Innovation in Metal Casting Processes: A Review of Metal Matrix Nanocomposites in Metal and Bimetal Castings
<p>Engine block cast from aluminium alloy [<a href="#B2-crystals-15-00191" class="html-bibr">2</a>].</p> "> Figure 2
<p>History of the metal casting process (<b>a</b>); pouring liquid metal in mold fabricated by gravity metallic mold casting (<b>b</b>).</p> "> Figure 3
<p>Solidification structure of pure metal (<b>a</b>); alloy (<b>b</b>); nucleating agent’s structure (<b>c</b>).</p> "> Figure 4
<p>Relationship between the mismatch and supercooling (logarithm) [<a href="#B26-crystals-15-00191" class="html-bibr">26</a>,<a href="#B27-crystals-15-00191" class="html-bibr">27</a>].</p> "> Figure 5
<p>Schematic of the (<b>a</b>) element regional supply technique along with (<b>b</b>) casting and (<b>c</b>) tempering [<a href="#B42-crystals-15-00191" class="html-bibr">42</a>].</p> "> Figure 6
<p>Schematic of the experimental process for SLM (<b>a</b>); horizontal view of the domain cross-section (<b>b</b>); longitudinal view of the domain cross-section (<b>c</b>) [<a href="#B48-crystals-15-00191" class="html-bibr">48</a>].</p> "> Figure 7
<p>Interaction between the dendritic growth and nanoparticles during the solidification [<a href="#B54-crystals-15-00191" class="html-bibr">54</a>].</p> "> Figure 8
<p>Setup for the stir-casting technique (<b>a</b>) addition the reinforcing phase; stir casting process (<b>b</b>) [<a href="#B66-crystals-15-00191" class="html-bibr">66</a>].</p> "> Figure 9
<p>Ultrasonic processing of nanocomposites showing the stirring conducted outside (<b>a</b>) and inside the furnace (<b>b</b>) [<a href="#B68-crystals-15-00191" class="html-bibr">68</a>].</p> "> Figure 10
<p>Stress–strain curves of AZ31 alloy and AC-UST samples (<b>a</b>) and AZ31 alloy and Iso-UST specimens (<b>b</b>) [<a href="#B68-crystals-15-00191" class="html-bibr">68</a>].</p> "> Figure 11
<p>Setup for the disintegrated melt deposition technique [<a href="#B70-crystals-15-00191" class="html-bibr">70</a>].</p> "> Figure 12
<p>Mechanical properties of liquid AC43A cast alloy without and with the SiC nanocomposite [<a href="#B71-crystals-15-00191" class="html-bibr">71</a>].</p> "> Figure 13
<p>Ultrasonic nanoparticle clusters’ deagglomeration for the collapse of the cavitation (<b>a</b>); bubble and acoustic streaming (<b>b</b>) [<a href="#B77-crystals-15-00191" class="html-bibr">77</a>].</p> "> Figure 14
<p>Microstructure of AM60 with (<b>a</b>) and without (<b>b</b>) the addition of AlN [<a href="#B79-crystals-15-00191" class="html-bibr">79</a>].</p> "> Figure 15
<p>Primary Si particle size with graphene additions [<a href="#B80-crystals-15-00191" class="html-bibr">80</a>].</p> "> Figure 16
<p>Primary Si SF with graphene nanosheets affects [<a href="#B80-crystals-15-00191" class="html-bibr">80</a>].</p> "> Figure 17
<p>(<b>a</b>) Mold and (<b>b</b>) furnace employed for manufacturing nanocomposites containing tin-based Babbitt alloy while (<b>c</b>) steel after grinding and tinning, and (<b>d</b>) mold are also shown. [<a href="#B86-crystals-15-00191" class="html-bibr">86</a>].</p> "> Figure 18
<p>SEM images showing the morphologies of the Cu<sub>6</sub>Sn<sub>5</sub> phase in tin-based Babbitt alloy (<b>a</b>) without the addition of nanoparticles; (<b>b</b>) 0.5 wt% iron oxide nanoparticles; (<b>c</b>) 0.5 wt% silica nanoparticles; (<b>d</b>) 0.25 wt% iron oxide and 0.25 wt% silica nanoparticles [<a href="#B102-crystals-15-00191" class="html-bibr">102</a>].</p> ">
Abstract
:1. Introduction
1.1. Metal Casting Process: History and Facts
1.2. Nanotechnology: Definition and History
2. Nanocomposites in Metal Casting
2.1. Methods for Introducing Nanoparticles into Metallic Materials
2.1.1. Metal Matrix Composites with External Nanoparticle Addition
2.1.2. Heat-Treatment Process for Internal Nanoparticle Formation
2.1.3. In Situ Nanosized Particle Formation
2.1.4. Selective Laser Melting for Steel Nanocomposite Manufacturing
2.1.5. Stir Casting
2.1.6. Ultrasonic Processing
2.1.7. Disintegrated Melt Deposition Process
2.1.8. Semi-Solid Casting
2.1.9. Dispersion Process
3. Strengthening Mechanisms
3.1. Orowan Strengthening Mechanism
3.2. Hall–Petch Strengthening Mechanism
4. Nanocomposites in Bimetal Casting
4.1. Nanocomposites in the Working Surface Layer of Bimetallic Materials
4.2. Nanocomposites in the Interlayer of Bimetallic Materials
5. Conclusions
- -
- Upon surveying the published articles, especially on steel castings, it was observed that limited research exists regarding the fabrication process and the related properties of metal matrix nanocomposite castings, which possess very important properties for functional use in high-performance engineering applications together with excellent mechanical performance;
- -
- Other manufacturing routes should be investigated, along with secondary treatments, to broaden the application scope of metal matrix nanocomposite castings. Processes such as hot/cold working, homogenization and heat treatment should be employed to alter the microstructure and create a novel scheme of dispersed and uniformed precipitates at the nanoscale in metal matrices;
- -
- Careful assessments of the relationship between the nanoparticle dispersion, distribution in the metal casting matrix and the properties of the promising metal matrix nanocomposite castings are obligatory required;
- -
- Nanocomposites in the working surface layer and interlayer of the bimetallic materials are presented and thoroughly discussed. Significant improvements in the surface microstructure and shear strength of the bimetallic bearing are achieved by the nanoparticles in addition to the surface working layer and interlayer areas.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalpakjian, S.; Schmid, S. Manufacturing Engineering & Technology, 7th ed.; Pearson: London, UK, 2013. [Google Scholar]
- Colás, R.; Rodríguez, A.; Talamantes, J.; Valtierra, S. Solidification analysis of aluminium engine block. Int. J. Cast Met. Res. 2004, 17, 332–338. [Google Scholar] [CrossRef]
- American Foundry Society. About Metalcasting. 2020. Available online: https://www.afsinc.org/about-metalcasting (accessed on 21 November 2024).
- Yadav, V. Nanotechnology, Big things from a Tiny World: A Review, Advance in Electronic and Electric Engineering. Int. J. u-e-Serv. Sci. Technol. 2013, 3, 771–778. [Google Scholar]
- Stirling, D.A. The Nanotechnology Revolution: A Global Bibliographic Perspective; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Goddard, W.A., III; Brenner, D.; Lyshevski, S.E.; Iafrate, G.J. Handbook of Nanoscience, Engineering, and Technology, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Ibrahim, I.; Mohamed, F.; Lavernia, E. Particulate reinforced metal matrix composites—A review. J. Mater. Sci. 1991, 26, 1137–1156. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.; Yeom, M.S.; Shin, J.W.; Kim, H.; Cui, Y.; Kysar, J.W.; Hone, J.; Jung, Y.; Jeon, S.; et al. Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nat. Commun. 2013, 4, 2114. [Google Scholar] [CrossRef]
- Mishra, R.R.; Panda, A.; Sahoo, A.K.; Kumar, R. Characterization and machinability analysis of aluminium-based metal matrix composites (MMC): A critical review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2025, 239, 861–884. [Google Scholar] [CrossRef]
- Polayya, C.; Rao, C.S.; GB, V.K. Enhancing tribological and corrosion characteristics of AA2099/GNP metal matrix nanocomposites through parametric optimization using Taguchi Technique. Mater. Res. Express 2025, 12, 015009. [Google Scholar] [CrossRef]
- Kmita, A.; Dańko, R.; Holtzer, M.; Hutera, B.; Stypuła, B. Utilisation of nanoparticles in technologies of producing castings for the needs of power engineering. Nanomater. Energy 2014, 3, 53–60. [Google Scholar] [CrossRef]
- Bawane, K.; Lu, K. Microstructure evolution of nanostructured ferritic alloy with and without Cr3C2 coated SiC at high temperatures. J. Mater. Sci. Technol. 2020, 43, 126–134. [Google Scholar] [CrossRef]
- Jiang, S.H.; Wang, H.; Wu, Y.; Liu, X.; Chen, H.; Yao, M.; Gault, B.; Ponge, D.; Raabe, D.; Hirata, A.; et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 2017, 544, 460–464. [Google Scholar] [CrossRef]
- Rodríguez, E.; Pérez, A.; Mercado-Solis, R.D.; Abraham, V.-T.; Jiménez, O.; Flores, M.; González, M.A.; Ibarra, J. Erosion problem in tool steel using cold box core-making process. China Foundry 2019, 16, 204–210. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Z.P.; Hou, J.Y.; Barber, G.C.; Qiu, F. Tribological behavior of shot peened/austempered AISI 5160 steel. Tribol. Int. 2020, 145, 106197. [Google Scholar] [CrossRef]
- Li, H.-C.; Liu, Y.-X.; Zhang, Y.-H.; Liu, Z.; Zhai, Q.-J. Effects of hot top pulsed magneto-oscillation on solidification structure of steel ingot. China Foundry 2018, 15, 110–116. [Google Scholar] [CrossRef]
- Hao, L.; Ji, X.; Zhang, G.; Zhao, W.; Sun, M.; Peng, Y. Carbide precipitation behavior and Mechanical properties of micro-alloyed medium Mn steel. J. Mater. Sci. Technol. 2020, 47, 122–130. [Google Scholar] [CrossRef]
- Zhang, H.J.; Li, C.; Guo, Q.Y.; Ma, Z.; Li, H.; Liu, Y. Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants. Scr. Mater. 2019, 164, 66–70. [Google Scholar] [CrossRef]
- Zhang, K. Design of real time monitor system of manufacture process of iron and steel industry based on new style sensors. Energy Procedia 2012, 16, 627–632. [Google Scholar] [CrossRef]
- Melchers, R.E. Long-term corrosion of cast irons and steel in marine and atmospheric environments. Corros. Sci. 2013, 68, 186–194. [Google Scholar] [CrossRef]
- Chen, B.; Yang, J.-X.; Ouyang, Z.-Y. Life cycle assessment of internal recycling options of steel slag in Chinese iron and steel industry. J. Iron Steel Res. Int. 2011, 18, 33–40. [Google Scholar] [CrossRef]
- Kalpakjian, S.; Schmid, S.R. Manufacturing Engineering and Technology, 6th ed.; Pearson Education, Inc.: London, UK, 2010; p. 239. [Google Scholar]
- Qiu, F.; Liu, T.-S.; Zhang, X.; Chang, F.; Shu, S.-L.; Yang, H.-Y.; Zhao, Q.-L.; Jiang, Q.-C. Application of nanoparticles in cast steel: An overview. China Foundry 2020, 17, 111–126. [Google Scholar] [CrossRef]
- Pan, N.; Song, B.; Zhai, Q.J.; Wen, B. Effect of lattice disregistry on the heterogeneous nucleation catalysis of liquid steel. J. Univ. Sci. Technol. 2011, 32, 179–190. [Google Scholar]
- Dong, B.X.; Yang, H.Y.; Qiu, F.; Li, Q.; Shu, S.L.; Zhang, B.Q.; Jiang, Q.C. Design of TiCx nanoparticles and their morphology manipulating mechanisms by stoichiometric ratios: Experiment and first-principle calculation. Mater. Des. 2019, 181, 107951. [Google Scholar] [CrossRef]
- Ohashi, T.; Fujii, H.; Nuri, Y.; Asano, K. Effect of oxides on nucleation behavior in supercooled iron. Trans. Iron Steel Inst. Jpn. 1977, 17, 262. [Google Scholar] [CrossRef]
- Bramfitt, B. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans. 1970, 1, 1987. [Google Scholar] [CrossRef]
- Suzuki, T.; Inoue, J.; Koseki, T. Solidification of iron and steel on single-crystal oxide. ISIJ Int. 2007, 47, 847–852. [Google Scholar] [CrossRef]
- He, B.; Tian, H.; Yu, G.; Shi, Z. A Review of Composite Gears. Mech. Compos. Mater. 2025, 60, 1133–1154. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, Z.Y.; Li, H. Study on super-fine grains obtained in low carbon section steels by adding ZrC. Iron Steel 2002, 37, 58–60. [Google Scholar]
- Lei, Y.; Liu, Z.Y.; Li, H. Study on super-fine grain obtained in low-carbon section steels by adding ZrO2. Ordnance Mater. Sci. Eng. 2004, 27, 3–5. [Google Scholar]
- Wang, G.C.; Wang, T.M.; Li, S.N. Study on the process of adding Al2O3 nano-powder to molten pure iron. J. Univ. Sci. Technol. 2007, 29, 579–581. [Google Scholar]
- Wang, G.C.; Fang, K.M.; Wang, T.M. Study on super-fine particle of TiN added into molten pure iron. Iron Steel Vanadium Titan. 2006, 27, 21–25. [Google Scholar]
- Li, X.L.; Wang, J.M.; He, C.L. Effect of nano-SiC particles addition on microstructure and hardness of Q235 Steel. Foundry 2009, 58, 229–231. [Google Scholar]
- Lazarova, R.; Petrov, R.; Gaydarova, V.; Davidkov, A.; Alexeev, A.; Manchev, M.; Manolov, V. Microstructure and mechanical properties of P265GH cast steel after modification with TiCN particles. Mater. Des. 2011, 32, 2734–2741. [Google Scholar] [CrossRef]
- Xiao, F.R.; Liao, B. Refinement effectiveness of self-prepared (NbTi) C nanoparticles on as-cast 1045 steel. J. Mater. Des. 2018, 139, 531–540. [Google Scholar]
- Yang, K.; Liang, Y.; Yan, W.; Shan, Y. Preferential distribution of boron and its effect on microstructure and mechanical properties of (9–12)%Cr martensitic heat resistant steels. Acta Metall. Sin. 2020, 56, 53–65. [Google Scholar]
- Wu, X.; Zuo, X.R.; Zhao, W.W. Mechanism of TiN fracture during the tensile process of NM500 wear-resistant steel. Acta Metall. Sin. 2020, 56, 129–136. [Google Scholar]
- Yu, W.X.; Liu, B.X.; He, J.N.; Chen, C.X.; Fang, W.; Yin, F.X. Microstructure characteristics, strengthening and toughening mechanism of rolled and aged multilayer TWIP/maraging steels. Mater. Sci. Eng. A 2019, 767, 138426. [Google Scholar] [CrossRef]
- Xu, L.; Wei, D.-Y.; Yu, Y.; Zhang, H.; Bai, B.-Z. Effect of microstructure on corrosion fatigue behavior of 1500 MPa level carbide-free bainite/martensite dual-phase high strength steel. J. Iron Steel Res. Int. 2011, 18, 63–67. [Google Scholar] [CrossRef]
- Mao, C.L.; Liu, C.X.; Yu, L.M.; Li, H.; Liu, Y. The correlation among microstructural parameter and dynamic strain aging (DSA) in influencing the mechanical properties of a reduced activated ferritic-martensitic (RAFM) steel. Mater. Sci. Eng. A 2019, 739, 90–98. [Google Scholar] [CrossRef]
- Shi, R.J.; Wang, Z.D.; Qiao, L.J.; Pang, X. Microstructure evolution of insitu nanoparticles and its comprehensive effect on high strength steel. J. Mater. Sci. Technol. 2019, 35, 1940–1950. [Google Scholar] [CrossRef]
- Chen, Y.; Hong, Z.; Zhang, X.; Xia, M.; Yan, Q.; Ge, C. Enhanced creep resistance of Y-bearing 9Cr ferritic/martensitic steel via vacuum casting technique. J. Mater. Res. Technol. 2019, 8, 4588–4597. [Google Scholar] [CrossRef]
- Yang, C.Y.; Luan, Y.K.; Li, D.Z.; Li, Y. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel. J. Mater. Sci. Technol. 2020, 35, 1298–1308. [Google Scholar] [CrossRef]
- Dai, L.; Liu, Z.; Yu, L.; Liu, Y.; Shi, Z. Microstructural characterization of Mg-Al-O rich nanophase strengthened Fe-Cr alloys. Mater. Sci. Eng. A 2020, 777, 138664. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Liu, Y.; Huang, Y.; Ma, Z.; Li, H.; Wu, J. Microstructure and tensile properties of a 14Cr ODS ferritic steel. Mater. Sci. Eng. A 2017, 680, 347–350. [Google Scholar] [CrossRef]
- Dou, P.; Sang, W.; Kimura, A. Morphology, crystal and metal/oxide interface structures of nanoparticles in Fe15Cr-2W-0.5Ti-7Al-0.4Zr-0.5Y2O3 ODS steel. J. Nucl. Mater. 2019, 523, 231–247. [Google Scholar] [CrossRef]
- Alharbi, A.; Khan, A.; Todd, I.; Ramadan, M.; Mumtaz, K. Semisolid heat treatment processing window of Pb-40% Sn alloy for feedstock in the 3D printing thixo-forming process. Mater. Today Proc. 2021, 51, 403–410. [Google Scholar] [CrossRef]
- Todaro, C.J.; Easton, M.A.; Qiu, D.; Zhang, D.; Bermingham, M.J.; Lui, E.W.; Brandt, M.; StJohn, D.H.; Qian, M. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat. Commun. 2020, 11, 142. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, P.; Zhang, Z.; Liu, W. Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel. J. Mater. Sci. Technol. 2020, 46, 191–200. [Google Scholar] [CrossRef]
- Tan, C.L.; Zhou, K.S.; Ma, W.Y.; Zeng, D. Research progress of laser additive manufacturing of maraging steels. Acta Metall. Sin. 2020, 56, 36–52. [Google Scholar]
- Wang, L.; Xing, H.; Li, Y.; Wang, J. Toward multiscale simulations for solidification microstructure and microsegregation for selective laser melting of nickel-based superalloys. J. Mater. Res. Technol. 2023, 25, 3574–3587. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Mertens, R.; Hao, L.; van Humbeeck, J.; Kruth, J.P. Selective laser melting to manufacture “in situ” metal matrix composites: A review. Adv. Eng. Mater. 2019, 21, 1801244. [Google Scholar] [CrossRef]
- Mussatto, A.; Groarke, R.; A-Hameed, A.; Ahad, I.U.; Vijayaraghavan, R.K.; O’Neill, A.; McNally, P.; Delaure, Y.; Brabazon, D. Evaluation via powder metallurgy of nano-reinforced iron powders developed for selective laser melting applications. Mater. Des. 2019, 182, 108046. [Google Scholar] [CrossRef]
- Gilliard, M.B.; Pierini, B.T.; Alconchel, S.A. In situ formation of Fe–NbC/C composite powders from solution-derived precursors by a gas reduction-carburization process. Ceram. Int. 2014, 40, 14881–14889. [Google Scholar] [CrossRef]
- Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686. [Google Scholar] [CrossRef] [PubMed]
- Riedel, R. Nanoscaled inorganic materials by molecular design. Chem. Soc. Rev. 2012, 41, 5029–5031. [Google Scholar] [CrossRef] [PubMed]
- Ammisetti, D.K.; Sai Sarath, K.; Harish Kruthiventi, S.S. A Review on Mechanical and Wear Characteristics of Magnesium Metal Matrix Composites. J. Tribol. 2025, 147, 020801. [Google Scholar] [CrossRef]
- Dieringa, H. Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: A review. J. Mater. Sci. 2011, 46, 289–306. [Google Scholar] [CrossRef]
- Bang, J.H.; Suslick, K.S. Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 2010, 22, 1039–1059. [Google Scholar] [CrossRef]
- Abdullah, A.; Pak, A.; Abdullah, M.M.; Shahidi, A.; Malaki, M. Study of the behavior of ultrasonic piezo-ceramic actuators by simulations. Electron. Mater. Lett. 2014, 10, 37–42. [Google Scholar] [CrossRef]
- Hamedan, A.D.; Shahmiri, M. Production of A356–1 wt% SiC nanocomposite by the modified stir casting method. Mater. Sci. Eng. A 2012, 556, 921–926. [Google Scholar] [CrossRef]
- Sajjadi, S.; Ezatpour, H.; Beygi, H. Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater. Sci. Eng. A 2011, 528, 8765–8771. [Google Scholar] [CrossRef]
- Suresh, S.; Mishra, D.; Srinivasan, A.; Arunachalam, R.; Sasikumar, R. Production and characterization of micro and nano Al2O3 particle-reinforced LM25 aluminium alloy composites. ARPN J. Eng. Appl. Sci. 2011, 6, 94–98. [Google Scholar]
- Akbari, M.K.; Mirzaee, O.; Baharvandi, H. Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater. Des. 2013, 46, 199–205. [Google Scholar] [CrossRef]
- Gupta, M.; Ling, S.N.M. Magnesium, Magnesium Alloys, and Magnesium Composites; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Alam, M.T.; Arif, S.; Ansari, A.H. Mechanical Behaviour and Morphology of A356/SiC Nanocomposites Using Stir Casting. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; p. 012293. [Google Scholar]
- Khandelwal, A.; Mani, K.; Srivastava, N.; Gupta, R.; Chaudhari, G. Mechanical behavior of AZ31/Al2O3 magnesium alloy nanocomposites prepared using ultrasound assisted stir casting. Compos. Part B Eng. 2017, 123, 64–73. [Google Scholar] [CrossRef]
- Srivatsan, T.; Godbole, C.; Paramsothy, M.; Gupta, M. Influence of nano-sized carbon nanotube reinforcements on tensile deformation, cyclic fatigue, and final fracture behavior of a magnesium alloy. J. Mater. Sci. 2012, 47, 3621–3638. [Google Scholar] [CrossRef]
- Gupta, M.; Wong, W. Magnesium-based nanocomposites: Lightweight materials of the future. Mater. Charact. 2015, 105, 30–46. [Google Scholar] [CrossRef]
- De Cicco, M.P.; Li, X.; Turng, L.-S. Semi-solid casting (SSC) of zinc alloy nanocomposites. J. Mater. Process Technol. 2009, 209, 5881–5885. [Google Scholar] [CrossRef]
- Cravotto, G.; Gaudino, E.C.; Cintas, P. On the mechanochemical activation by ultrasound. Chem. Soc. Rev. 2013, 42, 7521–7534. [Google Scholar] [CrossRef]
- Xu, H.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567. [Google Scholar] [CrossRef]
- Ma, C.; Chen, L.; Cao, C.; Li, X. Nanoparticle-induced unusual melting and solidification behaviours of metals. Nat. Commun. 2017, 8, 14178. [Google Scholar] [CrossRef]
- Baig, R.N.; Varma, R.S. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev. 2012, 41, 1559–1584. [Google Scholar] [CrossRef]
- Xu, W.; Tzanakis, I.; Srirangam, P.; Mirihanage, W.; Eskin, D.; Bodey, A.; Lee, P. Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al–10Cu melts. Ultrason. Sonochem. 2016, 31, 355–361. [Google Scholar] [CrossRef]
- Dieringa, H. Processing of Magnesium-Based Metal Matrix Nanocomposites by Ultrasound-Assisted Particle Dispersion: A Review. Metals 2018, 8, 431. [Google Scholar] [CrossRef]
- Kudryashova, O.; Vorozhtsov, S. On the Mechanism of Ultrasound-Driven Deagglomeration of Nanoparticle Agglomerates in Aluminum Melt. JOM 2016, 68, 1307–1311. [Google Scholar] [CrossRef]
- Malaki, M.; Xu, W.; Kasar, A.K.; Menezes, P.L.; Dieringa, H.; Varma, R.S.; Gupta, M. Advanced Metal Matrix Nanocomposites. Metals 2019, 9, 330. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Ramadan, M.; Halim, K.S.A.; Fathy, N. Microscopical Characterization of Cast Hypereutectic Al-Si Alloys Reinforced with Graphene Nanosheets. Eng. Technol. Appl. Sci. Res. 2018, 8, 2514–2519. [Google Scholar] [CrossRef]
- Ramadan, M.; Fathy, N.; Abdel Halim, K.S.; Alghamdi, A.S. New trends and advances in bimetal casting technologies. Int. J. Adv. Appl. Sci. 2019, 6, 75–80. [Google Scholar]
- Ramadan, M.; Alghamdi, A.S. Interfacial microstructures and properties of hyper-eutectic Al–21Si/hypo-eutectic Al–7.5Si bimetallic material fabricated by liquid–liquid casting route. Mech. Sci. 2020, 11, 371–379. [Google Scholar] [CrossRef]
- Fathy, N.; Ramadan, M.; Hafez, K.M.; Abdulaziz, F.; Ayadi, B.; Alghamdi, A.S. A Novel Approach of Optimum Time Interval Estimation for Al-7.5Si/Al-18Si Liquid–Liquid Bimetal Casting in Sand and Metallic Moulds. Materials 2023, 16, 3004. [Google Scholar] [CrossRef]
- Tavakoli, A.M.; Nami, B.; Malekan, M.; Khoubrou, I. Influences of Coating Type on Microstructure and Strength of Aluminum–Steel Bimetal Composite Interface. Int. J. Met. 2022, 16, 689–698. [Google Scholar] [CrossRef]
- Suryadarma, E.H.E.; Ai, T.J.; Bawono, B.; Siswantoro, A.T. Improving Bimetal Bond Quality Between Cast Steel and Aluminum Alloys Using Response Surface Methodology. Int. J. Met. 2022, 16, 1432–1441. [Google Scholar] [CrossRef]
- Ramadan, M.; Alghamdi, A.S.; Subhani, T.; Halim, K.S.A. Fabrication and Characterization of Sn-Based Babbitt Alloy Nanocomposite Reinforced with Al2O3 Nanoparticles/Carbon Steel Bimetallic Material. Materials 2020, 13, 2759. [Google Scholar] [CrossRef]
- Jiang, W.; Fan, Z.; Li, G.; Yang, L.; Liu, X. Effects of Melt-to-Solid Insert Volume Ratio on the Microstructures and Mechanical Properties of Al/Mg Bimetallic Castings Produced by Lost Foam Casting. Met. Mater. Trans. A 2016, 47, 6487–6497. [Google Scholar] [CrossRef]
- Jiang, W.; Jiang, Z.; Li, G.; Wu, Y.; Fan, Z. Microstructure of Al/Al bimetallic composites by lost foam casting with Zn interlayer. Mater. Sci. Technol. 2017, 34, 487–492. [Google Scholar] [CrossRef]
- Shangguan, J.; Zhao, J.; Shi, Y.; Gu, C.; Jin, B.; Cheng, J.; Guo, Y. Effects of Zn Interlayer on Microstructures and Mechanical Properties of TC4/AZ91D Bimetal via Solid–Liquid Compound Casting Process. Int. J. Met. 2022, 16, 419–434. [Google Scholar] [CrossRef]
- Guan, F.; Fan, S.; Wang, J.; Li, G.; Zhang, Z.; Jiang, W. Effect of Vibration Acceleration on Interface Microstructure and Bonding Strength of Mg–Al Bimetal Produced by Compound Casting. Metals 2022, 12, 766. [Google Scholar] [CrossRef]
- Cholewa, M.; Wróbel, T.; Tenerowicz, S. Bimetallic layer castings. J. Achiev. Mater. Manuf. Eng. 2010, 43, 385–391. [Google Scholar]
- Wrobel, T. Characterization of Bimetallic Castings with an Austenitic Working Surface Layer and an Unalloyed Cast Steel Base. J. Mater. Eng. Perform. 2014, 23, 1711–1717. [Google Scholar] [CrossRef]
- Jiang, W.; Fan, Z.; Li, C. Improved steel/aluminum bonding in bimetallic castings by a compound casting process. J. Mater. Process. Technol. 2015, 226, 25–31. [Google Scholar] [CrossRef]
- Jiang, W.; Fan, Z.; Li, G.; Liu, X.; Liu, F. Effects of hot-dip galvanizing and aluminizing on interfacial microstructures and mechanical properties of aluminum/iron bimetallic composites. J. Alloys Compd. 2016, 688, 742–751. [Google Scholar] [CrossRef]
- Li, G.; Yang, W.; Jiang, W.; Guan, F.; Jiang, H.; Wu, Y.; Fan, Z. The Role of Vacuum Degree in the Bonding of Al/Mg Bimetal Prepared by a Compound Casting Process. J. Mech. Work. Technol. 2019, 265, 112–121. [Google Scholar] [CrossRef]
- Ramadan, M.; Alghamdi, A.S.; Hafez, K.M.; Subhani, T.; Halim, K.S.A. Development and Optimization of Tin/Flux Mixture for Direct Tinning and Interfacial Bonding in Aluminum/Steel Bimetallic Compound Casting. Materials 2020, 13, 5642. [Google Scholar] [CrossRef]
- Cholewa, M.; Tenerowicz, S.; Wróbel, T. Quality of the joint between cast steel and cast iron in bimetallic castings. Arch. Foundry Eng. 2008, 3, 37–40. [Google Scholar]
- Ramadan, M. Interface Structure and Elements Diffusion of As-Cast and Annealed Ductile Iron/Stainless Steel Bimetal Castings. Eng. Technol. Appl. Sci. Res. 2018, 8, 2709–2714. [Google Scholar] [CrossRef]
- Ramadan, M.; Hafez, K.M.; Alghamdi, A.S.; Ayadi, B.; Abdel Halim, K.S. Novel Approach for Using Ductile Iron as Substrate in Bimetallic Materials for Higher Interfacial Bonding Bearings. Int. J. Met. 2022, 16, 987–1000. [Google Scholar] [CrossRef]
- Ramadan, M.; Hafez, K. Interfacial microstructure and hardness of Sn-Based Babbitt/C93700 Cu-Pb-Sn bimetallic materials. Mater. Today Proc. 2021, 45, 5074–5080. [Google Scholar] [CrossRef]
- Babu, M.V.S.; Krishna, A.R.; Suman, K. Improvement of Tensile Behaviour of Tin Babbitt by Reinforcing with Nano Ilmenite and its Optimisation by using Response Surface Methodology. Int. J. Manuf. Mater. Mech. Eng. 2017, 7, 37–51. [Google Scholar] [CrossRef]
- Ramadan, M.; Subhani, T.; Hafez, K.M.; Fathy, N.; Ayadi, B.; Abdel Halim, K.S.; Alghamdi, A.S.; Ibrahim, K.M. Microstructure and Mechanical Performance of Tin-Based Babbitt Alloy Containing Iron Oxide and Silica Nanoparticles. Metals 2023, 13, 324. [Google Scholar] [CrossRef]
- Ramadan, M.; Khaliq, A.; Hafez, K.M.; Alghamdi, A.S.; Fathy, N.; Harraz, F.A.; Ayadi, B.; Abdel Halim, K.S. Super Bonding Strength of Al2O3 Nanoparticles Reinforced Sn Interlayer Steel/Aluminum Bimetal Casting. Crystals 2022, 12, 324. [Google Scholar] [CrossRef]
Compound | Lattice Type | Lattice Constant (nm) | Mismatch (%) | ||
---|---|---|---|---|---|
25 °C | 1500 °C | δ-Fe | γ-Fe | ||
δ-Fe | - | a = 0.29396 | - | - | |
γ-Fe | - | a = 0.36810 | - | - | |
CaO | Fm3m | a = 0.48105 | a = 0.49086 | 16.51 | 5.71 |
Cas | Fm3m | a = 0.56903 | a = 0.58158 | 1.08 | 11.72 |
MgO | Fm3m | a = 0.42112 | a = 0.43060 | 3.58 | 16.98 |
MgS | Fm3m | a = 0.52033 | a = 0.53180 | 9.54 | 2.16 |
MnO | Fm3m | a = 0.44457 | a = 0.45517 | 9.49 | 12.96 |
MnS | Fm3m | a = 0.52233 | a = 0.53651 | 8.74 | 3.06 |
NbC | Fm3m | a = 0.44702 | a = 0.45185 | 8.69 | 13.20 |
NbN | Fm3m | a = 0.43934 | a = 0.44474 | 6.98 | 14.57 |
TiC | Fm3m | a = 0.43257 | a = 0.43783 | 5.32 | 15.89 |
TiN | Fm3m | a = 0.42419 | a = 0.43055 | 3.57 | 16.96 |
TiO | Fm3m | a = 0.41796 | a = 0.42624 | 27.69 | 15.79 |
VC | Fm3m | a = 0.41819 | a = 0.42271 | 1.66 | 14.83 |
VN | Fm3m | a = 0.41396 | a = 0.41907 | 0.81 | 13.85 |
ZrC | Fm3m | a = 0.46961 | a = 0.47496 | 14.25 | 8.76 |
ZrN | Fm3m | a = 0.45755 | a = 0.46318 | 11.42 | 11.02 |
CeO2 | Fm3m | a = 0.54112 | a = 0.55183 | 6.14 | 6.00 |
SiO2 | Fd3m | a = 0.71300 | a = 0.71487 | 14.02 | 2.90 |
Ce2O3 | P-3m1 | a = 0.38910, c = 0.60590 | a = 0.39704 | 4.49 | 14.21 |
La2O3 | P-3m1 | a = 0.39381, c = 0.61361 | a = 0.40184 | 3.34 | 13.17 |
Al2O3 | P63mc | a = 0.47589, c = 1.29910 | a = 0.48224 | 8.04 | 7.36 |
Ti2O3 | P63mc | -, - | a = 0.51251 | 6.61 | 1.55 |
TiO2 | P42/mnm | a = 0.45937, c = 1.295087 | a = 0.46550, c = 0.30080 | 7.69 | 8.83 |
ZrO2 | P42/nmc | -, - | a = 0.36526, c = 0.52969 | 12.14 | 0.77 |
Type | SiC | AlN | Al2O3 | B4C | TiB2 | TiC |
---|---|---|---|---|---|---|
Crystal structure | ac hdp | hdp | ac hdp | rhomb | hdp | cub |
Lattice parameters [nm] | a = 0.307, c = 1.008 | a = 0.311, c = 0.498 | a = 0.476, c = 1.299 | a = 0.559, c = 1.205 | a = 0.303, c = 0.322 | a = 0.432 |
Melting T [°C] | 2300 | 3000 | 2045 | 2450 | 2900 | 3140 |
Young’s modulus [GPa] | 480 | 350 | 410 | 450 | 370 | 320 |
Density [g/cm3] | 3.22 | 3.26 | 3.98 | 2.53 | 4.49 | 4.92 |
Mohs hardness | 9.6 | - | 6.5 | 9.5 | - | - |
CTE [10−6 K−1] | 4.9 | 6.0 | 8.3 | 5.4 | 7.4 | 7.4 |
Property | AM60 | AM60 + AIN |
---|---|---|
Grain size [μm] | 1277.0 ± 301.3 | 84 ± 6.2 |
Hardness [HV5] | 48.0 ± 4.0 | 46.4 ± 6.0 |
Density [g/cm3] | 1.7848 ± 0.0004 | 1.783 ± 0 |
Porosity [%] | - | 0.919 |
Yield strength [MPa] | 44.9 ± 6.9 | 91.2 ± 3.8 |
UTS [MPa] | 109.3 ± 19.2 | 235.1 ± 6.4 |
Elongation [%] | 6.4 ± 3.4 | 15.4 ± 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subhani, T.; Ramadan, M.; Fathy, N.; Khaliq, A.; Halim, K.S.A. Innovation in Metal Casting Processes: A Review of Metal Matrix Nanocomposites in Metal and Bimetal Castings. Crystals 2025, 15, 191. https://doi.org/10.3390/cryst15020191
Subhani T, Ramadan M, Fathy N, Khaliq A, Halim KSA. Innovation in Metal Casting Processes: A Review of Metal Matrix Nanocomposites in Metal and Bimetal Castings. Crystals. 2025; 15(2):191. https://doi.org/10.3390/cryst15020191
Chicago/Turabian StyleSubhani, Tayyab, Mohamed Ramadan, Naglaa Fathy, Abdel Khaliq, and K. S. Abdel Halim. 2025. "Innovation in Metal Casting Processes: A Review of Metal Matrix Nanocomposites in Metal and Bimetal Castings" Crystals 15, no. 2: 191. https://doi.org/10.3390/cryst15020191
APA StyleSubhani, T., Ramadan, M., Fathy, N., Khaliq, A., & Halim, K. S. A. (2025). Innovation in Metal Casting Processes: A Review of Metal Matrix Nanocomposites in Metal and Bimetal Castings. Crystals, 15(2), 191. https://doi.org/10.3390/cryst15020191