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Abstract: The aim of this work was to determine the anisotropy of the electrophysical and
mechanical properties of rubber reinforced with a hybrid filler CNTs&CB (carbon nan-
otubes and carbon black) as a function of CNT content and the technological parameters of
the production process. A significant difference in electrical conductivity (σ) and dielec-
tric permittivity (ε) in three perpendicular directions was found for CNT concentrations
ranging from 0 to 0.007 in volume fraction. The highest values of σ and ε were observed in
the calendering direction, with slightly lower values in the perpendicular direction. This
effect was attributed to the orientation of polymer molecules and CNTs along the direction
of movement during calendering, as well as the disruption of the cluster structure in the
transverse direction. Although the calculated percolation threshold values of the inves-
tigated system differed slightly, a correlation was observed between the mechanical and
electrophysical properties of CNTs&CB rubber. This correlation enables rubber products to
be designed with optimal properties tailored to the desired direction.

Keywords: conductive rubber; multiwall carbon nanotubes; electrical conductivity; dielectric
permittivity; tensile strength; percolation system

1. Introduction
In the contemporary world, electromagnetic radiation across a broad spectrum of fre-

quencies, ranging from very low to extremely high power levels, is ubiquitous. Therefore,
products made from electrically conductive polymer composites, including rubber, are
widely used as electromagnetic shields, electrostatic coatings, sensors, etc. [1–6]. Special
grades of carbon black, graphite, carbon fibers, and powders of nickel, copper, silver,
and other metals serve as conductive fillers for such systems. However, carbon-based
fillers of various morphologies and origins have gained widespread application due to
their cost-effectiveness, ease of processing, corrosion resistance, and high reproducibility
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of technical results [7–9]. Recently, the potential of nano-sized fillers, such as nanoclay,
nanosilica, carbon nanotubes, and graphene nanoplatelets, as well as their combinations
with macro- and micro-fillers (hybrid fillers) for reinforcing polymer matrices [8–22], in-
cluding rubber [5,6,8,9,23–36], has been extensively studied. In our previous study [31], we
conducted a comprehensive analysis of the aforementioned studies and demonstrated that
the reinforcement of rubbers with a hybrid filler of multiwall carbon nanotubes and carbon
black (CNTs-CB) significantly enhances the mechanical characteristics of rubbers. Today,
conductive rubber products play a crucial role in applications such as electromagnetic
shields and electrostatic coatings. It is known that CNTs exhibit high electrical conductivity
(σ), mechanical strength (P), and a large aspect ratio, making them promising as conduc-
tive fillers. The electrical conductivity of CNT-filled rubber depends on the formation of
secondary (chain-like) structures, which are influenced by the CNT content of CNT and
various technological factors.

It should be noted that rubber compounds have been in development for almost
two hundred years. Initially, they were based on natural rubbers and, later, synthetic
rubbers were introduced. Rubber compounds are complex, multi-component systems
that can contain up to 12–18 components, including various additives such as stabilizers,
activators, antioxidants, and modifiers. The introduction of carbon black as a filler trans-
formed rubber into an elastomeric system with exceptional elastic properties. Extensive
research spanning multiple generations has led to the optimization of rubber formulations
for various applications through systematic investigations [9,22–30,37–41]. Therefore, for
our study, we selected a well-known composition based on the commercially produced
acrylonitrile-butadiene rubber copolymer NBR 3365 [31]. This system was analyzed from
the perspective of polystructural theory [42,43]. The essence of this approach lies in identi-
fying multiple interdependent structures within a single system, spanning from the atomic
(nanoscale) level to coarser component structures (macroscale) that interconnect in a hi-
erarchical manner (‘structure within structure’ or ‘composite within composite’), as was
previously analyzed in [31]. Another key assumption was that, in a dense material, the
rubber should completely wet the system and form a layer of a certain thickness on the
filler surface, approximated as twice the diameter of the CNT [31].

The aim of this work was to determine the anisotropy of the electrophysical and
mechanical properties of rubber reinforced with a hybrid CNTs&CB filler as a function of
the CNT content near the calculated optimal value and the technological parameters of the
production process.

2. Materials and Methods
The acrylonitrile-butadiene rubber copolymer NBR 3365 with carbon black N550

was used as the initial material [44] (Figure 1 and Table 1). Multiwall carbon nanotubes
(Figure 1a,b) (TU U 24.1-03291669-009:2009 [45] were synthesized via chemical vapor depo-
sition (CVD) using propylene as the carbon source in a rotating reactor. The characteristics
of the obtained CNTs were as follows: average diameter—from 10 to 20 nm; specific surface
area (determined by Ar adsorption)—from 200 to 400 m2/g; bulk density—from 20 to
40 g/dm3 [45,46]. Prior to incorporation into the rubber matrix, CNTs and carbon black
were first dispersed in ethanol. The prepared suspensions were then mixed at a ratio
calculated according to Equations (1)–(3) [31]:

mcb = m0
cb −

Scb
SCNT

× mCNT , (1)
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mCNT =

mrub
2ρrub · dCNT · SCNT

− m0
cb ·

Scb
SCNT

1 − (
Scb

SCNT
)2

(2)

mcb+CNT = m0
cb −

Scb
SCNT

× mCNT + mCNT (3)

where mcb is the carbon black content in parts per hundred rubber; Scb is the carbon black
specific surface area; SCNT is the specific surface area of CNT; mCNT is the CNT content in
parts per hundred rubber; m0

cb is the carbon black content in parts per hundred rubber
in the original optimized composition of the rubber; and mrub and ρrub are the mass and
density of rubber, respectively.
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Figure 1. (a) TEM image of CNTs; SEM images: (b) agglomerations of CNTs, (c) carbon black, (d) 
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Table 1. Composition of the rubber compound.

Material
Title

NBR
3365

Zink
Oxide

Stearic
Acid 1801

Antioxidant
4010NA

Releasing
Agent 935P

Carbon
Black N550

Plasticizer

DOP S CZ TMTD

Content, phr 100 5 1.5 2 2 80 10 0.5 1.5 2

The suspensions were then further sonicated using an Ultrasonic Disperser-M900T,
dried to a constant weight, and dispersed in the mixer (Figure 1d). According to [47], such
pre-mixing of fillers can enhance the dispersion within elastomer compositions, ultimately
leading to improved material characteristics.

The composition of the initial rubber system is presented in Table 1. The technological
process of rubber production is described in detail in [31] and was carried out using
equipment from the TKW Rubber Taishun Seal factory (Ningbo, China) [44]. For the
calculation of the expected optimal CNT content, NBR 3365 rubber with a density of
0.915 g/cm3 was used. The CNTs had a specific surface area of 230 m2/g and a diameter
of 15 nm. The specific surface area of N550 carbon black was considered at values of 40.0,
42.0, and 44.0 m2/g.

For a carbon black content of 80 phr (parts per hundred rubber), the calculated CNT
content range was 3.6, 2.4, 1.2, 0.6, 0.4, 0.3, 0.2, and 0.1 phr. In terms of the entire rubber
compound, this corresponded to approximately half these values per 100 parts of the total
system. In this study, eight series of samples with different CNT contents were analyzed
(Table 2).

Table 2. Correlation of CNT content and curing characteristics: scorch time t10, optimum cure time
tc90, minimum torque ML, maximum torque MH, and curing rate index Rv.

Sample Content CNTs, phr ϕCNT, Volume Fraction t10, s tc90, s ML, dN·m MH, dN·m Rv, s−1

0 0 0 32 68 2.44 18.19 2.78
1 0.1 0.00035 32 68 2.53 19.78 2.78
2 0.2 0.00069 30 60 2.68 19.82 3.33
3 0.3 0.00104 31 62 2.47 19.18 3.22
4 0.4 0.0014 32 61 2.55 20.03 3.45
5 0.6 0.0021 42 106 2.93 22.85 1.56
6 1.2 0.0041 45 104 3.1 24.86 1.7
7 2.4 0.0082 43 101 3.14 23.47 1.72
8 3.6 0.0123 43 100 3.8 24.9 1.75

The curing characteristics were measured experimentally using a GB/T16584 (MN-4010B)
(GOTECH Testing Machines Co., Ltd., Dongguan, China) [44].

The curing parameters of the obtained samples were as follows:
ts1 (min)—scorch time;
tc90 (min)—optimum cure time;
ML (dN·m)—minimum torque;
MH (dN·m)—maximum torque;
Rv (min−1)—cure rate index, defined as

Rv =
100

(tc90 − ts1)
.

The density of the samples was measured using a Density Tester AKD-310A (Yangzhou
Aikeide Instrument Co., Ltd., Yangzhou, China), with a measurement error of 2%.

The hardness of the samples was determined using Shore hardness testing, in accor-
dance with ISO 7619-1:2010, and the measurements were conducted at a certified testing
facility in China [44].
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The structure of multiwall CNTs was analyzed using a JEM-2100F (JEOL, Ltd., Tokyo,
Japan) 200 kV FE (field emission) analytical electron microscope with 1 Å resolution
(Figure 1a). The morphology and distribution of CNTs, carbon black, and carbon black–
CNT systems (Figure 1b–d) were analyzed on a Hitachi S-4800 high-resolution scanning
electron microscope (Hitachi High-Technologies Corporation, Tokyo, Japan; resolution of
2.0 nm at 1 kV for low-voltage applications). The cross-sectional morphology of the rubber
compound (Figure 1e,f) was studied using a Tescan Mira 3 electron microscope (Tescan,
Brno, Czech Republic) equipped with a high-resolution Schottky field-emission emitter
(resolution 1.2 nm at 30 kV).

To investigate the electrophysical and mechanical characteristics, samples of varying
geometries and sizes were fabricated.

The dielectric properties in the microwave range were measured on samples with
dimensions of 23 mm × 10 mm × 5 mm.

For low-frequency measurements, samples ranging in size from 5 mm × 5 mm × 5 mm
to 20 mm × 20 mm × 5 mm were used to ensure the appropriate sensitivity of the RLC
Meter 880 BK PRECISION, which operates at five frequencies: 0.1, 0.12, 1, 10, and 100 kHz.

The real (ε′) and imaginary (ε′′) components of the complex dielectric permittivity
were measured at 10 GHz using the interferometer (RFK 2–18, for measuring the phase
differences) and the standing wave meter (R2-60) via an electrodeless method on samples
of 23 mm × 10 mm × 5 mm [14].

Graphite electrodes were used for electrical conductivity measurements with an ex-
perimental error not exceeding 5%.

Samples for mechanical tests were prepared in the dumbbell shape according to
ISO 37:2017 and the measurements were conducted at a certified testing facility in China [44].
The tensile test was conducted at room temperature (26 ◦C) using an electro-universal testing
machine AI-7000-MT (GOTECH Testing Machines Co., Ltd., Dongguan, China).

Figure 2 illustrates the measurement directions for both electrophysical and mechani-
cal properties.
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3. Results and Discussion
3.1. SEM Analysis

The morphology of the synthesized pure CNTs was visualized using TEM and SEM
microscopes, as shown in Figures 1a and 1b, respectively. The nanotubes observed are
homogeneous, with a diameter of approximately 15 nm, which is clearly visible in the TEM
image (Figure 1a). Importantly, the image in Figure 1a shows tubes with smooth surfaces
and no apparent defects. Figure 1b demonstrates that the MWCNTs exist as aggregates
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with distinct long tubular structures. As observed in Figure 1c, carbon black appears as
typical assembled spherical particles, with a size of less than 150 nm.

The SEM images of the nanocomposites consisting of carbon black and carbon nan-
otubes show the decoration of the carbon black surface (Figure 1d).

Furthermore, the SEM images of the cross-sectional view of the rubber compound
(Figure 1e,f) show a homogeneous distribution of CNTs in the rubber, with no significant
morphological differences between the synthesized Sample N5 and Sample N8, other than
the CNT concentrations (0.6 and 3.6, respectively, as shown in Table 2).

3.2. Curing Process

The influence of filler content on the vulcanization process of rubber compounds
was evaluated by analyzing the vulcanization characteristics, including scorch time (ts1),
optimum cure time (tc90), cure rate index (Rv), minimum torque (ML), and maximum torque
(MH), as presented in Table 2.

As demonstrated in Table 2, samples with higher CNT concentrations exhibit a pro-
longed scorch time, vulcanization (cure) time, and both maximum and minimum torques.
Consequently, the cure rate index for these samples is lower.

The shortest scorch time and optimum cure time were observed in the initial samples
and those with lower CNT content, which also exhibited a higher cure rate index (Table 2).
This indicates that the curing process of materials with a lower CNT content is faster,
meaning that a small addition of CNTs can accelerate the vulcanization process. The
observed acceleration can be attributed to the enhanced thermal conductivity of the CNT-
reinforced rubber matrix, which improves heat transfer throughout the composite, leading
to faster cross-linking reactions. As shown in Table 2, the addition of CNTs resulted in an
increase in both minimum and maximum torque. The minimum torque is associated with
the viscosity of the rubber compounds prior to vulcanization, clearly indicating higher CNT
loading compared to the rubber matrix, a trend also observed in previous studies [6,28,48].
The maximum torque corresponds to the viscosity of the cured rubber compound, which
is directly related to the cross-link density. Both CB and CNTs exhibit high compatibility
with the rubber matrix, forming strong interfacial adhesion between the matrix and the
carbon fillers. According to [6], the thin rubber layer at the rubber–filler interface is strongly
bound to the fillers through physical adsorption or chemisorption, behaving like a glassy-
state polymer. This phenomenon significantly enhances both the strength and density of
cross-links [6,28,48].

3.3. Electrical Properties

The results of the electrical conductivity (σ) and the real component of the complex
dielectric permittivity (ε′) measurements are presented in Figure 3. As observed, both
parameters exhibit a nonlinear dependence on CNT content, which can be attributed to the
percolation transition phenomenon.

The analysis of the obtained results from the perspective of percolation theory accord-
ing to Equations (4) and (5) [49,50] was carried out:

σ = σi(ϕ − ϕc)
t, at ϕ > ϕc, (4)

ε′ = ε′ i(ϕc − ϕ)−v, at 0 < ϕ < ϕc, (5)

where σi and ε′i are the electrical conductivity and dielectric permittivity of the filler; ϕ is
the volume content; ϕc is the content value corresponding to the percolation threshold; t
and v are power factors; and t is the critical conductivity index, which mainly depends
on the topological dimension of the system and does not depend on the structure of the
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particles forming the clusters and their interaction (for a three-dimensional system, the
theoretical value of t is in the range from 1.6 to 2.06 [50–52]).
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Figure 3. Dependence of electrical conductivity (a) and dielectric permittivity (b) at 100 Hz on the content
of CNTs in three perpendicular directions of measurement: Curve 1—in the direction of calendering;
Curve 2—perpendicularly, in the same plane; Curve 3—perpendicular to the calendering plane.

The percolation threshold is approximately 0.0009 in volume fraction for all directions
of electrical conductivity measurement. As MWCNTs are incorporated into the rubber
matrix, an increase in electrical conductivity is observed across the entire range of MWCNT
concentrations studied [36,48,53,54]. Fluctuations within the margin of experimental error
may occur before reaching the percolation threshold. Below this threshold, electrical
conductivity increases with frequency due to the hopping conduction mechanism [55,56].
The frequency dependence of the real component of the specific electrical conductivity is
described by the following relation:

σ(ω) = σdc + Aωn, (6)

where A and n are parameters that depend on temperature and composite composition. In
similar composite systems, the value of n is 0.8.

For MWCNT concentrations above the percolation threshold, electrical conductivity
becomes independent of frequency.

A significant difference in electrical conductivity and dielectric permittivity is ob-
served in three perpendicular directions across the range of CNT concentrations from 0 to
0.007 in volume fraction. The highest values of both electrical conductivity and dielectric
permittivity are observed in the calendering directions, while significantly lower values are
seen in the perpendicular direction (Figure 4).

The components of the complex dielectric permittivity exhibit high values, indicating
a significant level of interaction between the system components and a uniform distribution
of the conductive component within the composite. This behavior is associated with
the orientation of polymer and filler molecules, including CNTs [48], in the direction of
movement, as well as the disruption of the cluster structure in the transverse direction.
Although the calculated percolation threshold values for the considered system differ only
slightly, the maxima of the dielectric permittivity observed in the concentration-dependent
curves can be attributed to the formation of the largest interfacial area between the CNTs
and the polymer binder. A noteworthy result is the large difference in the real and imaginary
components of the dielectric permittivity, depending on the direction of measurement, as
shown in Figure 5.
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entire composite.
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3.4. Physical-Mechanics Characteristics

Improving the physical and mechanical properties of rubber composites has always
been an important task for researchers. As part of this work, tensile strength, density, and
hardness were measured.

Figure 6 shows the ratio of the tensile strength limit to the strength limit of the sample
without the filler, relative to the CNT content measured in different directions. To measure
the strength limit perpendicular to the calendering plane, a sample approximately 8 mm
thick was prepared.
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Maximum values are observed in all three directions. In these cases, the volume
fraction of CNT concentrations is approximately 0.0007, which also correlates with the per-
colation threshold data (0.0009). Additionally, these experimental values are in agreement
with the expected CNT content (0.3 phr, Table 2) for maximum reinforcement efficiency cal-
culated according to the proposed model. Analyzing the results shown in Figures 3 and 6,
it can be concluded that there is a relationship between the CNT content at the maximum
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tensile strength and percolation threshold. By lowering the percolation threshold in poly-
mer systems filled with CNTs, it is possible to achieve high levels of electrical conductivity
and dielectric losses in the ultra-high-frequency range of electromagnetic radiation with a
lower CNT content, while simultaneously attaining higher strength parameters [14].

It should also be noted that the addition of a small amount of CNTs to rubber slightly
increases its density r and has minimal impact on the hardness of the compound (Table 3).

Table 3. Density and hardness (Shore A) for rubber compounds.

Content CNTs ϕCNT, v.f. 0 0.00035 0.00069 0.00104 0.0014 0.0021 0.0041 0.0082 0.0123

Density ρ, g/cm3 1.250 1.251 1.252 1.259 1.260 1.265 1.270 1.270 1.265

Hardness, Shor A 77 77 77 78 78 76 77 78 80

The primary objective was to compare the properties of mass-produced rubber with
rubber to which a small amount of MWCNTs was added. It was found that the mechanical
characteristics of the rubber improve within a narrow range of MWCNT concentrations.
The concentration of MWCNTs at which the mechanical properties begin to decrease is
approximately 0.001, which is consistent with the literature data [14,31,57–63].

4. Conclusions
Elastomer compositions based on NBR 3365 rubber with technical carbon black N550

of a standard formulation, combined with a specially calculated amount of CNTs, were
obtained. It was confirmed that the relationship between the maximum electrical and
mechanical properties occurs within a narrow range of CNT concentrations.

Anisotropic features are evident in the electrical properties of the elastomeric com-
posites, with a noticeable difference between the properties in the calendering direction
and those in the perpendicular directions. Specifically, electrical conductivity (σ) and di-
electric permittivity (ε) exhibit significantly higher values in the calendering direction due
to the orientation of the polymer and CNT molecules during processing. This directional
dependence emphasizes the importance of the processing technique in determining the
final properties of the composite material.

However, no such anisotropy is observed in the mechanical properties of the composites
in different directions, suggesting that the incorporation of CNTs does not significantly affect
the structural integrity of the elastomer compositions. Mechanical performance remains stable
despite the directional dependence of electrical characteristics. The calculated percolation
thresholds for the CNTs within the composite show minimal variation across directions,
allowing for the prediction of the impact of CNT addition on conductivity and dielectric
properties with high accuracy. By adjusting the CNT concentration and processing conditions,
it is possible to optimize the balance between the electrical and mechanical performance of
the rubber, making it suitable for various applications where both properties are critical.

Furthermore, understanding the anisotropic behavior of the composites can be leveraged
to design products that meet specific requirements for conductivity and mechanical strength,
making these materials highly versatile and valuable in a wide range of applications.
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