Temperature Dependence of the Vacancy Formation Energy in Solid 4He
<p>Results for a fcc crystal at density <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0294</mn> </mrow> </semantics></math> Å<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math>: (<b>a</b>) one-body density matrix <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> as a function of the interatomic distance <span class="html-italic">r</span>, for different values of the temperature <span class="html-italic">T</span> (error bars are below symbol size); and (<b>b</b>) vacancy formation energy <math display="inline"><semantics> <msub> <mi>E</mi> <mi>v</mi> </msub> </semantics></math> as a function of the temperature.</p> "> Figure 2
<p>Results for a fcc crystal at density <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0313</mn> </mrow> </semantics></math> Å<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math>: (<b>a</b>) one-body density matrix <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> as a function of the interatomic distance <span class="html-italic">r</span>, for different values of the temperature <span class="html-italic">T</span> (error bars are below symbol size); and (<b>b</b>) vacancy formation energy <math display="inline"><semantics> <msub> <mi>E</mi> <mi>v</mi> </msub> </semantics></math> as a function of the temperature.</p> "> Figure 3
<p>Results for a bcc crystal at density <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.0294</mn> </mrow> </semantics></math> Å<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math>: (<b>a</b>) one-body density matrix <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> as a function of the interatomic distance <span class="html-italic">r</span>, for different values of the temperature <span class="html-italic">T</span> (error bars are below symbol size); and (<b>b</b>) vacancy formation energy <math display="inline"><semantics> <msub> <mi>E</mi> <mi>v</mi> </msub> </semantics></math> as a function of the temperature.</p> ">
Abstract
:1. Introduction
2. Method
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Balibar, S.; Caupin, F. Supersolidity and disorder. J. Phys. Condens. Matter 2008, 20, 173201. [Google Scholar] [CrossRef]
- Cazorla, C.; Boronat, J. Simulation and understanding of atomic and molecular quantum crystals. Rev. Mod. Phys. 2017, 89, 035003. [Google Scholar] [CrossRef]
- Kim, E.; Chan, M. Probable observation of a supersolid helium phase. Nature 2004, 427, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Chan, M.H. Observation of superflow in solid helium. Science 2004, 305, 1941–1944. [Google Scholar] [CrossRef] [PubMed]
- Day, J.; Beamish, J. Low-temperature shear modulus changes in solid 4He and connection to supersolidity. Nature 2007, 450, 853–856. [Google Scholar] [CrossRef] [PubMed]
- West, J.T.; Syshchenko, O.; Beamish, J.; Chan, M.H. Role of shear modulus and statistics in the supersolidity of helium. Nat. Phys. 2009, 5, 598–601. [Google Scholar] [CrossRef]
- Kim, D.Y.; Chan, M.H. Absence of supersolidity in solid helium in porous vycor glass. Phys. Rev. Lett. 2012, 109, 155301. [Google Scholar] [CrossRef] [PubMed]
- Pederiva, F.; Chester, G.; Fantoni, S.; Reatto, L. Variational study of vacancies in solid 4He with shadow wave functions. Phys. Rev. B 1997, 56, 5909. [Google Scholar] [CrossRef]
- Chaudhuri, B.; Pederiva, F.; Chester, G. Monte Carlo study of vacancies in the bcc and hcp phases of 4He. Phys. Rev. B 1999, 60, 3271–3278. [Google Scholar] [CrossRef]
- Galli, D.E.; Reatto, L. Vacancies in Solid 4He and Bose Einstein Condensation. J. Low Temp. Phys. 2001, 124, 197–207. [Google Scholar] [CrossRef]
- Galli, D.E.; Reatto, L. Recent progress in simulation of the ground state of many Boson systems. Mol. Phys. 2003, 101, 1697–1703. [Google Scholar] [CrossRef]
- Galli, D.E.; Reatto, L. Bose-Einstein Condensation of Incommensurate Solid 4He. Phys. Rev. Lett. 2006, 96, 165301. [Google Scholar] [CrossRef] [PubMed]
- Boninsegni, M.; Kuklov, A.; Pollet, L.; Prokof’ev, N.; Svistunov, B.; Troyer, M. Fate of Vacancy-Induced Supersolidity in 4He. Phys. Rev. Lett. 2006, 97, 080401. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.K.; Ceperley, D.M. Path integral calculations of vacancies in solid Helium. Comput. Phys. Commun. 2008, 179, 82–88. [Google Scholar] [CrossRef]
- Cazorla, C.; Astrakharchik, G.; Casulleras, J.; Boronat, J. Bose-Einstein quantum statistics and the ground state of solid 4He. New. J. Phys. 2009, 11, 013047. [Google Scholar] [CrossRef]
- Lutsyshyn, Y.; Cazorla, C.; Astrakharchik, G.; Boronat, J. Properties of vacancy formation in hcp 4He crystals at zero temperature and fixed pressure. Phys. Rev. B 2010, 82, 180506. [Google Scholar] [CrossRef]
- Rota, R.; Boronat, J. Onset Temperature of Bose-Einstein Condensation in Incommensurate Solid 4He. Phys. Rev. Lett. 2012, 108, 045308. [Google Scholar] [CrossRef] [PubMed]
- Boninsegni, M.; Kuklov, A.; Pollet, L.; Prokof’ev, N.; Svistunov, B.; Troyer, M. Luttinger liquid in the core of a screw dislocation in helium-4. Phys. Rev. Lett. 2007, 99, 035301. [Google Scholar] [CrossRef] [PubMed]
- Borda, E.J.L.; Cai, W.; de Koning, M. Dislocation Structure and Mobility in hcp 4He. Phys. Rev. Lett. 2016, 117, 045301. [Google Scholar] [CrossRef] [PubMed]
- Andreev, A.; Lifshitz, I. Quantum theory of crystal defects. Sov. Phys. JETP 1969, 29, 1107. [Google Scholar]
- Benedek, G.; Kalinin, A.; Nieto, P.; Toennies, J.P. Vacancy-induced flow of solid helium. Phys. Rev. B 2016, 93, 104505. [Google Scholar] [CrossRef]
- Cinti, F.; Macrì, T.; Lechner, W.; Pupillo, G.; Pohl, T. Defect-induced supersolidity with soft-core bosons. Nat. Commun. 2014, 5, 3235. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Vitali, E.; Galli, D.; Reatto, L. Zero-point vacancies in quantum solids. J. Low Temp. Phys. 2008, 153, 250–265. [Google Scholar] [CrossRef]
- Pessoa, R.; De Koning, M.; Vitiello, S. Zero-point divacancy concentration in the shadow wave function model for solid 4He. Phys. Rev. B 2009, 80, 172302. [Google Scholar] [CrossRef]
- Lutsyshyn, Y.; Cazorla, C.; Boronat, J. Instability of Vacancy Clusters in Solid 4He. J. Low Temp. Phys. 2010, 158, 608–614. [Google Scholar] [CrossRef]
- Ceperley, D.M. Path integrals in the theory of condensed helium. Rev. Mod. Phys. 1995, 67, 279. [Google Scholar] [CrossRef]
- Sakkos, K.; Casulleras, J.; Boronat, J. High order Chin actions in path integral Monte Carlo. J. Chem. Phys. 2009, 130, 204109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boninsegni, M.; Prokof’ev, N.; Svistunov, B. Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations. Phys. Rev. E 2006, 74, 036701. [Google Scholar] [CrossRef] [PubMed]
- Sarsa, A.; Schmidt, K.; Magro, W. A path integral ground state method. J. Chem. Phys. 2000, 113, 1366–1371. [Google Scholar] [CrossRef]
- Rossi, M.; Nava, M.; Reatto, L.; Galli, D. Exact ground state Monte Carlo method for Bosons without importance sampling. J. Chem. Phys. 2009, 131, 154108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rota, R.; Casulleras, J.; Mazzanti, F.; Boronat, J. High-order time expansion path integral ground state. Phys. Rev. E 2010, 81, 016707. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.A.; McCourt, F.R.; Wong, C.C. A new determination of the ground state interatomic potential for He2. Mol. Phys. 1987, 61, 1487–1511. [Google Scholar] [CrossRef]
- Rota, R.; Boronat, J. Condensate Fraction in Liquid 4He at Zero Temperature. J. Low. Temp. Phys. 2012, 166, 21–32. [Google Scholar] [CrossRef]
- Diallo, S.; Azuah, R.T.; Abernathy, D.L.; Rota, R.; Boronat, J.; Glyde, H.R. Bose-Einstein condensation in liquid 4He near the liquid-solid transition line. Phys. Rev. B 2012, 85, 140505. [Google Scholar] [CrossRef]
- Gillan, M. Calculation of the vacancy formation energy in aluminium. J. Phys. Condens. Matter 1989, 1, 689–711. [Google Scholar] [CrossRef]
T | ||
---|---|---|
0.5 | ||
0.75 | ||
1.0 | ||
1.25 | ||
1.5 | ||
1.75 | ||
2.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rota, R.; Boronat, J. Temperature Dependence of the Vacancy Formation Energy in Solid 4He. Crystals 2018, 8, 344. https://doi.org/10.3390/cryst8090344
Rota R, Boronat J. Temperature Dependence of the Vacancy Formation Energy in Solid 4He. Crystals. 2018; 8(9):344. https://doi.org/10.3390/cryst8090344
Chicago/Turabian StyleRota, Riccardo, and Jordi Boronat. 2018. "Temperature Dependence of the Vacancy Formation Energy in Solid 4He" Crystals 8, no. 9: 344. https://doi.org/10.3390/cryst8090344
APA StyleRota, R., & Boronat, J. (2018). Temperature Dependence of the Vacancy Formation Energy in Solid 4He. Crystals, 8(9), 344. https://doi.org/10.3390/cryst8090344