Development of Controllable Perfusion Culture Scaffolds Using Multi-Channel Collagen Gels: Effects of Gelation Conditions on Channel Formation and Media Supply
<p>Preparation of multi-channel collagen gels (MCCGs).</p> "> Figure 2
<p>The process of preparation of perfusion device covered with multi-channel collagen gel (MCCG).</p> "> Figure 3
<p>Schematic representation of the perfusion system using MCCG-covered hollow fiber.</p> "> Figure 4
<p>Microscope images showing typical short-axis cross-sections of MCCGs prepared with different concentrations of carbonate buffer: (<b>a</b>) 12.5 mM, (<b>b</b>) 25 mM, and (<b>c</b>) 50 mM. Scale bar: 1 mm. (<b>d</b>) Dependence of the channel diameter (closed symbols) and channel area fraction (open symbols) on the carbonate buffer concentration. The symbols ×, Δ, and □ represent 12.5, 25, and 50 mM samples, respectively. The arrows in the graph indicate the corresponding axis. Error bars indicate standard deviation (<span class="html-italic">n</span> = 6).</p> "> Figure 5
<p>Flow rate-dependent permeate behavior of MCCG devices formed with different carbonate buffer concentrations. (<b>a</b>–<b>c</b>) Time course of cumulative permeate volume at different injection rates ((<b>a</b>): 2.5 mL/h, (<b>b</b>): 5.0 mL/h, (<b>c</b>): 10.0 mL/h). MCCG devices formed with 12.5 mM (×), 25 mM (∆), and 50 mM (☐) carbonate buffers were compared with hollow fiber controls without an MCCG covering (<tt>○</tt>). (<b>d</b>) Relationship between injection flow rate and permeate rate for each device, where permeate rates were calculated from the maximum slopes in (<b>a</b>–<b>c</b>).</p> "> Figure 6
<p>(<b>a</b>) Schematic representation of the MCCG-covered hollow fiber structure, highlighting the gel area (g) and microporous cellulose (MC) area, along with the associated structural parameters (micropore diameters dg, contact angles <span class="html-italic">θ</span>g and <span class="html-italic">θ</span><sub>MC</sub>). The diagram illustrates the mechanisms of capillary action and dynamic pressure contributing to the total permeate flow velocity (<span class="html-italic">v</span><sub>total,g</sub> and <span class="html-italic">v</span><sub>total,MC</sub>). (<b>b</b>) Fluid permeate behavior at low injection velocities (<span class="html-italic">X</span> ≪ 5.0 mL/h), where capillary-driven flow dominates, especially in gel regions with smaller pore diameters (<span class="html-italic">d</span><sub>g</sub>) and lower contact angles (<span class="html-italic">θ</span><sub>g</sub>). (<b>c</b>) Permeate behavior at high injection velocities (<span class="html-italic">X</span> > 5.0 mL/h), where dynamic pressure effects (<span class="html-italic">P</span><sub>dyn</sub> ∝ <span class="html-italic">X</span><sup>2</sup>) become significant, leading to enhanced flow in MC regions with larger pore diameters (<span class="html-italic">d</span><sub>MC</sub>) and higher contact angles (<span class="html-italic">θ</span><sub>MC</sub>).</p> "> Figure 7
<p>Cell proliferation was assessed using the CCK-8 assay. Values represent means from five independent experiments comparing MCCGs prepared with different carbonate buffer concentrations at 5, 24, and 168 h. Statistically significant differences between groups (<span class="html-italic">p</span> < 0.05) were determined by one-way ANOVA followed by Tukey’s post hoc test and are indicated by asterisks (*).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Multi-Channel Collagen Gels (MCCGs)
2.3. Characterization of Channel Structure
2.4. Fabrication of Perfusion Device
2.5. Perfusion System Model Setup and Permeation Behavior Measurement
2.6. Cell Proliferation Assessment
3. Results and Discussion
3.1. Channel Structure of Multi-Channel Collagen Gels
3.2. Permeation Behavior from Perfusion System Model
3.3. Theoretical Analysis of Permeation Rate Based on Capillary Phenomena and Dynamic Pressure
3.4. Cell Proliferation Rate
4. Conclusions
- Controllable structure formation through simple adjustment of buffer concentration.
- Cost-effective manufacturing process utilizing self-organization principles.
- Efficient nutrient delivery system combining capillary and pressure-driven transport.
- Optimal support for cell proliferation and growth.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elhattab, K.; Hefzy, M.S.; Hanf, Z.; Crosby, B.; Enders, A.; Smiczek, T.; Haghshenas, M.; Jahadakbar, A.; Elahinia, M. Biomechanics of Additively Manufactured Metallic Scaffolds—A Review. Materials 2021, 14, 6833. [Google Scholar] [CrossRef]
- Rezvani Ghomi, E.; Nourbakhsh, N.; Akbari Kenari, M.; Zare, M.; Ramakrishna, S. Collagen-based biomaterials for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1986–1999. [Google Scholar] [CrossRef] [PubMed]
- Maaruf, N.A.; Jusoh, N. Angiogenic and Osteogenic Properties of Fibrin in Bone Tissue Engineering. Malays. J. Med. Health Sci. 2022, 18, 85–94. [Google Scholar] [CrossRef]
- Asadi, N.; Del Bakhshayesh, A.R.; Davaran, S.; Akbarzadeh, A. Common biocompatible polymeric materials for tissue engineering and regenerative medicine. Mater. Chem. Phys. 2020, 242, 122528. [Google Scholar] [CrossRef]
- Wan, X.; Zheng, D.; Yao, H.; Fu, S.; Wei, Z.; Wang, Z.; Xie, M. An Extracellular Matrix-Mimicking, Bilayered, Heterogeneous, Porous, Nanofibrous Scaffold for Anterior Urethroplasty in a Rabbit Model. Biomed. Mater. 2020, 15, 065008. [Google Scholar] [CrossRef]
- Shin, H.; Jo, S.; Mikos, A.G. Biomimetic materials for tissue engineering. Biomaterials 2003, 24, 4353–4364. [Google Scholar] [CrossRef]
- Allu, I.; Sahi, A.K.; Koppadi, M.; Gundu, S.; Sionkowska, A. Decellularization techniques for tissue engineering: Towards replicating native extracellular matrix architecture in liver regeneration. J. Funct. Biomater. 2023, 14, 518. [Google Scholar] [CrossRef] [PubMed]
- Basmaji, P.; De Olyveira, G.M.; Costa, L.M.M. Nanoskin extracellular matrix modified with hyaluronic acid and chondroitin sulfate for regenerative medicine applications. J. Bionanosci. 2015, 9, 306–310. [Google Scholar] [CrossRef]
- Ross, J.M. Cell-extracellular matrix interactions. In Frontiers in Tissue Engineering; Elsevier: Amsterdam, The Netherlands, 1998; pp. 15–27. [Google Scholar]
- Sasikumar, S.; Chameettachal, S.; Cromer, B.; Pati, F.; Kingshott, P. Decellularized extracellular matrix hydrogels—Cell behavior as a function of matrix stiffness. Curr. Opin. Biomed. Eng. 2019, 10, 123–133. [Google Scholar] [CrossRef]
- Amado, S.; Rodrigues, J.F.; Luís, A.L.; Armada-da-Silva, P.; Vieira, M.; Gärtner, A.; Simões, M.J.; Veloso, A.; Fornaro, M.; Raimondo, S.; et al. Effects of Collagen Membranes Enriched With in Vitro-Differentiated N1e-115 Cells on Rat Sciatic Nerve Regeneration After End-to-End Repair. J. Neuroeng. Rehabil. 2010, 7, 7. [Google Scholar] [CrossRef]
- Muangsanit, P.; Day, A.; Dimiou, S.; Ataç, A.F.; Kayal, C.; Park, H.; Nazhat, S.N.; Phillips, J.B. Rapidly Formed Stable and Aligned Dense Collagen Gels Seeded With Schwann Cells Support Peripheral Nerve Regeneration. J. Neural Eng. 2020, 17, 046036. [Google Scholar] [CrossRef]
- Ezra, M.; Bushman, J.; Shreiber, D.I.; Schachner, M.; Kohn, J. Porous and Nonporous Nerve Conduits: The Effects of a Hydrogel Luminal Filler With and Without a Neurite-Promoting Moiety. Tissue Eng. Part A 2016, 22, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Bettini, S.; Bonfrate, V.; Syrgiannis, Z.; Sannino, A.; Salvatore, L.; Madaghiele, M.; Valli, L.; Giancane, G. Biocompatible Collagen Paramagnetic Scaffold for Controlled Drug Release. Biomacromolecules 2015, 16, 2599–2608. [Google Scholar] [CrossRef]
- Murphy, C.M.; Schindeler, A.; Gleeson, J.P.; Yu, N.; Cantrill, L.C.; Mikulec, K.; Peacock, L.; O’Brien, F.J.; Little, D. A Collagen–hydroxyapatite Scaffold Allows for Binding and Co-Delivery of Recombinant Bone Morphogenetic Proteins and Bisphosphonates. Acta Biomater. 2014, 10, 2250–2258. [Google Scholar] [CrossRef]
- Trousdale, W.H.; Salib, C.G.; Reina, N.; Lewallen, E.A.; Viste, A.; Berry, D.J.; Morrey, M.E.; Sánchez-Sotelo, J.; Wijnen, A.J.v.; Abdel, M.P. A Drug Eluting Scaffold for the Treatment of Arthrofibrosis. Tissue Eng. Part C Methods 2018, 24, 514–523. [Google Scholar] [CrossRef]
- Gilmartin, D.J.; Soon, A.; Thrasivoulou, C.; Phillips, A.R.J.; Jayasinghe, S.N.; Becker, D.L. Sustained Release of Cx43 Antisense Oligodeoxynucleotides From Coated Collagen Scaffolds Promotes Wound Healing. Adv. Healthc. Mater. 2016, 5, 1786–1799. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Lv, Y. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers 2016, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Singla, A.; Lee, Y. Biomedical applications of collagen. Int. J. Pharm. 2001, 221, 1–22. [Google Scholar] [CrossRef]
- Ma, L.; Wang, X.; Zhao, N.; Zhu, Y.; Qiu, Z.; Li, Q.; Ye, Z.; Lin, Z.; Li, X.; Zeng, X.; et al. Integrating 3D Printing and Biomimetic Mineralization for Personalized Enhanced Osteogenesis, Angiogenesis, and Osteointegration. Acs Appl. Mater. Interfaces 2018, 10, 42146–42154. [Google Scholar] [CrossRef]
- Hsieh, S.; Chen, H.J.; Hsu, S.h.; Yang, Y.C.; Tang, C.; Chu, M.; Lin, P.; Fu, R.H.; Kung, M.-L.; Chen, Y.W.; et al. Prominent Vascularization Capacity of Mesenchymal Stem Cells in Collagen–Gold Nanocomposites. Acs Appl. Mater. Interfaces 2016, 8, 28982–29000. [Google Scholar] [CrossRef] [PubMed]
- Coradin, T.; Law, T.; Wang, K.; Trichet, L. Type I Collagen-Fibrin Mixed Hydrogels: Preparation, Properties and Biomedical Applications. Gels 2020, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Zhang, D.; Macedo, M.H.; Cui, W.; Sarmento, B.; Shen, G. Advanced Collagen-Based Biomaterials for Regenerative Biomedicine. Adv. Funct. Mater. 2018, 29, 1804943. [Google Scholar] [CrossRef]
- Chan, E.C.; Kuo, S.-M.; Kong, A.M.; Morrison, W.A.; Dusting, G.J.; Mitchell, G.M.; Lim, S.Y.; Liu, G.S. Three Dimensional Collagen Scaffold Promotes Intrinsic Vascularisation for Tissue Engineering Applications. PLoS ONE 2016, 11, e0149799. [Google Scholar] [CrossRef]
- Xie, Y.; Sutrisno, L.; Yoshitomi, T.; Naoki, K.; Yang, Y.; Chen, G. Three-Dimensional Culture and Chondrogenic Differentiation of Mesenchymal Stem Cells in Interconnected Collagen Scaffolds. Biomed. Mater. 2022, 17, 034103. [Google Scholar] [CrossRef]
- Ahn, S.-H.; Lee, S.; Cho, Y.-S.; Chun, W.; Kim, G. Fabrication of Three-Dimensional Collagen Scaffold Using an Inverse Mould-Leaching Process. Bioprocess Biosyst. Eng. 2011, 34, 903–911. [Google Scholar] [CrossRef]
- Rampichová, M.; Kuželová, E.K.á.; Filová, E.; Chvojka, J.; Šafka, J.; Pelcl, M.; Daňková, J.; Prosecká, E.; Buzgo, M.; Plencner, M.; et al. Composite 3D Printed Scaffold With Structured Electrospun Nanofibers Promotes Chondrocyte Adhesion and Infiltration. Cell Adhes. Migr. 2017, 12, 271–285. [Google Scholar] [CrossRef]
- Fakhri, N.; Khalili, A.; Sachlos, T.; Rezai, P. Fabrication of Porous Collagen Scaffolds Containing Embedded Channels with Collagen Membrane Linings. Micromachines 2024, 15, 1031. [Google Scholar] [CrossRef]
- Ali, D. Effect of scaffold architecture on cell seeding efficiency: A discrete phase model CFD analysis. Comput. Biol. Med. 2019, 109, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Truscello, S.; Kerckhofs, G.; Van Bael, S.; Pyka, G.; Schrooten, J.; Van Oosterwyck, H. Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study. Acta Biomater. 2011, 8, 1648–1658. [Google Scholar] [CrossRef]
- Guo, G.; Ma, Y.; Guo, Y.; Zhang, C.; Guo, X.; Tu, J.; Yu, A.C.H.; Wu, J.; Zhang, D. Enhanced porosity and permeability of three-dimensional alginate scaffolds via acoustic microstreaming induced by low-intensity pulsed ultrasound. Ultrason. Sonochem. 2017, 37, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Schmid, J.; Schwarz, S.; Meier-Staude, R.; Sudhop, S.; Clausen-Schaumann, H.; Schieker, M.; Huber, R. A Perfusion Bioreactor System for Cell Seeding and Oxygen-Controlled Cultivation of Three-Dimensional Cell Cultures. Tissue Eng. Part C Methods 2018, 24, 585–595. [Google Scholar] [CrossRef]
- Egger, D.; Spitz, S.; Fischer, M.; Handschuh, S.; Glösmann, M.; Friemert, B.; Egerbacher, M.; Kasper, C. Application of a Parallelizable Perfusion Bioreactor for Physiologic 3D Cell Culture. Cells Tissues Organs 2017, 203, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.F.; Wu, M.-H.; Hsu, C.-W.; Chen, Y.-D. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Biosens. Bioelectron. 2013, 51, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Tostoes, R.; Leite, S.B.; Miranda, J.P.; Sousa, M.F.Q.; Wang, D.I.C.; Carrondo, M.J.T.; Alves, P.M. Perfusion of 3D Encapsulated Hepatocytes—A Synergistic Effect Enhancing Long-term Functionality in Bioreactors. Biotechnol. Bioeng. 2010, 108, 41–49. [Google Scholar] [CrossRef]
- Hegde, M.; Jindal, R.; Bhushan, A.; Bale, S.S.; McCarty, W.J.; Golberg, I.; Usta, O.B.; Yarmush, M.L. Dynamic Interplay of Flow and Collagen Stabilizes Primary Hepatocytes Culture in a Microfluidic Platform. Lab A Chip 2014, 14, 2033–2039. [Google Scholar] [CrossRef]
- Wang, B.; Patnaik, S.S.; Brazile, B.; Butler, J.L.; Claude, A.; Zhang, G.; Guan, J.; Hong, Y.; Liao, J. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs. Crit. Rev. Biomed. Eng. 2015, 43, 455–471. [Google Scholar] [CrossRef] [PubMed]
- Maidhof, R.; Tandon, N.; Lee, E.J.; Luo, J.; Duan, Y.; Yeager, K.; Konofagou, E.E.; Vunjak-Novakovic, G. Biomimetic Perfusion and Electrical Stimulation Applied in Concert Improved the Assembly of Engineered Cardiac Tissue. J. Tissue Eng. Regen. Med. 2011, 6, e12–e23. [Google Scholar] [CrossRef]
- Söhling, N.; Neijhoft, J.; Nienhaus, V.; Acker, V.; Harbig, J.; Menz, F.; Ochs, J.; Verboket, R.D.; Ritz, U.; Blaeser, A.; et al. 3d-Printing of Hierarchically Designed and Osteoconductive Bone Tissue Engineering Scaffolds. Materials 2020, 13, 1836. [Google Scholar] [CrossRef]
- Zulkifli, M.Z.A.; Nordin, D.; Shaari, N.; Kamarudin, S.K. Overview of Electrospinning for Tissue Engineering Applications. Polymers 2023, 15, 2418. [Google Scholar] [CrossRef]
- Hejazi, F.; Mirzadeh, H.; Contessi, N.; Tanzi, M.C.; Farè, S. Novel Class of Collector in Electrospinning Device for the Fabrication of 3D Nanofibrous Structure for Large Defect Load-bearing Tissue Engineering Application. J. Biomed. Mater. Res. Part A 2017, 105, 1535–1548. [Google Scholar] [CrossRef] [PubMed]
- Wunner, F.M.; Wille, M.L.; Noonan, T.G.; Bas, O.; Dalton, P.D.; Hutmacher, D.W. Melt Electrospinning Writing of Highly Ordered Large Volume Scaffold Architectures. Adv. Mater. 2018, 30, 1706570. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Rubfiaro, A.S.; Nautiyal, P.; Brooks, R.R.; Dickerson, D.; He, J.; Agarwal, A. Extrusion 3D Printing of Porous Silicone Architectures for Engineering Human Cardiomyocyte-Infused Patches Mimicking Adult Heart Stiffness. ACS Appl. Bio Mater. 2020, 3, 5865–5871. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, K.; Mizutani, T.; Machino, H.; Yahata, S.; Fukui, A.; Sasaki, N. Application of multichannel collagen gels in construction of epithelial lumen-like engineered tissues. ACS Biomater. Sci. Eng. 2015, 1, 539–548. [Google Scholar] [CrossRef]
- Koh, I.; Furusawa, K.; Haga, H. Anisotropic multi-channel collagen gel (MCCG) guides the growth direction of the neurite-like processes of PC12 cells. Sci. Rep. 2018, 8, 13901. [Google Scholar] [CrossRef]
- Maki, Y.; Furusawa, K.; Yamamoto, T.; Dobashi, T. Structure formation in biopolymer gels induced by diffusion of gelling factors. J. Biorheol. 2018, 32, 27–38. [Google Scholar] [CrossRef]
- Yonemoto, J.; Maki, Y.; Koh, I.; Furusawa, K.; Annaka, M. Formation of multi-channel collagen gels investigated using particle tracking microrheology. Biomacromolecules 2021, 22, 3819–3826. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, Y.; Haraguchi, R.; Aoki, S.; Oishi, Y.; Narita, T. Effect of UV Irradiation of Pre-Gel Solutions on the Formation of Collagen Gel Tubes. Gels 2023, 9, 458. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, Y.; Haraguchi, R.; Nakao, R.; Aoki, S.; Oishi, Y.; Narita, T. One-Pot Preparation of Collagen Tubes Using Diffusing Gelation. ACS Omega 2022, 7, 22872–22878. [Google Scholar] [CrossRef]
- Li, K.; Zhang, D.; Bian, H.; Meng, C.; Yang, Y. Criteria for applying the Lucas-Washburn law. Sci. Rep. 2015, 5, 14085. [Google Scholar] [CrossRef] [PubMed]
- Washburn, E.W. The dynamics of capillary flow. Phys. Rev. 1921, 17, 273. [Google Scholar] [CrossRef]
- Liou, W.W.; Peng, Y.; Parker, P.E. Analytical Modeling of Capillary Flow in Tubes of Nonuniform Cross Section. J. Colloid Interface Sci. 2009, 333, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Støverud, K.H.; Langtangen, H.P.; Haughton, V.; Mardal, K.A. CSF pressure and velocity in obstructions of the subarachnoid spaces. Neuroradiol. J. 2013, 26, 218–226. [Google Scholar] [CrossRef]
- Schmidt, E.; Ros, M.; Moyse, E.; Lorthois, S.; Swider, P. Bernoulli’s principle applied to brain fluids: Intracranial pressure does not drive cerebral perfusion or CSF flow. In Intracranial Pressure and Brain Monitoring XV; Springer: Cham, Switzerland, 2016; pp. 107–111. [Google Scholar]
- Hünnekens, B.; Peters, F.; Avramidis, G.; Krause, A.; Militz, H.; Viöl, W. Plasma Treatment of Wood–polymer Composites: A Comparison of Three Different Discharge Types and Their Effect on Surface Properties. J. Appl. Polym. Sci. 2016, 133, 43376. [Google Scholar] [CrossRef]
- Pires, T.; Santos, J.; Ruben, R.B.; Gouveia, B.P.; Castro, A.P.G.; Fernandes, P.R. Numerical-experimental analysis of the permeability-porosity relationship in triply periodic minimal surfaces scaffolds. J. Biomech. 2021, 117, 110263. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arishima, M.; Haraguchi, R.; Kawakita, H.; Aoki, S.; Oishi, Y.; Narita, T. Development of Controllable Perfusion Culture Scaffolds Using Multi-Channel Collagen Gels: Effects of Gelation Conditions on Channel Formation and Media Supply. Polymers 2025, 17, 287. https://doi.org/10.3390/polym17030287
Arishima M, Haraguchi R, Kawakita H, Aoki S, Oishi Y, Narita T. Development of Controllable Perfusion Culture Scaffolds Using Multi-Channel Collagen Gels: Effects of Gelation Conditions on Channel Formation and Media Supply. Polymers. 2025; 17(3):287. https://doi.org/10.3390/polym17030287
Chicago/Turabian StyleArishima, Mareni, Ryota Haraguchi, Hidetaka Kawakita, Shigehisa Aoki, Yushi Oishi, and Takayuki Narita. 2025. "Development of Controllable Perfusion Culture Scaffolds Using Multi-Channel Collagen Gels: Effects of Gelation Conditions on Channel Formation and Media Supply" Polymers 17, no. 3: 287. https://doi.org/10.3390/polym17030287
APA StyleArishima, M., Haraguchi, R., Kawakita, H., Aoki, S., Oishi, Y., & Narita, T. (2025). Development of Controllable Perfusion Culture Scaffolds Using Multi-Channel Collagen Gels: Effects of Gelation Conditions on Channel Formation and Media Supply. Polymers, 17(3), 287. https://doi.org/10.3390/polym17030287