Synthesis of Nanocrystalline Mn-Doped Bi2Te3 Thin Films via Magnetron Sputtering
<p>(<b>a</b>) X-ray diffraction patterns of Mn-doped <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> thin films with increasing doping concentration (from top to bottom; offset for clarity). The primary <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>Al</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math> substrate peaks are prominent, but secondary peaks are also visible, likely corresponding to <math display="inline"><semantics> <mrow> <msub> <mi>MnTe</mi> <mi>x</mi> </msub> </mrow> </semantics></math><span class="html-italic">c</span>-plane reflections. These secondary peaks are challenging to identify due to overlapping peaks and minor peak shifts from lattice mismatch with the substrate. However, their relative intensities increase with increasing Mn concentration compared to the <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> (00<span class="html-italic">l</span>) peaks. (<b>b</b>) GI-XRD patterns for the <math display="inline"><semantics> <mrow> <msub> <mi>Mn:Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> doping series, revealing diffraction peaks corresponding to crystal planes that are not parallel to the <span class="html-italic">c</span>-plane. The positions of peaks corresponding to <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math>, MnTe, and <math display="inline"><semantics> <mrow> <msub> <mi>MnTe</mi> <mn>2</mn> </msub> </mrow> </semantics></math> are indicated above the <span class="html-italic">x</span>-axis. The lack of consistent secondary peaks across all Mn concentrations suggests that <math display="inline"><semantics> <mrow> <msub> <mi>MnTe</mi> <mi>x</mi> </msub> </mrow> </semantics></math> grows with varying preferred orientations in the different films.</p> "> Figure 2
<p>Asymmetric RSMs of <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> thin films at various Mn doping levels: (<b>a</b>) undoped, (<b>b</b>) 0.8%, (<b>c</b>) 6.0%, and (<b>d</b>) 11.7%. The undoped sample exhibits only <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>Al</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </semantics></math> peaks. In (<b>b</b>,<b>c</b>), the secondary phase peaks that were observed in the 1D XRD measurements (<a href="#crystals-15-00054-f001" class="html-fig">Figure 1</a>) are below the detection threshold in the RSM data. Broadening of the <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> peaks in (<b>c</b>) suggests an increase in grain size. In (<b>d</b>), the <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> peak intensity significantly decreases, with multiple peaks attributed to <math display="inline"><semantics> <mrow> <msub> <mi>MnTe</mi> <mi>x</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>MnBi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>4</mn> </msub> </mrow> </semantics></math> appearing, indicating a shift in the doping mechanism at higher Mn concentrations.</p> "> Figure 3
<p>RSMs of the (006) peak for <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> films at various Mn doping levels: (<b>a</b>) undoped, (<b>b</b>) 0.8%, (<b>c</b>) 6.0%, and (<b>d</b>) 11.7%. Peak broadening in both the <math display="inline"><semantics> <msub> <mi>Q</mi> <mi>x</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>Q</mi> <mi>z</mi> </msub> </semantics></math> directions is observed as the Mn concentration increases to 6.0%, indicating structural changes such as increased lattice distortion and reduced crystalline coherence. In (<b>d</b>), the 11.7% doped sample shows a significant loss of intensity, suggesting a transition from substitutional doping to a structure resembling <math display="inline"><semantics> <mrow> <msub> <mi>MnBi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>4</mn> </msub> </mrow> </semantics></math>. These results align with observations from <span class="html-italic">c</span>-plane XRD, confirming a doping-dependent shift in film properties.</p> "> Figure 4
<p>AFM images of (<b>a</b>) an undoped <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> thin film and (<b>b</b>) a 3.5% Mn-doped sample. The dopant introduces significant changes to the surface morphology, with increased roughness and larger grain sizes. The grain size distribution was analyzed by setting the threshold to 5 nm. Two dominant grain sizes of 60–70 and 110–120 nm were observed. These distinct grain sizes suggest the presence of multiple growth modes within the film.</p> "> Figure 5
<p>BF-TEM images of a <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> film doped with 1.6% Mn. (<b>a</b>) Cross-sectional view of the film, showing the surface roughness. (<b>b</b>) Image of the full film stack, including protective layers of C, AuPd, and Pt required for the specimen preparation. Roughness and discontinuities in the <span class="html-italic">c</span>-plane-aligned layers are visible, particularly to the right of the highlighted section. (<b>c</b>) The magnified view of the highlighted area in (<b>b</b>) reveals individual <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> quintuple layers, demonstrating that the film is textured and <span class="html-italic">c</span>-axis oriented.</p> "> Figure 6
<p>BF-TEM images of a <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> thin film with 3.8% Mn. (<b>a</b>) Cross-sectional view of the film, showing a reduced roughness compared to the 1.6% Mn film. (<b>b</b>) Image showing the full stack including the protective layers needed for preparation. The highlighted section indicates the area magnified in (<b>c</b>) and shows evidence of off-axis growth. (<b>c</b>) Enlarged view of the locally disordered quintuple layer stack. A significant area of off-axis growth is observed, suggesting the potential formation of a crystal structure with a different space group than <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 7
<p>(<b>a</b>) HAADF-STEM image of a <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> thin film doped with 1.6% Mn. Light and dark regions are visible across the <span class="html-italic">c</span>-axis-orientated layers. This indicates compositional variation, as the signal intensity depends on atomic number. (<b>b</b>,<b>c</b>) Corresponding STEM EDS maps for Bi and Mn, respectively. (<b>d</b>) HAADF-STEM image of a <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> thin film doped with 3.8% Mn, showing similar light and dark regions. (<b>e</b>,<b>f</b>) Corresponding EDS maps for Bi and Mn for the 3.8% Mn sample. (<b>g</b>) While Mn appears evenly distributed in the EDS images, statistical analysis of the Mn peak intensities normalized by the total spectral integral reveals that the lighter region (yellow rectangle) contain 35% more Mn than the darker region (black rectangle).</p> "> Figure 8
<p>Magnetic characterization of Mn-doped <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> thin films. (<b>a</b>) Magnetization versus magnetic field (<span class="html-italic">M</span>(<span class="html-italic">H</span>)) hysteresis loop of a sample with 3.8% Mn doping measured at 5 K. (<b>b</b>) Magnified view of the highlighted region (orange) in (<b>a</b>), showing detailed low-field behavior. (<b>c</b>,<b>d</b>) Temperature-dependent magnetization (<span class="html-italic">M</span>(<span class="html-italic">T</span>)) plots for samples with 3.8% and 11.7% Mn doping, respectively, with the derivative <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>M</mi> </mrow> </semantics></math>/<math display="inline"><semantics> <mrow> <mi>d</mi> <mi>T</mi> </mrow> </semantics></math> shown below each plot. Discontinuities in <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>M</mi> </mrow> </semantics></math>/<math display="inline"><semantics> <mrow> <mi>d</mi> <mi>T</mi> </mrow> </semantics></math> reveal magnetic transitions at approximately 10 K and 43 K. These transition temperatures are consistent with the presence of two magnetic phases in the films, as suggested by the structural analysis.</p> "> Figure 9
<p>X-ray magnetic circular dichroism (XMCD) analysis of Mn-doped <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> thin films. (<b>a</b>) XAS (top) and XMCD (bottom) spectra at the <math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </msub> </semantics></math> edges for a thin film with 3.8% Mn doping at normal incidence under a 1 T applied field parallel to the beam, showing pronounced dichroism. (<b>b</b>) XMCD spectra for a series of doped samples, normalized by the maximum of the XAS sum at the <math display="inline"><semantics> <msub> <mi>L</mi> <mn>3</mn> </msub> </semantics></math> edge. The XMCD intensity decreases with increasing Mn concentration. (<b>c</b>) XMCD hysteresis curve for a <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Te</mi> <mn>3</mn> </msub> </mrow> </semantics></math> film with 6% Mn, illustrating magnetic behavior as a function of applied field. (<b>d</b>) Plot of peak asymmetry versus atomic-% Mn, highlighting the reduction in magnetic moment (per Mn) with increasing Mn doping, as observed in (<b>b</b>). (<b>e</b>) XMCD spectrum at the <math display="inline"><semantics> <msub> <mi>L</mi> <mn>3</mn> </msub> </semantics></math> edge under an 11 T applied field (to ensure saturation) compared with the simulated spectrum for an Mn site in <math display="inline"><semantics> <mrow> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <msub> <mi>Se</mi> <mn>3</mn> </msub> </mrow> </semantics></math>. (<b>f</b>) Magnetic moment per Mn atom as a function of the applied field, calculated from the XMCD hysteresis loop in (<b>c</b>) and scaled using the simulated spectra in (<b>e</b>). The saturation moment is ∼(3.48 ± 0.25) <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">B</mi> </msub> </semantics></math>/Mn.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thin Film Growth
2.2. Structural Characterization
2.3. Electron Microscopy
2.4. Magnetic Characterization
2.5. X-Ray Spectroscopy
3. Results
3.1. Thin Film Growth and Structural Characterization
3.2. Electron Microscopy
3.3. Magnetic Characterization
3.4. X-Ray Spectroscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qi, X.L.; Hughes, T.L.; Zhang, S.C. Topological Field Theory of Time-Reversal Invariant Insulators. Phys. Rev. B 2008, 78, 195424. [Google Scholar] [CrossRef]
- Zhang, S.C.; Zhang, H.; Liu, C.X.; Qi, X.L.; Dai, X.; Fang, Z. Topological Insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a Single Dirac Cone on the Surface. Nat. Phys. 2009, 5, 438–442. [Google Scholar] [CrossRef]
- Qi, X.L.; Li, R.; Zang, J.; Zhang, S.C. Inducing a Magnetic Monopole with Topological Surface States. Science 2009, 323, 1184–1187. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological Insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef]
- Qi, X.L.; Zhang, S.C. Topological Insulators and Superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110. [Google Scholar] [CrossRef]
- Chang, C.Z.; Zhang, J.; Feng, X.; Shen, J.; Zhang, Z.; Guo, M.; Li, K.; Ou, Y.; Wei, P.; Wang, L.L.; et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science 2013, 340, 167–170. [Google Scholar] [CrossRef]
- Chen, Y.L.; Chu, J.H.; Analytis, J.G.; Liu, Z.K.; Igarashi, K.; Kuo, H.H.; Qi, X.L.; Mo, S.K.; Moore, R.G.; Lu, D.H.; et al. Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator. Science 2010, 329, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y.; Yasuda, K.; Tsukazaki, A. Magnetic Topological Insulators. Nat. Rev. Phys. 2019, 1, 126–143. [Google Scholar] [CrossRef]
- Hor, Y.S.; Roushan, P.; Beidenkopf, H.; Seo, J.; Qu, D.; Checkelsky, J.G.; Wray, L.A.; Hsieh, D.; Xia, Y.; Xu, S.Y.; et al. Development of Ferromagnetism in the Doped Topological Insulator Bi2-xMnxTe3. Phys. Rev. B 2010, 81, 195203. [Google Scholar] [CrossRef]
- Watson, M.D.; Collins-McIntyre, L.J.; Shelford, L.R.; Coldea, A.I.; Prabhakaran, D.; Speller, S.C.; Mousavi, T.; Grovenor, C.R.M.; Salman, Z.; Giblin, S.R.; et al. Study of the Structural, Electric and Magnetic Properties of Mn-Doped Bi2Te3 Single Crystals. New J. Phys. 2013, 15, 103016. [Google Scholar] [CrossRef]
- Lee, J.S.; Richardella, A.; Rench, D.W.; Fraleigh, R.D.; Flanagan, T.C.; Borchers, J.A.; Tao, J.; Samarth, N. Ferromagnetism and spin-dependent transport in n-type Mn-doped bismuth telluride thin films. Phys. Rev. B 2014, 89, 174425. [Google Scholar] [CrossRef]
- Ginley, T.P.; Wang, Y.; Law, S. Topological Insulator Film Growth by Molecular Beam Epitaxy: A Review. Crystals 2016, 6, 154. [Google Scholar] [CrossRef]
- Carva, K.; Kudrnovský, J.; Máca, F.; Drchal, V.; Turek, I.; Baláž, P.; Tkáč, V.; Holý, V.; Sechovský, V.; Honolka, J. Electronic and Transport Properties of the Mn-Doped Topological Insulator Bi2Te3: A First-Principles Study. Phys. Rev. B 2016, 93, 214409. [Google Scholar] [CrossRef]
- Hosokawa, S.; Stellhorn, J.R.; Matsushita, T.; Happo, N.; Kimura, K.; Hayashi, K.; Ebisu, Y.; Ozaki, T.; Ikemoto, H.; Setoyama, H.; et al. Impurity Position and Lattice Distortion in a Mn-Doped Bi2Te3 Topological Insulator Investigated by X-Ray Fluorescence Holography and X-Ray Absorption Fine Structure. Phys. Rev. B 2017, 96, 214207. [Google Scholar] [CrossRef]
- Antonov, V.N.; Bekenov, L.V.; Uba, S.; Ernst, A. Electronic Structure and X-Ray Magnetic Circular Dichroism in Mn-Doped Topological Insulators Bi2Se3 and Bi2Te3. Phys. Rev. B 2017, 96, 224434. [Google Scholar] [CrossRef]
- Zhang, D.; Richardella, A.; Rench, D.W.; Xu, S.Y.; Kandala, A.; Flanagan, T.C.; Beidenkopf, H.; Yeats, A.L.; Buckley, B.B.; Klimov, P.V.; et al. Interplay between Ferromagnetism, Surface States, and Quantum Corrections in a Magnetically Doped Topological Insulator. Phys. Rev. B 2012, 86, 205127. [Google Scholar] [CrossRef]
- Teng, J.; Liu, N.; Li, Y. Mn-Doped Topological Insulators: A Review. J. Semicond. 2019, 40, 081507. [Google Scholar] [CrossRef]
- Hadia, N.M.A.; Mohamed, S.H.; Mohamed, W.S.; Alzaid, M.; Khan, M.T.; Awad, M.A. Structural, optical and electrical properties of Bi2-xMnxTe3 thin films. J. Mater. Sci. Mater. Electron. 2022, 33, 158–166. [Google Scholar] [CrossRef]
- Kander, N.S.; Biswas, S.; Guchhait, S.; Singha, T.; Das, A.K. The role of Mn in Bi2-xMnxTe3 topological insulator: Structural, compositional, magnetic, and weak anti-localization property analysis. J. Mater. Sci. Mater. Electron. 2023, 34, 1198. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, W.; Zhang, H.J.; Zhang, S.C.; Dai, X.; Fang, Z. Quantized Anomalous Hall Effect in Magnetic Topological Insulators. Science 2010, 329, 61–64. [Google Scholar] [CrossRef]
- Zhang, J.M.; Ming, W.; Huang, Z.; Liu, G.B.; Kou, X.; Fan, Y.; Wang, K.L.; Yao, Y. Stability, Electronic, and Magnetic Properties of the Magnetically Doped Topological Insulators Bi2Se3, Bi2Te3, and Sb2Te3. Phys. Rev. B 2013, 88, 235131. [Google Scholar] [CrossRef]
- Kou, X.; Lang, M.; Fan, Y.; Jiang, Y.; Nie, T.; Zhang, J.; Jiang, W.; Wang, Y.; Yao, Y.; He, L.; et al. Interplay between Different Magnetisms in Cr-Doped Topological Insulators. ACS Nano 2013, 7, 9205–9212. [Google Scholar] [CrossRef]
- Ye, M.; Li, W.; Zhu, S.; Takeda, Y.; Saitoh, Y.; Wang, J.; Pan, H.; Nurmamat, M.; Sumida, K.; Ji, F.; et al. Carrier-Mediated Ferromagnetism in the Magnetic Topological Insulator Cr-doped (Sb,Bi)2Te3. Nat. Commun. 2015, 6, 8913. [Google Scholar] [CrossRef]
- Tcakaev, A.; Zabolotnyy, V.B.; Green, R.J.; Peixoto, T.R.F.; Stier, F.; Dettbarn, M.; Schreyeck, S.; Winnerlein, M.; Vidal, R.C.; Schatz, S.; et al. Comparing Magnetic Ground-State Properties of the V- and Cr-Doped Topological Insulator (Bi,Sb)2Te3. Phys. Rev. B 2020, 101, 045127. [Google Scholar] [CrossRef]
- Choi, Y.H.; Jo, N.H.; Lee, K.J.; Yoon, J.B.; You, C.Y.; Jung, M.H. Transport and Magnetic Properties of Cr-, Fe-, Cu-Doped Topological Insulators. J. Appl. Phys. 2011, 109, 07E312. [Google Scholar] [CrossRef]
- Zhao, W.; Cortie, D.; Chen, L.; Li, Z.; Yue, Z.; Wang, X. Quantum Oscillations in Iron-Doped Single Crystals of the Topological Insulator Sb2Te3. Phys. Rev. B 2019, 99, 165133. [Google Scholar] [CrossRef]
- Figueroa, A.I.; van der Laan, G.; Collins-McIntyre, L.J.; Cibin, G.; Dent, A.J.; Hesjedal, T. Local Structure and Bonding of Transition Metal Dopants in Bi2Se3 Topological Insulator Thin Films. J. Phys. Chem. C 2015, 119, 17344–17351. [Google Scholar] [CrossRef]
- Abdalla, L.B.; Seixas, L.; Schmidt, T.M.; Miwa, R.H.; Fazzio, A. Topological Insulator Bi2Se3(111) Surface Doped with Transition Metals: An ab initio Investigation. Phys. Rev. B 2013, 88, 045312. [Google Scholar] [CrossRef]
- Kander, N.S.; Islam, S.; Guchhait, S.; Das, A.K. The Effect of Fe-Doping on Structural, Elemental, Magnetic, and Weak Anti-Localization Properties of Bi2Se3 Topological Insulator. Appl. Phys. A 2023, 129, 253. [Google Scholar] [CrossRef]
- Deng, B.; Zhang, Y.; Zhang, S.B.; Wang, Y.; He, K.; Zhu, J. Realization of Stable Ferromagnetic Order in a Topological Insulator: Codoping-Enhanced Magnetism in 4f Transition Metal Doped Bi2Te3. Phys. Rev. B 2016, 94, 054113. [Google Scholar] [CrossRef]
- Liu, J.; Hesjedal, T. Magnetic Topological Insulator Heterostructures: A Review. Adv. Mater. 2023, 35, 2102427. [Google Scholar] [CrossRef] [PubMed]
- DC, M.; Grassi, R.; Chen, J.Y.; Jamali, M.; Hickey, D.R.; Zhang, D.; Zhao, Z.; Li, H.; Quarterman, P.; Lv, Y.; et al. Room-Temperature High Spin-Orbit Torque due to Quantum Confinement in Sputtered BixSe(1-x) films. Nat. Mater. 2018, 17, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Li, P.; Guo, Z.; Dong, G.; Peng, B.; Zha, X.; Min, T.; Zhou, Z.; Liu, M. Giant Tunable Spin Hall Angle in Sputtered Bi2Se3 Controlled by an Electric Field. Nat. Commun. 2022, 13, 1650. [Google Scholar] [CrossRef]
- Xu, S.Y.; Neupane, M.; Liu, C.; Zhang, D.; Richardella, A.; Wray, L.A.; Alidoust, N.; Leandersson, M.; Balasubramanian, T.; Sánchez-Barriga, J.; et al. Hedgehog Spin Texture and Berry’s Phase Tuning in a Magnetic Topological Insulator. Nat. Phys. 2012, 8, 616–622. [Google Scholar] [CrossRef]
- Harrison, S.E.; Li, S.; Huo, Y.; Zhou, B.; Chen, Y.L.; Harris, J.S. Two-step growth of high quality Bi2Te3 thin films on Al2O3 (0001) by molecular beam epitaxy. Appl. Phys. Lett. 2013, 102, 171906. [Google Scholar] [CrossRef]
- Pilidi, A.; Speliotis, T. Anomalous Hall Effect in a Magnetic Topological Insulator (BiMn)2Te3. IEEE Trans. Magn. 2019, 55, 1–6. [Google Scholar] [CrossRef]
- Awana, G.; Fujita, R.; Frisk, A.; Chen, P.; Yao, Q.; Caruana, A.J.; Kinane, C.J.; Steinke, N.J.; Langridge, S.; Olalde-Velasco, P.; et al. Critical analysis of proximity-induced magnetism in MnTe/Bi2Te3 heterostructures. Phys. Rev. Mater. 2022, 6, 053402. [Google Scholar] [CrossRef]
- van der Laan, G. Applications of Soft X-Ray Magnetic Dichroism. J. Phys. Conf. Ser. 2013, 430, 012127. [Google Scholar] [CrossRef]
- Ye, M.; Eremeev, S.V.; Kuroda, K.; Krasovskii, E.E.; Chulkov, E.V.; Takeda, Y.; Saitoh, Y.; Okamoto, K.; Zhu, S.Y.; Miyamoto, K.; et al. Quasiparticle interference on the surface of Bi2Se3 induced by cobalt adatom in the absence of ferromagnetic ordering. Phys. Rev. B 2012, 85, 205317. [Google Scholar] [CrossRef]
- Honolka, J.; Khajetoorians, A.A.; Sessi, V.; Wehling, T.O.; Stepanow, S.; Mi, J.L.; Iversen, B.B.; Schlenk, T.; Wiebe, J.; Brookes, N.B.; et al. In-Plane Magnetic Anisotropy of Fe Atoms on Bi2Se3(111). Phys. Rev. Lett. 2012, 108, 256811. [Google Scholar] [CrossRef]
- Shelford, L.R.; Hesjedal, T.; Collins-McIntyre, L.; Dhesi, S.S.; Maccherozzi, F.; van der Laan, G. Electronic structure of Fe and Co magnetic adatoms on Bi2Te3 surfaces. Phys. Rev. B 2012, 86, 081304. [Google Scholar] [CrossRef]
- Collins-McIntyre, L.J.; Watson, M.D.; Baker, A.A.; Zhang, S.L.; Coldea, A.I.; Harrison, S.E.; Pushp, A.; Kellock, A.J.; Parkin, S.S.P.; van der Laan, G.; et al. X-Ray Magnetic Spectroscopy of MBE-Grown Mn-Doped Bi2Se3 Thin Films. AIP Adv. 2014, 4, 127136. [Google Scholar] [CrossRef]
- Choi, Y.H.; Jo, N.H.; Lee, K.J.; Lee, H.W.; Jo, Y.H.; Kajino, J.; Takabatake, T.; Ko, K.T.; Park, J.H.; Jung, M.H. Simple Tuning of Carrier Type in Topological Insulator Bi2Se3 by Mn Doping. Appl. Phys. Lett. 2012, 101, 152103. [Google Scholar] [CrossRef]
- Collins-McIntyre, L.J.; Harrison, S.E.; Schönherr, P.; Steinke, N.J.; Kinane, C.J.; Charlton, T.R.; Alba-Veneroa, D.; Pushp, A.; Kellock, A.J.; Parkin, S.S.P.; et al. Magnetic Ordering in Cr-Doped Bi2Se3 Thin Films. Europhys. Lett. 2014, 107, 57009. [Google Scholar] [CrossRef]
- Thole, B.T.; Carra, P.; Sette, F.; van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 1992, 68, 1943–1946. [Google Scholar] [CrossRef]
- van der Laan, G.; Figueroa, A.I. X-ray magnetic circular dichroism—A versatile tool to study magnetism. Coord. Chem. Rev. 2014, 277–278, 95–129. [Google Scholar] [CrossRef]
- Figueroa, A.I.; Hesjedal, T.; Steinke, N.J. Magnetic order in 3D topological insulators—Wishful thinking or gateway to emergent quantum effects? Appl. Phys. Lett. 2020, 117, 150502. [Google Scholar] [CrossRef]
- Steinke, N.J.; Zhang, S.L.; Baker, P.J.; Duffy, L.B.; Kronast, F.; Krieger, J.; Salman, Z.; Prokscha, T.; Suter, A.; Langridge, S.; et al. Magnetic correlations in the magnetic topological insulator (Cr,Sb)2Te3. Phys. Rev. B 2022, 106, 224425. [Google Scholar] [CrossRef]
- Fan, T.; Khang, N.H.D.; Nakano, S.; Hai, P.N. Ultrahigh efficient spin orbit torque magnetization switching in fully sputtered topological insulator and ferromagnet multilayers. Sci. Rep. 2022, 12, 2998. [Google Scholar] [CrossRef]
- Yue, C.; Jiang, S.; Zhu, H.; Chen, L.; Sun, Q.; Zhang, D.W. Device Applications of Synthetic Topological Insulator Nanostructures. Electronics 2018, 7, 225. [Google Scholar] [CrossRef]
- Gilbert, M.J. Topological electronics. Commun. Phys. 2021, 4, 70. [Google Scholar] [CrossRef]
- Breunig, O.; Ando, Y. Opportunities in topological insulator devices. Nat. Rev. Phys. 2022, 4, 184–193. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, R.; Kumar, S.; Khanna, M.K.; Kumar, R.; Kumar, V.; Gupta, A. Interacting with Futuristic Topological Quantum Materials: A Potential Candidate for Spintronics Devices. Magnetochemistry 2023, 9, 73. [Google Scholar] [CrossRef]
- Jin, K.H.; Jiang, W.; Sethi, G.; Liu, F. Topological quantum devices: A review. Nanoscale 2023, 15, 12787–12817. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, M.; Zhu, T.; Xing, D.; Zhang, H.; Wang, J. Topological Axion States in the Magnetic Insulator MnBi2Te4 with the Quantized Magnetoelectric Effect. Phys. Rev. Lett. 2019, 122, 206401. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Du, S.; Wang, Z.; Gu, B.L.; Zhang, S.C.; He, K.; Duan, W.; Xu, Y. Intrinsic Magnetic Topological Insulators in van der Waals Layered MnBi2Te4-Family Materials. Sci. Adv. 2024, 5, 5685. [Google Scholar] [CrossRef]
Nominal Mn Concentration (at. %) | Measured Mn Concentration (at. %) | Measured Bi Concentration (at. %) | Measured Te Concentration (at. %) |
---|---|---|---|
0.8 | 0.8 ± 0.1 | 38.7 ± 0.4 | 58.8 ± 0.5 |
1.7 | 1.6 ± 0.1 | 40.1 ± 0.4 | 58.3 ± 0.5 |
3.5—low power | 3.5 ± 0.4 | 39.5 ± 0.2 | 57.0 ± 0.3 |
3.5—pulsed | 3.8 ± 0.3 | 38.4 ± 0.1 | 56.8 ± 0.1 |
7.0 | 6.0 ± 0.5 | 38.0 ± 0.5 | 56.0 ± 0.5 |
10.6 | 8.5 ± 0.1 | 38.2 ± 1.0 | 53.4 ± 1.0 |
17.7 | 11.7 ± 0.1 | 36.7 ± 0.1 | 51.6 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bibby, J.; Singh, A.; Heppell, E.; Bollard, J.; Achinuq, B.; Haigh, S.J.; van der Laan, G.; Hesjedal, T. Synthesis of Nanocrystalline Mn-Doped Bi2Te3 Thin Films via Magnetron Sputtering. Crystals 2025, 15, 54. https://doi.org/10.3390/cryst15010054
Bibby J, Singh A, Heppell E, Bollard J, Achinuq B, Haigh SJ, van der Laan G, Hesjedal T. Synthesis of Nanocrystalline Mn-Doped Bi2Te3 Thin Films via Magnetron Sputtering. Crystals. 2025; 15(1):54. https://doi.org/10.3390/cryst15010054
Chicago/Turabian StyleBibby, Joshua, Angadjit Singh, Emily Heppell, Jack Bollard, Barat Achinuq, Sarah J. Haigh, Gerrit van der Laan, and Thorsten Hesjedal. 2025. "Synthesis of Nanocrystalline Mn-Doped Bi2Te3 Thin Films via Magnetron Sputtering" Crystals 15, no. 1: 54. https://doi.org/10.3390/cryst15010054
APA StyleBibby, J., Singh, A., Heppell, E., Bollard, J., Achinuq, B., Haigh, S. J., van der Laan, G., & Hesjedal, T. (2025). Synthesis of Nanocrystalline Mn-Doped Bi2Te3 Thin Films via Magnetron Sputtering. Crystals, 15(1), 54. https://doi.org/10.3390/cryst15010054