, A.-K.; Rumpf, T.; Welke, P.; Dehne, H.-W.; Plümer, L.; Steiner, U.; Oerke, E.-C. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 2013, 128, 2130. [Google Scholar] [CrossRef]
- Meng, R.; Lv, Z.; Yan, J.; Chen, G.; Zhao, F.; Zeng, L.; Xu, B. Development of Spectral Disease Indices for Southern Corn Rust Detection and Severity Classification. Remote Sens. 2020, 12, 3233. [Google Scholar] [CrossRef]
- Mandal, N.; Adak, S.; Das, D.K.; Sahoo, R.N.; Mukherjee, J.; Kumar, A.; Chinnusamy, V.; Das, B.; Mukhopadhyay, A.; Rajashekara, H.; et al. Spectral characterization and severity assessment of rice blast disease using univariate and multivariate models. Front. Plant Sci. 2023, 14, 1067189. [Google Scholar] [CrossRef]
- Cao, Y.; Yuan, P.; Xu, H.; Martínez-Ortega, J.; Feng, J.; Zhai, Z. Detecting Asymptomatic Infections of Rice Bacterial Leaf Blight Using Hyperspectral Imaging and 3-Dimensional Convolutional Neural Network with Spectral Dilated Convolution. Front. Plant Sci. 2022, 13, 963170. [Google Scholar] [CrossRef]
- Bao, D.; Zhou, J.; Bhuiyan, S.A.; Adhikari, P.; Tuxworth, G.; Ford, R.; Gao, Y. Early detection of sugarcane smut and mosaic diseases via hyperspectral imaging and spectral-spatial attention deep neural networks. J. Agric. Food Res. 2024, 18, 101369. [Google Scholar] [CrossRef]
- Lee, C.C.; Koo, V.C.; Lim, T.S.; Lee, Y.P.; Abidin, H. A multi-layer perceptron-based approach for early detection of BSR disease in oil palm trees using hyperspectral images. Heliyon 2022, 8, e09252. [Google Scholar] [CrossRef]
- Ju, C.; Chen, C.; Li, R.; Zhao, Y.; Zhong, X.; Sun, R.; Liu, T.; Sun, C. Remote sensing monitoring of wheat leaf rust based on UAV multispectral imagery and the BPNN method. Food Energy Secur. 2023, 12, e477. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Fan, S.; Huang, W.; Zhao, C.; Liu, C.; Huang, D. Hyperspectral imaging combined with multivariate analysis and band math for detection of common defects on peaches (Prunus persica). Comput. Electron. Agric. 2015, 114, 14–24. [Google Scholar] [CrossRef]
- Ferreira, R.D.A.; Teixeira, G.; Peternelli, L.A. Kennard-Stone method outperforms the Random Sampling in the selection of calibration samples in SNPs and NIR data. Ciência Rural 2021, 52, e20201072. [Google Scholar] [CrossRef]
- Feng, Z.H.; Wang, L.Y.; Yang, Z.Q.; Zhang, Y.Y.; Li, X.; Song, L.; He, L.; Duan, J.Z.; Feng, W. Hyperspectral monitoring of powdery mildew disease severity in wheat based on machine learning. Front. Plant Sci. 2022, 13, 828454. [Google Scholar] [CrossRef]
- Blackburn, G.A. Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sens. Environ. 1998, 66, 273–285. [Google Scholar] [CrossRef]
- Albetis, J.; Jacquin, A.; Goulard, M.; Poilvé, H.; Rousseau, J.; Clenet, H.; Dedieu, G.; Duthoit, S. On the potentiality of UAV multispectral imagery to detect Flavescence dorée and Grapevine Trunk Diseases. Remote Sens. 2018, 11, 23. [Google Scholar] [CrossRef]
- Chappelle, E.W.; Kim, M.S.; McMurtrey, J.E. III. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sens. Environ. 1992, 39, 239–247. [Google Scholar] [CrossRef]
- Gamon, J.A.; Penuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Filella, I.; Serrano, L.; Serra, J.; Peñuelas, J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci. 1995, 35, 1400–1405. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, J.H.; Liu, L.Y.; Huang, W.J.; Zhao, C.J.; Wang, C.Z. Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR). Field Crops Res. 2004, 90, 311–321. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Wikantika, K.; Ghazali, M.F.; Dwivany, F.M.; Susantoro, T.M.; Yayusman, L.F.; Sunarwati, D.; Sutanto, A. A Study on the Distribution Pattern of Banana Blood Disease (BBD) and Fusarium Wilt Using Multispectral Aerial Photos and a Handheld Spectrometer in Subang, Indonesia. Diversity 2023, 15, 1046. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Lewis, H.G.; Brown, M. A generalized confusion matrix for assessing area estimates from remotely sensed data. Int. J. Remote Sens. 2001, 22, 3223–3235. [Google Scholar] [CrossRef]
- Birth, G.S.; McVey, G.R. Measuring the color of growing turf with a reflectance spectrophotometer 1. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Chandel, A.K.; Khot, L.R.; Sallato, B. Apple powdery mildew infestation detection and mapping using high-resolution visible and multispectral aerial imaging technique. Sci. Hortic. 2021, 287, 110228. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Merton, R.; Huntington, J. Early simulation results of the ARIES-1 satellite sensor for multi-temporal vegetation research derived from AVIRIS. In Proceedings of the Eighth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 9–11 February 1999. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Baloloy, A.B.; Blanco, A.C.; Candido, C.G.; Argamosa, R.J.L.; Dumalag, J.B.L.C.; Dimapilis, L.L.C.; Paringit, E.C. Estimation of mangrove forest aboveground biomass using multispectral bands, vegetation indices and biophysical variables derived from optical satellite imageries: Rapideye, planetscope and sentinel-2. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 29–36. [Google Scholar] [CrossRef]
- Chen, B.; Wang, K.; Li, S.; Wang, J.; Bai, J.; Xiao, C.; Lai, J. Spectrum characteristics of cotton canopy infected with verticillium wilt and inversion of severity level. In Computer and Computing Technologies in Agriculture, Volume II, Proceedings of the First IFIP TC 12 International Conference on Computer and Computing Technologies in Agriculture (CCTA 2007), Wuyishan, China, 18–20 August 2007; Springer Nature: Boston, MA, USA, 2008; pp. 1169–1180. [Google Scholar]
- Broge, N.H.; Mortensen, J.V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens. Environ. 2002, 81, 45–57. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Mohammed, G.H.; Noland, T.L. Chlorophyll fluorescence effects on vegetation apparent reflectance: I. Leaf-level measurements and model simulation. Remote Sens. Environ. 2000, 74, 582–595. [Google Scholar] [CrossRef]
- Dobrowski, S.Z.; Pushnik, J.C.; Zarco-Tejada, P.J.; Ustin, S.L. Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sens. Environ. 2005, 97, 403–414. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Barnes, J.D.; Balaguer, L.; Manrique, E.; Elvira, S.; Davison, A.W. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ. Exp. Bot. 1992, 32, 85–100. [Google Scholar] [CrossRef]
- Merton, R. Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index. In Proceedings of the Seventh Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 12–16 January 1998. [Google Scholar]
- Klein, D.; Menz, G. Monitoring of seasonal vegetation response to rainfall variation and land use in East Africa using ENVISAT MERIS data. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS’05, Seoul, Republic of Korea, 25–29 July 2005; IEEE: New York, NY, USA, 2005; Volume 4, pp. 2884–2887. [Google Scholar]
- Peñuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance water index WI (R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Babar, M.A.; Reynolds, M.P.; Van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat. Crop Sci. 2006, 46, 1046–1057. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Cao, Y.; Yang, Y.; Sun, X.; Sun, K.; Li, Y.; Zhang, J.; Pei, Z. Comprehensive growth index monitoring of desert steppe grassland vegetation based on UAV hyperspectral. Front. Plant Sci. 2023, 13, 1050999. [Google Scholar] [CrossRef]
- Liu, B.; Fernandez, M.A.; Liu, T.M.; Ding, S. Investigation of Using Hyperspectral Vegetation Indices to Assess Brassica Downy Mildew. Sensors 2024, 24, 1916. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lv, X.; Ma, L.; Chen, A.; Zhang, Q.; Zhang, Z. Optimization and validation of hyperspectral estimation capability of cotton leaf nitrogen based on SPA and RF. Remote Sens. 2022, 14, 5201. [Google Scholar] [CrossRef]
- Pan, T.-T.; Sun, D.-W.; Cheng, J.-H.; Pu, H. Regression Algorithms in Hyperspectral Data Analysis for Meat Quality Detection and Evaluation. Compr. Rev. Food Sci. Food Saf. 2016, 15, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Qi, C.; Chen, Q.; Qu, J. Spatial-spectral network for hyperspectral image classification: A 3-D CNN and Bi-LSTM framework. Remote Sens. 2021, 13, 2353. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, Y.; Feng, X.; Tao, M.; Zhang, J.; Deng, S.; Lou, B.; Yang, G.; Wu, Q.; Yu, L.; et al. Evaluation of rice bacterial blight severity from lab to field with hyperspectral imaging technique. Front. Plant Sci. 2022, 13, 1037774. [Google Scholar] [CrossRef]
- Yan, T.; Xu, W.; Lin, J.; Duan, L.; Gao, P.; Zhang, C.; Lv, X. Combining Multi-Dimensional Convolutional Neural Network (CNN) With Visualization Method for Detection of Aphis gossypii Glover Infection in Cotton Leaves Using Hyperspectral Imaging. Front. Plant Sci. 2021, 12, 604510. [Google Scholar] [CrossRef]
- Wu, Y.; Li, L.; Liu, L.; Liu, Y. Nondestructive measurement of internal quality attributes of apple fruit by using NIR spectroscopy. Multimed. Tools Appl. 2019, 78, 4179–4195. [Google Scholar] [CrossRef]
- Pereira, L.F.S.; Barbon, S., Jr.; Valous, N.A.; Barbin, D.F. Predicting the ripening of papaya fruit with digital imaging and random forests. Comput. Electron. Agric. 2018, 145, 76–82. [Google Scholar] [CrossRef]
- Weng, S.; Qiu, M.; Dong, R.; Wang, F.; Huang, L.; Zhang, D.; Zhao, J. Fast detection of fenthion on fruit and vegetable peel using dynamic surface-enhanced Raman spectroscopy and random forests with variable selection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 200, 20–25. [Google Scholar] [CrossRef]
- Abdulridha, J.; Batuman, O.; Ampatzidis, Y. UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning. Remote Sens. 2019, 11, 1373. [Google Scholar] [CrossRef]
- Khan, I.H.; Liu, H.; Li, W.; Cao, A.; Wang, X.; Liu, H.; Yao, X. Early detection of powdery mildew disease and accurate quantification of its severity using hyperspectral images in wheat. Remote Sens. 2021, 13, 3612. [Google Scholar] [CrossRef]
- Xie, C.; Yang, C.; He, Y. Hyperspectral imaging for classification of healthy and gray mold diseased tomato leaves with different infection severities. Comput. Electron. Agric. 2017, 135, 154–162. [Google Scholar] [CrossRef]
- Lacotte, V.; Peignier, S.; Raynal, M.; Demeaux, I.; Delmotte, F.; da Silva, P. Spatial–Spectral Analysis of Hyperspectral Images Reveals Early Detection of Downy Mildew on Grapevine Leaves. Int. J. Mol. Sci. 2022, 23, 10012. [Google Scholar] [CrossRef]
- Wan, L.; Li, H.; Li, C.; Wang, A.; Yang, Y.; Wang, P. Hyperspectral Sensing of Plant Diseases: Principle and Methods. Agronomy 2022, 12, 1451. [Google Scholar] [CrossRef]
- Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 2017, 13, 80. [Google Scholar] [CrossRef]
- Behmann, J.; Bohnenkamp, D.; Paulus, S.; Mahlein, A.-K. Spatial Referencing of Hyperspectral Images for Tracing of Plant Disease Symptoms. J. Imaging 2018, 4, 143. [Google Scholar] [CrossRef]
- Ray, S.S.; Jain, N.; Arora, R.K.; Chavan, S.; Panigrahy, S. Utility of Hyperspectral Data for Potato Late Blight Disease Detection. J. Indian Soc. Remote Sens. 2011, 39, 161–169. [Google Scholar] [CrossRef]
- Lu, J.; Zhou, M.; Gao, Y.; Jiang, H. Using hyperspectral imaging to discriminate yellow leaf curl disease in tomato leaves. Precis. Agric. 2018, 19, 379–394. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, J.; Conrad, A.O.; Flower, C.E.; Pinchot, C.C.; Hayes-Plazolles, N.; Chen, Z.; Song, Z.; Fei, S.; Jin, J. Machine learning-based spectral and spatial analysis of hyper-and multi-spectral leaf images for Dutch elm disease detection and resistance screening. Artif. Intell. Agric. 2023, 10, 26–34. [Google Scholar] [CrossRef]
- Omaye, J.D.; Ogbuju, E.; Ataguba, G.; Jaiyeoba, O.; Aneke, J.; Oladipo, F. Cross-comparative review of Machine learning for plant disease detection: Apple, cassava, cotton and potato plants. Artif. Intell. Agric. 2024, 12, 127–151. [Google Scholar] [CrossRef]
- Javidan, S.M.; Banakar, A.; Vakilian, K.A.; Ampatzidis, Y.; Rahnama, K. Early detection and spectral signature identification of tomato fungal diseases (Alternaria alternata, Alternaria solani, Botrytis cinerea, and Fusarium oxysporum) by RGB and hyperspectral image analysis and machine learning. Heliyon 2024, 10, e38017. [Google Scholar] [CrossRef] [PubMed]
No. | Category | Vegetation Index | Acronym | Equation | Reference |
---|---|---|---|---|---|
1 | Pigment | Pigment-specific simple ratio | PSSRa | [17] | |
2 | Pigment-specific simple ratio | PSSRb | [17] | ||
3 | Red-green index | RGI | [18] | ||
4 | Ratio analysis of reflection of spectral chlorophyll a | RARSa | [19] | ||
5 | Ratio analysis of reflection of spectral chlorophyll b | RARSb | [19] | ||
6 | Ratio analysis of reflection of spectral chlorophyll c | RARSc | [19] | ||
7 | Photochemical reflectance index | PRI | [20] | ||
8 | Structure-insensitive vegetation index | SIPI | [21] | ||
9 | Normalized pigment chlorophyll index | NPCI | [21] | ||
10 | Nitrogen reflectance index | NRI | [22] | ||
11 | Normalized chlorophyll pigment ratio index | NCPI | [21] | ||
12 | Plant pigment ratio | PPR | [23] | ||
13 | Optimized soil-adjusted vegetation index | OSAVI | [24] | ||
14 | Modified chlorophyll absorption ratio index | MCARI 2 | [25] | ||
15 | Anthocyanin (Gitelson) | AntGitelson | [26] | ||
16 | Plant senescence reflectance index | PSRI | [27] | ||
17 | Anthocyanin reflectance index | ARI | [28] | ||
18 | Structure | Simple ratio | SR | [29] | |
19 | Greenness index | GI | [30] | ||
20 | Narrow-band normalized difference | NBNDVI | [31] | ||
21 | Normalized difference vegetation index | NDVI | [32] | ||
22 | Red-edge NDVI | RNDVI | [33] | ||
23 | Ratio vegetation structure index | RVSI | [34] | ||
24 | Modified triangular vegetation index | MTVI | [35] | ||
25 | Green NDVI | GNDVI | [36] | ||
26 | Modified simple ratio | MSR | [37] | ||
27 | Triangular vegetationindex | TVI | [38] | ||
28 | Physiology | Fluorescence ratio index 1 | FRI1 | [39] | |
29 | Fluorescence ratio index 2 | FRI2 | [39] | ||
30 | Fluorescence ratio index 3 | FRI3 | [40] | ||
31 | Fluorescence ratio index 4 | FRI4 | [40] | ||
32 | Physiological reflectance index | PhRI | [20] | ||
33 | Modified red-edge simple ratio index | mRESR | [41] | ||
34 | Normalized Pheophytization index | NPQI | [42] | ||
35 | Red-edge vegetation stress index 1 | RVS1 | [43] | ||
36 | Red-edge vegetation stress index 2 | RVS2 | [43] | ||
37 | Fluorescence curvature index | FCI | [39] | ||
38 | Red edge position | RRE | [44] | ||
39 | Moisture content | Water band index | WBI | [45] | |
40 | Water stress and canopy temperature | WSCT | [46] |
Input Features | Number of Variables | Models | Calibration Accuracy (%) | Prediction Accuracy (%) | ||||
---|---|---|---|---|---|---|---|---|
Healthy | Disease | Overall | Healthy | Disease | Overall | |||
Full wavelengths | 616 | BPNN | 0.955 | 0.956 | 0.956 | 0.844 | 0.857 | 0.854 |
CNN | 1 | 1 | 1 | 0.857 | 0.781 | 0.817 | ||
LSTM | 0.912 | 0.933 | 0.922 | 0.812 | 0.821 | 0.817 | ||
KNN | 1 | 1 | 1 | 0.7879 | 0.8148 | 0.800 | ||
RF | 1 | 1 | 1 | 0.826 | 0.818 | 0.800 |
Input Features | Number of Variables | Models | Calibration Accuracy (%) | Prediction Accuracy (%) | ||||
---|---|---|---|---|---|---|---|---|
Healthy | Disease | Overall | Healthy | Disease | Overall | |||
Fingerprint feature | 17 | BPNN | 0.953 | 0.926 | 0.934 | 0.926 | 0.818 | 0.867 |
CNN | 1 | 1 | 1 | 0.906 | 0.929 | 0.9167 | ||
LSTM | 0.955 | 0.956 | 0.972 | 0.903 | 0.893 | 0.9167 | ||
KNN | 1 | 1 | 1 | 0.879 | 0.8 | 0.9 | ||
RF | 1 | 1 | 1 | 0.871 | 0.932 | 0.902 |
Input Features | Number of Variables | Models | Calibration Accuracy (%) | Prediction Accuracy (%) | ||||
---|---|---|---|---|---|---|---|---|
Healthy | Disease | Overall | Healthy | Disease | Overall | |||
Vegetation index | 40 | BPNN | 0.987 | 0.985 | 0.96 | 0.829 | 0.837 | 0.833 |
CNN | 1 | 1 | 1 | 0.929 | 0.925 | 0.844 | ||
LSTM | 0.987 | 0.986 | 0.994 | 0.811 | 0.826 | 0.8 | ||
KNN | 1 | 1 | 1 | 0.8788 | 0.8519 | 0.8667 | ||
RF | 1 | 1 | 1 | 0.909 | 0.909 | 0.9 |
Input Features | Number of Variables | Models | Calibration Accuracy (%) | Prediction Accuracy (%) | ||||
---|---|---|---|---|---|---|---|---|
Healthy | Disease | Overall | Healthy | Disease | Overall | |||
Significant vegetation index | 5 | BPNN | 0.989 | 0.988 | 0.9667 | 0.808 | 0.824 | 0.816 |
CNN | 0.978 | 0.976 | 0.9667 | 0.815 | 0.848 | 0.833 | ||
LSTM | 0.935 | 0.929 | 0.9167 | 0.84 | 0.879 | 0.833 | ||
KNN | 1 | 1 | 1 | 0.819 | 0.889 | 0.85 | ||
RF | 1 | 1 | 1 | 0.8667 | 0.9 | 0.844 |
Input Features | Number of Variables | Models | Calibration Accuracy (%) | Prediction Accuracy (%) | ||||
---|---|---|---|---|---|---|---|---|
Healthy | Disease | Totality | Healthy | Disease | Healthy | |||
Fingerprint feature +significant vegetation index | 17 + 5 | BPNN | 0.968 | 0.968 | 0.9667 | 0.926 | 0.933 | 0.933 |
CNN | 1 | 1 | 1 | 0.963 | 0.966 | 0.966 | ||
LSTM | 0.978 | 0.978 | 0.978 | 0.889 | 0.893 | 0.889 | ||
KNN | 1 | 1 | 1 | 0.8485 | 0.9630 | 0.900 | ||
RF | 1 | 1 | 1 | 0.926 | 0.92 | 0.918 |
No. | Procedure Name | Training/Processing Time |
---|---|---|
1 | SAVITZKY-GOLAY smoothing preprocessing | 1.78 s |
2 | CARS extracting fingerprint features | 1851.943 s |
3 | Pearson correlation analysis and SPA | 4.186 s |
4 | BPNN | 32.294 s |
5 | CNN | 29.870 s |
6 | KNN | 75.193 s |
7 | RF | 18.536 s |
8 | LSTM | 26.289 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, Y.; Yan, J.; Liang, Z.; Zhang, B. Hyperspectral Imaging Combined with Deep Learning for the Early Detection of Strawberry Leaf Gray Mold Disease. Agronomy 2024, 14, 2694. https://doi.org/10.3390/agronomy14112694
Ou Y, Yan J, Liang Z, Zhang B. Hyperspectral Imaging Combined with Deep Learning for the Early Detection of Strawberry Leaf Gray Mold Disease. Agronomy. 2024; 14(11):2694. https://doi.org/10.3390/agronomy14112694
Chicago/Turabian StyleOu, Yunmeng, Jingyi Yan, Zhiyan Liang, and Baohua Zhang. 2024. "Hyperspectral Imaging Combined with Deep Learning for the Early Detection of Strawberry Leaf Gray Mold Disease" Agronomy 14, no. 11: 2694. https://doi.org/10.3390/agronomy14112694