Bending Behavior of a Wrought Magnesium Alloy Investigated by the In Situ Pinhole Neutron Diffraction Method
<p>(<b>a</b>,<b>b</b>) The conventional and the pinhole neutron diffraction (PIND) setup respectively; (<b>c</b>) The schematics of the stainless-tungsten layered sample and diffraction pattern from PIND measurement; (<b>d</b>) The analytical results of the stainless-tungsten layered sample for a vertical single channel slit configuration.</p> "> Figure 1 Cont.
<p>(<b>a</b>,<b>b</b>) The conventional and the pinhole neutron diffraction (PIND) setup respectively; (<b>c</b>) The schematics of the stainless-tungsten layered sample and diffraction pattern from PIND measurement; (<b>d</b>) The analytical results of the stainless-tungsten layered sample for a vertical single channel slit configuration.</p> "> Figure 2
<p>(<b>a</b>) The schematics of the high spatial resolution PIND method; (<b>b</b>) The neutron diffraction patterns before and after the bending test; (<b>c</b>) The schematics of the in situ four-point bending experiment using PIND method; (<b>d</b>) The schematics of traditional neutron diffraction mapping setup.</p> "> Figure 3
<p>(<b>a</b>,<b>b</b>) The diffraction peak intensity variations of (11.0) and (00.2) grain in the ε<sub>x</sub> direction during in situ loading-unloading, respectively; (<b>c</b>,<b>d</b>) The lattice strain evolution of (11.0) and (00.2) grains in the ε<sub>x</sub> and ε<sub>y</sub> directions, respectively.</p> "> Figure 4
<p>(<b>a</b>,<b>b</b>) The (11.0) peak intensity and lattice strain distributions in the ε<sub>x</sub> direction using the traditional neutron diffraction mapping method, respectively; (<b>c</b>,<b>d</b>) Comparison of the traditional neutron diffraction mapping and the PIND method for the (11.0) peak intensity and residual lattice strain, respectively.</p> ">
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Polmear, I.J. Magnesium alloys and applications. Mater. Sci. Technol. 1994, 10, 1–16. [Google Scholar] [CrossRef]
- Suh, B.C.; Shim, M.S.; Shin, K.S.; Kim, N.J. Current issues in magnesium sheet alloys: Where do we go from here? Scr. Mater. 2014, 84–85, 1–6. [Google Scholar] [CrossRef]
- Agnew, S.R.; Duygulu, O. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 2005, 21, 1161–1193. [Google Scholar] [CrossRef]
- Lou, X.Y.; Li, M.; Boger, R.K.; Agnew, S.R.; Wagoner, R.H. Hardening evolution of AZ31B Mg sheet. Int. J. Plast. 2007, 23, 44–86. [Google Scholar] [CrossRef]
- Proust, G.; Tome, C.N.; Jain, A.; Agnew, S.R. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int. J. Plast. 2009, 25, 861–880. [Google Scholar] [CrossRef]
- Muransky, O.; Carr, D.G.; Sittner, P.; Oliver, E.C. In situ neutron diffraction investigation of deformation twinning and pseudoelastic-like behaviour of extruded AZ31 magnesium alloy. Int. J. Plast. 2009, 25, 1107–1127. [Google Scholar] [CrossRef]
- Wu, L.; Agnew, S.R.; Brown, D.W.; Stoica, G.M.; Clausen, B.; Jain, A.; Fielden, D.E.; Liaw, P.K. Internal stress relaxation and load redistribution during the twinning-detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A. Acta Mater. 2008, 56, 3699–3707. [Google Scholar] [CrossRef]
- Wu, L.; Jain, A.; Brown, D.W.; Stoica, G.M.; Agnew, S.R.; Clausen, B.; Fielden, D.E.; Liaw, P.K. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A. Acta Mater. 2008, 56, 688–695. [Google Scholar] [CrossRef]
- Barnett, M.R. Twinning and the ductility of magnesium alloys Part I: “Tension” twins. Mater. Sci. Eng. A 2007, 464, 1–7. [Google Scholar] [CrossRef]
- Wu, W.; Chuang, C.-P.; Qiao, D.; Ren, Y.; An, K. Investigation of deformation twinning under complex stress states in a rolled magnesium alloy. J. Alloy. Comp. 2016, 683, 619–633. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Gao, Y.; Li, N.; Parish, C.M.; Liu, W.; Liaw, P.K.; An, K. Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys. Acta Mater. 2016, 121, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Lee, S.Y.; Paradowska, A.M.; Gao, Y.F.; Liaw, P.K. Twinning-detwinning behavior during fatigue-crack propagation in a wrought magnesium alloy AZ31B. Mater. Sci. Eng. A 2012, 556, 278–286. [Google Scholar] [CrossRef]
- Wu, W.; An, K.; Huang, L.; Lee, S.Y.; Liaw, P.K. Deformation dynamics study of a wrought magnesium alloy by real-time in situ neutron diffraction. Scr. Mater. 2013, 69, 358–361. [Google Scholar] [CrossRef]
- Wu, W.; Qiao, H.; An, K.; Guo, X.Q.; Wu, P.D.; Liaw, P.K. Investigation of deformation dynamics in a wrought magnesium alloy. Int. J. Plast. 2014, 62, 105–120. [Google Scholar] [CrossRef]
- Wu, W.; Liaw, P.K.; An, K. Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction. Acta Mater. 2015, 85, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; An, K. Understanding low-cycle fatigue life improvement mechanisms in a pre-twinned magnesium alloy. J. Alloy. Comp. 2016, 656, 539–550. [Google Scholar] [CrossRef]
- Agnew, S.R.; Mulay, R.P.; Polesak, F.J.; Calhoun, C.A.; Bhattacharyya, J.J.; Clausen, B. In situ neutron diffraction and polycrystal plasticity modeling of a Mg-Y-Nd-Zr alloy: Effects of precipitation on individual deformation mechanisms. Acta Mater. 2013, 61, 3769–3780. [Google Scholar] [CrossRef]
- Brown, D.W.; Agnew, S.R.; Bourke, M.A.M.; Holden, T.M.; Vogel, S.C.; Tome, C.N. Internal strain and texture evolution during deformation twinning in magnesium. Mater. Sci. Eng. A 2005, 399, 1–12. [Google Scholar] [CrossRef]
- Brown, D.W.; Jain, A.; Agnew, S.R.; Clausen, B. Twinning and detwinning during cyclic deformation of Mg alloy AZ31B. In Materials Science Forum; Chandra, T., Tsuzaki, K., Militzer, M., Ravindran, C., Eds.; Trans Tech Publications: Stafa-Zurich, Switzerland, 2007; Volume 539, pp. 3407–3413. [Google Scholar]
- Wu, L.; Agnew, S.R.; Ren, Y.; Brown, D.W.; Clausen, B.; Stoica, G.M.; Wenk, H.R.; Liaw, P.K. The effects of texture and extension twinning on the low-cycle fatigue behavior of a rolled magnesium alloy, AZ31B. Mater. Sci. Eng. A 2010, 527, 7057–7067. [Google Scholar] [CrossRef]
- Lee, S.Y.; Wang, H.; Gharghouri, M.A.; Nayyeri, G.; Woo, W.; Shin, E.; Wu, P.D.; Poole, W.J.; Wu, W.; An, K. Deformation behavior of solid-solution-strengthened Mg-9 wt% Al alloy: In situ neutron diffraction and elastic-viscoplastic self-consistent modeling. Acta Mater. 2014, 73, 139–148. [Google Scholar] [CrossRef]
- Huang, G.-S.; Zhang, H.; Gao, X.-Y.; Song, B.; Zhang, L. Forming limit of textured AZ31B magnesium alloy sheet at different temperatures. Trans. Nonferr. Met. Soc. China 2011, 21, 836–843. [Google Scholar] [CrossRef]
- Habibnejad-korayem, M.; Jain, M.K.; Mishra, R.K. Large deformation of magnesium sheet at room temperature by preform annealing, part II: “Bending”. Mater. Sci. Eng. A 2014, 619, 378–383. [Google Scholar] [CrossRef]
- Aslam, I.; Li, B.; McClelland, Z.; Horstemeyer, S.J.; Ma, Q.; Wang, P.T.; Horstemeyer, M.F. Three-point bending behavior of a ZEK100 Mg alloy at room temperature. Mater. Sci. Eng. A 2014, 590, 168–173. [Google Scholar] [CrossRef]
- Jin, L.; Dong, J.; Sun, J.; Luo, A.A. In-situ investigation on the microstructure evolution and plasticity of two magnesium alloys during three-point bending. Int. J. Plast. 2015, 72, 218–232. [Google Scholar] [CrossRef]
- An, K.; Skorpenske, H.D.; Stoica, A.D.; Ma, D.; Wang, X.L.; Cakmak, E. First In Situ Lattice Strains Measurements Under Load at VULCAN. Metall. Mater. Trans. A 2011, 42a, 95–99. [Google Scholar] [CrossRef]
- Sun, Y.; An, K.; Tang, F.; Hubbard, C.R.; Lu, Y.L.; Choo, H.; Liaw, P.K. Changes in lattice-strain profiles around a fatigue crack through the retardation period after overloading. Physica B 2006, 385, 633–635. [Google Scholar] [CrossRef]
- Woo, W.; Feng, Z.L.; Wang, X.L.; An, K.; Hubbard, C.R.; David, S.A.; Choo, H. In situ neutron diffraction measurement of transient temperature and stress fields in a thin plate. Appl. Phys. Lett. 2006, 88, 261903. [Google Scholar] [CrossRef]
- Woo, W.; Feng, Z.; Wang, X.L.; Brown, D.W.; An, B.K.; Choo, H.; Hubbard, C.R.; David, S.A. In situ neutron diffraction measurements of temperature and stresses during friction stir welding of 6061-T6 aluminium alloy. Sci. Technol. Weld. Joi. 2007, 12, 298–303. [Google Scholar] [CrossRef]
- Lee, S.Y.; Sun, Y.; An, K.; Choo, H.; Hubbard, C.R.; Liaw, P.K. Evolution of residual-strain distribution through an overload-induced retardation period during fatigue-crack growth. J. Appl. Phys. 2010, 107, 023517. [Google Scholar] [CrossRef]
- Benafan, O.; Noebe, R.D.; Padula, S.A., II; Gaydosh, D.J.; Lerch, B.A.; Garg, A.; Bigelow, G.S.; An, K.; Vaidyanathan, R. Temperature-dependent behavior of a polycrystalline NiTi shape memory alloy around the transformation regime. Scr. Mater. 2013, 68, 571–574. [Google Scholar] [CrossRef]
- Watkins, T.; Bilheux, H.; An, K.; Payzant, A.; Dehoff, R.; Duty, C.; Peter, W.; Blue, C.; Brice, C. Neutron characterization for additive manufacturing. Adv. Mater. Process 2013, 171, 23–27. [Google Scholar]
- Yu, D.; An, K.; Chen, Y.; Chen, X. Revealing the cyclic hardening mechanism of an austenitic stainless steel by real-time in situ neutron diffraction. Scr. Mater. 2014, 89, 45–48. [Google Scholar] [CrossRef]
- Yu, D.; Bei, H.; Chen, Y.; George, E.P.; An, K. Phase-specific deformation behavior of a relatively tough NiAl-Cr(Mo) lamellar composite. Scr. Mater. 2014, 84–85, 59–62. [Google Scholar] [CrossRef]
- Huang, E.W.; Yu, D.J.; Yeh, J.W.; Lee, C.; An, K.; Tu, S.Y. A study of lattice elasticity from low entropy metals to medium and high entropy alloys. Scr. Mater. 2015, 101, 32–35. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.Y.; Gao, Y.F.; An, K.; Zheng, L.L.; Wu, W.; Teng, Z.K.; Liaw, P.K. Deformation mechanisms in a precipitation-strengthened ferritic superalloy revealed by in situ neutron diffraction studies at elevated temperatures. Acta Mater. 2015, 83, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, E.; Kirka, M.M.; Watkins, T.R.; Cooper, R.C.; An, K.; Choo, H.; Wu, W.; Dehoff, R.R.; Babu, S.S. Microstructural and micromechanical characterization of IN718 theta shaped specimens built with electron beam melting. Acta Mater. 2016, 108, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.J.; An, K.; Chen, X.; Bei, H.B. Phase-specific deformation behavior of a NiAl-Cr(Mo) lamellar composite under thermal and mechanical loads. J. Alloy. Compd. 2016, 656, 481–490. [Google Scholar] [CrossRef]
- An, K.; Yuan, L.; Dial, L.; Spinelli, I.; Stoica, A.D.; Gao, Y. Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing. Mater. Des. 2017, 135, 122–132. [Google Scholar] [CrossRef]
- Benafan, O.; Garg, A.; Noebe, R.D.; Skorpenske, H.D.; An, K.; Schell, N. Deformation characteristics of the intermetallic alloy 60NiTi. Intermetallics 2017, 82, 40–52. [Google Scholar] [CrossRef]
- Liu, T.K.; Wu, Z.; Stoica, A.D.; Xie, Q.; Wu, W.; Gao, Y.F.; Bei, H.; An, K. Twinning-mediated work hardening and texture evolution in CrCoFeMnNi high entropy alloys at cryogenic temperature. Mater. Des. 2017, 131, 419–427. [Google Scholar] [CrossRef]
- Xie, Q.; Chen, Y.; Yang, P.; Zhao, Z.; Wang, Y.D.; An, K. In-situ neutron diffraction investigation on twinning/detwinning activities during tension-compression load reversal in a twinning induced plasticity steel. Scr. Mater. 2018, 150, 168–172. [Google Scholar] [CrossRef]
- Xie, Q.; Liang, J.; Stoica, A.D.; Li, R.; Yang, P.; Zhao, Z.; Wang, J.; Lan, H.; Li, R.; An, K. In-situ neutron diffraction study on the tension-compression fatigue behavior of a twinning induced plasticity steel. Scr. Mater. 2017, 137, 83–87. [Google Scholar] [CrossRef]
- Wang, D.M.; Chen, Y.; Mu, J.; Zhu, Z.W.; Zhang, H.F.; Wang, Y.D.; An, K. An in situ neutron diffraction study of plastic deformation in Cu46.5Zr46.5Al7 bulk metallic glass composite. Scr. Mater. 2018, 153, 118–121. [Google Scholar] [CrossRef]
- Wang, D.M.; Mu, J.; Chen, Y.; Qi, Y.M.; Wu, W.; Wang, Y.D.; Xu, H.J.; Zhang, H.F.; An, K. A study of stress-induced phase transformation and micromechanical behavior of CuZr-based alloy by in-situ neutron diffraction. J. Alloy. Compd. 2017, 696, 1096–1104. [Google Scholar] [CrossRef]
- Stoica, G.M.; Stoica, A.D.; Miller, M.K.; Ma, D. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy. Nat. Commun. 2014, 5, 5178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.Q.; Denlinger, E.; Michaleris, P.; Stoica, A.D.; Ma, D.; Beese, A.M. Residual stress mapping in Inconel 625 fabricated through additive manufacturing: Method for neutron diffraction measurements to validate thermomechanical model predictions. Mater. Des. 2017, 113, 169–177. [Google Scholar] [CrossRef]
- Wu, W.; Stoica, A.D.; Berry, K.D.; Frost, M.J.; Skorpenske, H.D.; An, K. PIND: High spatial resolution by pinhole neutron diffraction. Appl. Phys. Lett. 2018, 112, 253501. [Google Scholar] [CrossRef]
- Jorgensen, J.D.; Faber, J., Jr.; Carpenter, J.M.; Crawford, R.K.; Haumann, J.R.; Hitterman, R.L.; Kleb, R.; Ostrowski, G.E.; Rotella, F.J.; Worlton, T.G. Electronically focused time-of-flight powder diffractometers at the intense pulsed neutron source. J. Appl. Cryst. 1989, 22, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Granroth, G.E.; An, K.; Smith, H.L.; Whitfield, P.; Neuefeind, J.C.; Lee, J.; Zhou, W.; Sedov, V.N.; Peterson, P.F.; Parizzi, A.; et al. Event-based processing of neutron scattering data at the Spallation Neutron Source. J. Appl. Cryst. 2018, 51, 616–629. [Google Scholar] [CrossRef]
- Wang, C.L.; Clonts, L.G.; Diawara, Y.; Hannan, B.W.; Hodges, J.P. Elimination of ghosting artifacts from wavelength-shifting-fiber neutron detectors. Rev. Sci. Instrum. 2013, 84, 013308. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L.; Riedel, R.A. Uniformity measurements and new positioning algorithms for wavelength-shifting-fiber neutron detectors. Nucl. Instrum. Meth. A 2014, 751, 55–61. [Google Scholar] [CrossRef]
- Young, M. Pinhole optics. App. Opt. 1971, 10, 2763–2767. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Stoica, A.D.; Yu, D.; Frost, M.J.; Skorpenske, H.D.; An, K. Bending Behavior of a Wrought Magnesium Alloy Investigated by the In Situ Pinhole Neutron Diffraction Method. Crystals 2018, 8, 348. https://doi.org/10.3390/cryst8090348
Wu W, Stoica AD, Yu D, Frost MJ, Skorpenske HD, An K. Bending Behavior of a Wrought Magnesium Alloy Investigated by the In Situ Pinhole Neutron Diffraction Method. Crystals. 2018; 8(9):348. https://doi.org/10.3390/cryst8090348
Chicago/Turabian StyleWu, Wei, Alexandru D. Stoica, Dunji Yu, Matthew J. Frost, Harley D. Skorpenske, and Ke An. 2018. "Bending Behavior of a Wrought Magnesium Alloy Investigated by the In Situ Pinhole Neutron Diffraction Method" Crystals 8, no. 9: 348. https://doi.org/10.3390/cryst8090348
APA StyleWu, W., Stoica, A. D., Yu, D., Frost, M. J., Skorpenske, H. D., & An, K. (2018). Bending Behavior of a Wrought Magnesium Alloy Investigated by the In Situ Pinhole Neutron Diffraction Method. Crystals, 8(9), 348. https://doi.org/10.3390/cryst8090348