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Abstract: Thermal accumulation under high output power densities is one of the most
significant challenges for GaN power devices. Diamond, with its ultra-high thermal
conductivity, offers great potential for improving heat dissipation in high-power GaN
devices. In this study, nanocrystalline diamond (NCD) passivated high-electron mobility
transistors (HEMTs) based on AlGaN/GaN-on-Si heterostructures were fabricated with
a gate length of 2 µm. The NCD film has a thickness of 250–383 nm and a uniform
morphology with a grain size of mostly ~240 nm. Compared to the devices without NCD
passivation, those devices with the NCD passivation layer show an increase in current
density from 447 mA/mm to 555 mA/mm, a reduction in on-resistance from 20 Ω·mm
to 13 Ω·mm, and a noticeable suppression of current degradation at high-drain voltages.
Junction temperature measurements under varied output power densities reveal a 36%
improvement in heat dissipation efficiency with the NCD passivation. These results fully
demonstrate the promising potential of NCD for enhancing heat dissipation in high-power
GaN devices.

Keywords: nanocrystalline diamond; GaN; HEMT; heat dissipation

1. Introduction
Gallium nitride offers significant advantages in high-frequency, high-power, and

high-temperature applications due to its large bandgap and high carrier mobility [1–4].
GaN material has wide applications in radar, communication modules, wireless energy
transmission [1,5], and high-efficiency power converters [6,7]. Effective heat dissipation
becomes crucial when GaN devices operate at high power densities [8–11]. Without efficient
thermal management, heat accumulation can cause a sharp increase in junction temperature,
leading to reduced output power density and efficiency. While various strategies aiming
at high-efficiency heat dissipation at the packaging level have been explored [11], further
research is also needed at the device level to prevent hotspot buildup and to rapidly
dissipate heat from the active region [12].

Diamond, with the highest thermal conductivity in nature, holds great promise for
improving heat dissipation in GaN-based devices [12]. The thermal conductivity of single-
crystalline diamond can exceed 2000 W/(m·K) [8], approximately five times that of SiC.
For nanocrystalline diamond, its thermal conductivity ranges from 20 to 200 W/m·K
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depending on the thickness and grain sizes [13]. Currently, epitaxial layers of GaN HEMTs
are typically grown on substrates like SiC, Si, and sapphire. For the GaN HEMTs operating
in large power operations, these materials cannot meet the increasing demands to efficiently
conduct heat away from the hotspot or rapidly cool the junction [14]. Replacing existing
substrates with diamond, either by bonding or heteroepitaxial growth, has been widely
studied [15–21]. However, direct bonding of polycrystalline diamond and GaN is very
challenging due to the large difficulty in fine diamond surface polishing and wafer-scale
chemical bonding between diamond and GaN materials [22]. Most studies regarding GaN-
on-diamond bonding involve the introduction of interlayers [20], but these interlayers can
introduce additional thermal boundary resistance (TBR) [19,23,24]. Heteroepitaxial growth
of polycrystalline diamond on the back of GaN wafers as a heat sink is also challenging due
to the harsh diamond growth environment, which can degrade the nitride materials [25].
Furthermore, the large lattice and thermal mismatch between GaN and diamond leads to
significant stress.

An alternative solution to using diamond to dissipate heat is to grow a nanocrystalline
diamond passivation layer above the active regions of the devices [26–28]. This approach
facilitates very rapid heat extraction from the hotspot due to placing the diamond heat
dissipation layer at a nanoscale adjacent to the junction [28,29]. The low growth temperature
and short growth time of the NCD passivation layer ensure minimal degradation of the
AlGaN surface and the heterojunction [30]. Moreover, this strategy is compatible with
existing GaN device fabrication processes. However, the existing method faces the problem
of high NCD growth temperatures. In previous studies, the NCD growth temperature
reached up to 750 ◦C [27,31], while the high-temperature hydrogen plasma would have a
strong destructive effect on GaN [32].

In this study, we grew a NCD passivation layer on Si-based GaN HEMTs by microwave
plasma chemical vapor deposition (MPCVD) at a low temperature of 650 ◦C. A compari-
son is made between the device characteristics with and without NCD passivation. The
NCD-passivated devices exhibited better output DC characteristics and heat dissipation
performances, demonstrating the promising prospect of using NCD passivation layers in
GaN high-power devices.

2. Experiments
In this study, a home-made 4-inch AlGaN/GaN-on-Si wafer cutting into 1.5 × 1.5 cm2

pieces was used. The epi-structure consisted of a 20 nm Al0.21Ga0.79N barrier layer, a
190 nm GaN channel layer and a 4.49-µm GaN buffer layer. The device fabrication process
is illustrated in Figure 1. To avoid the possible failure of the Schottky gate due to the
NCD growth at 650 ◦C, we employed the strategy with the NCD growth before the gate
preparation of the device.

Before device fabrication, the sample was thoroughly cleaned to remove any contam-
inants from the surface. Chlorine-based dry etching was then performed to create mesa
isolation between the devices. Following this, electron beam evaporation was used to
deposit a Ti/Al/Ni/Au multilayer stack with thicknesses of 20/150/50/100 nm to form
the source and drain electrodes. The sample was then placed in an Annealsys rapid thermal
annealing (RTA) system (AS-One150) at 835 ◦C for 30 s in a pure N2 atmosphere to achieve
the ohmic contact.
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Figure 1. Schematic diagram of the fabrication processes of the NCD passivated GaN HEMTs.

Next, a 50 nm-thick SiNx protection layer was deposited at 130 ◦C using SENTECH
SI500D inductively coupled plasma chemical vapor deposition (ICP-CVD) to protect the
AlGaN/GaN material during the NCD growth process. Afterwards, we spin-coated the
nanocrystalline diamond seed suspension onto the sample surface at 2000 rpm for 30 s,
followed by drying the sample at 80 ◦C to complete the seeding. NCD film was then grown
using a two-step strategy in a MPCVD system from the Worldiray company. The gas flow
rates were 300 sccm for H2, 12 sccm for CH4, and 0.05 sccm for N2. The gas flow rates
remain unchanged during the whole NCD growth process. Initially, nucleation growth
was performed for 120 s under low-power conditions (2.0 kW and 90 mbar) to form a thin
membrane for preventing the etching of the sample surface by hydrogen plasma. The main
growth was then carried out for 15 min to thicken the NCD film and enlarge the grains,
with the microwave power and pressure set to 3.2 kW and at 135 mbar, respectively.

Following the NCD growth, a 200 nm-thick SiNx hard mask was deposited by ICP-
CVD, and the SiNx hard mask was then selectively etched by ICP in CF4 atmosphere under
300W ICP power, 50W RF power for 90 s to expose the gate area covered by NCD. The
exposed NCD was then removed by oxygen plasma etching. Finally, the gate metal (Ni/Au,
with thicknesses of 20/200 nm) was deposited, followed by a lift-off process to complete the
device fabrication. To facilitate subsequent testing, the NCD and SiNx layers that covering
the source and drain electrodes were removed using the aforementioned etching method.
The scanning electron microscope (SEM) images of the prepared devices are shown in
Figure 2.
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Figure 2. SEM micrographs of the fabricated devices. (a) Overview of the HEMT device with NCD
passivation; (b) magnified view of the local 2 µm-gate region area.

A KEYSIGHT B1500A semiconductor parameter analyzer was used to measure the
DC characteristics as well as the influence of NCD growth on the ohmic contact of the
devices. Additionally, the junction temperatures of devices with and without the NCD
passivation layer were simultaneously recorded under varying DC power levels. All tests
were conducted at room temperature.

3. Results and Discussion
As shown in Figure 3a, SEM images of the sample after NCD passivation show that

the NCD grain sizes are primarily around 240 nm, indicating good in-plane uniformity of
the growth. The total thickness of the grown NCD layer is 250–383 nm (Figure 3b).
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Figure 3. SEM micrographs of the sample after NCD film growth. (a) Surface morphology and
(b) cross-section view.

To further characterize the properties of the NCD films, a WITec alpha300RS system
was used to perform Raman spectroscopy on the samples. The laser wavelength was 532 nm,
and the grating had 600 grooves/mm. As shown in Figure 4, the peak that corresponding
to diamond and locating at near 1333 cm−1 is clearly observed, confirming the successful
growth of a uniform NCD film [33]. Additionally, the presence of trans-polyacetylene (TPA)
peaks near 1140 cm−1 and 1490 cm−1 can be attributed to non-diamond phases, which are
commonly observed in the NCD growth [34]. In future studies, by optimizing the growth
condition, the quality of diamond can be improved [35]. For instance, by reducing the CH4

flow while maintaining the H2 flow, the etching of non-diamond phases by H plasma is
enhanced, which can not only improve the quality of the diamond but also lead to a slower
growth rate. The absence of noticeable graphite-related peaks between 1500 and 1600 cm−1

indicates a low graphite content, making it possible that a high thermal conductivity can
be obtained in the passivation layer [13].
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Figure 4. Raman spectrum on the AlGaN/GaN-on-Si sample after NCD growth.

To investigate the changes in the AlGaN/GaN epi-film before and after NCD growth,
X-ray diffraction (XRD) measurements were carried out by an X’Pert MRD facility. The
rocking curves for the (002) and (102) planes of the GaN layer are shown in Figure 5. After
NCD growth, the full width at half maximum (FWHM) of the (002) curve slightly decreases
(492 arcsec to 481 arcsec) along with the maximum intensity increase for 5000 counts.
The FWHM of the (102) curve increases from 754 arcsec to 798 arcsec, and the maximum
intensity nearly remains unchanged. The XRD results show that the growth of NCD induces
an acceptable change in GaN quality that differs from the (002) to (102) plane. In general, the
50 nm-thick SiNx layer effectively protects the AlGaN/GaN heterojunction from remarkable
degradation that could result from the harsh conditions during NCD growth.
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Furthermore, the circular transmission line model (CTLM) test demonstrates that
the ohmic contact resistance (Rc) is reduced from 2.57 Ω·mm to 2.44 Ω·mm after NCD
growth, as shown in Figure 6. Though this, the Rc is relatively large [36], the ohmic contact
formation is confirmed, and its further optimizing will be carried out in the future to reduce
this resistance.
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Figure 6. CTLM test results (a) before and (b) after NCD growth.

The DC output characteristics of devices with and without the NCD passivation
layer are compared in Figure 7. Both devices have a gate length of 2 µm, a gate width
of 100 µm, and source-drain and gate-drain distances of 19 µm and 14 µm, respectively.
During the test, the drain-source voltage (VDS) ranged from 0 to 15 V and the gate-source
voltage (VGS) varied from −5 to 4 V, with a voltage step of 1 V. As shown in Figure 7,
the maximum saturation current (IDmax) of the device with the NCD passivation layer
reaches 555 mA/mm at a gate voltage of 4 V. Compared with only 447 mA/mm for the
device without NCD passivation, the obtained results indicate a 24% increase in IDmax due
to the NCD passivation. The increase in current density is mainly due to the reduction
in sheet and contact resistance. The on-resistance (Ron) of the device is reduced from
19.9 Ω·mm to 13.2 Ω·mm with NCD passivation, resulting in a reduction of approximately
34%. Additionally, under high-drain voltage conditions, the device with NCD passivation
exhibits a smaller decrease in saturation current, further indicating that NCD passivation
effectively suppresses the self-heating effect of the device [37]. It can also be observed
that both devices show almost the same current density at VGS = 0 V and VDS = 10 V,
with an output power density of around 2 W/mm. Although both devices own the same
output power density, the junction temperature differs from each other (shown later in
Figure 10), which is attributed to the introduction of NCD passivation, which enhances the
heat dissipation performance.
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The curves shown in Figure 8 present the transfer and transconductance (Gm) charac-
teristics of devices with and without NCD passivation. The threshold voltage (Vth) of both
devices is nearly equal, with the same value of −2.8 V. However, the peak transconductance
(Gm,max) of the device with NCD passivation reaches 97.0 mS/mm, and it is 82.8 mS/mm
for the device without NCD passivation.
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Based on the RC and Rsheet results, the source resistance of the devices with and
without NCD passivation is 13.02 Ω and 12.12 Ω, respectively. The calculated intrinsic
peak transconductance values are 109.9 mS/mm for the device with the NCD layer and
92.8 mS/mm for the device without it. The drain and gate leakage currents for the device
with the NCD layer are 10−2 and 3 × 10−3 mA/mm, respectively. They are 4 × 10−3

and 4 × 10−6 mA/mm for the device without the NCD layer, respectively. After NCD
passivation, the gate leakage current increased by three orders of magnitude, primarily due
to the damage caused to the nitride surface by the two-step gate region ICP etching. This
degradation can be reduced in the future by annealing the sample and optimizing the ICP
etching process conditions [38].

The curves shown in Figure 9 present the breakdown characteristics of devices with
and without NCD passivation. The off-state breakdown voltage (Vbr) of the device with
NCD is 500 V, which is 100 V higher than that of the device without NCD. The increase
in breakdown voltage can be considered as the presence of the NCD passivation layer,
which forms a T-shaped gate. This structure is beneficial for optimizing the electric field
distribution around the gate region.
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Finally, the thermal characteristics of devices with and without the NCD passivation
layer were tested using a FOTRIC infrared thermal imaging system at room temperature.
To accurately extract the junction temperature under high power, we use a device with
a gate width of 1 mm. The source and gate of the devices were grounded, while the
drain voltages were set to 5 V, 10 V, 15 V, and 20 V, respectively. The relationship between
the output power density and junction temperature at different drain voltages is shown
in Figure 10. It can be observed that the slopes of the junction temperature vs. output
power density for the devices with and without NCD passivation are 16.38 ◦C/W·mm and
25.88 ◦C/W·mm, respectively, indicating a 36% improvement in heat dissipation efficiency
after NCD passivation. From the summary in Table 1, it can be seen that, compared to
the previous reports, the fabricated device with a NCD passivation layer in this work
has significantly improved the heat dissipation efficiency [26–28,31]. These results clearly
demonstrate the potential of NCD passivation for enhancing heat dissipation in GaN
high-power devices.
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Table 1. Summary of the GaN HEMTs reports with NCD passivation.

Works Substrate Passivation Layer Idmax
(mA/mm)

Heat Dissipation
Improvement

Vbr
(V)

Ref. [31] Si 50 nm SiO2 + 500 nm NCD 249.6 ~20% 140 V

Ref. [27] SiC 50 nm SiNx + 500 nm NCD 445 ~20% 800 V

Ref. [28] SiC 20 nm SiNx + 500 nm NCD 743.28 21.4% /

Ref. [26] SiC 5 nm SiNx + 500 nm NCD 1450 29.4% /

This work Si 50 nm SiNx + 250–383 nm NCD 555 36% 500 V

4. Conclusions
In this study, the heat dissipation performance of AlGaN/GaN-on-Si HEMT devices

was optimized using NCD passivation. Compared to the device without NCD passivation,
the output current density of the NCD-passivated device increased by 24%. Moreover, Ron

was reduced by 34.1%, and the degradation of current density caused by the self-heating
effect was visibly suppressed. Additionally, the junction temperature test results under
DC operation showed that the heat dissipation efficiency of the NCD-passivated device
was optimized by 36%. These results show that NCD passivation can significantly reduce
junction temperature and enhance the performance of GaN-based high-power devices.
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Furthermore, it is compatible with the existing device fabrication process and is expected
to play a crucial role in the future development of power electronic devices.
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