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Abstract: The Parameter Space Concept (PSC) is an alternative approach to solving and refining
(partial) crystal structures from very few pre-chosen X-ray or neutron diffraction amplitudes without
the use of Fourier inversion. PSC interprets those amplitudes as piecewise analytic hyper-surfaces,
so-called isosurfaces, in the Parameter Space, which is spanned by the spatial coordinates of all atoms
of interest. The intersections of all isosurfaces constitute the (possibly degenerate) structure solution.
The present feasibility study investigates the La and Sr split position of the potential high-temperature
super-conductor (La0.5Sr1.5)MnO4, I4/mmm, with a postulated total displacement between La and
Sr of a few pm by theoretical amplitudes of pre-selected 0 0 l reflections (l = 2, 4, . . . , 20). The revision
of 15-year-old results with state-of-the-art computing equipment enhances the former simplified
model by varying the scattering power ratio fLa/ fSr, as exploitable by means of resonant scattering
contrast at synchrotron facilities, and irrevocably reveals one of the two originally proposed solutions
as being a “blurred” pseudo-solution. Finally, studying the resolution limits of PSC as a function of
intensity errors by means of Monte-Carlo simulations shows both that the split can only be resolved
for sufficiently low errors and, particularly for the resonant scattering contrast, a theoretical precision
down to ±0.19 pm can be achieved for this specific structural problem.

Keywords: parameter space concept; high resolution; high quality; validation and reproducibility in
structural science; X-ray diffraction; resonant contrast; pm resolution; pseudo-symmetry

1. Introduction

Within the last 15 years, the Parameter Space Concept (PSC) was theoretically developed
by Fischer, Kirfel and Zimmermann in a series of six publications, e.g., Refs. [1,2], as an
alternative approach to solving and refining (partial) crystal structures from diffraction
amplitudes without the use of Fourier synthesis. The latter maps the electron or scattering
density distribution ρ(x, y, z) for 0 ≤ x, y, z < 1 in the crystallographic unit cell (or in its
asymmetric part). In contrast, PSC uses direct Fourier transforms in order to reveal the
dependence of scattering amplitudes on the values of the structural parameters and their
correlations. Hereby, the intrinsically as free considered 3m parameters of an m atomic
structure span its 3m-dimensional Parameter Space (PS) P3m with an orthonormal basis
in R3m real space [3]. As in the framework of structure factors F, the periodicity of F
limits the Parameter Space to an 3m-dimensional unit cell in the form of a ‘cube’ [0, 1)3m.
Each combination of coordinates results in a specific amplitude |F(hkl)| for a reflection hkl.
If the experimental amplitude of a reflection is known from measurements, the possible
coordinate combinations ensuring this amplitude are restricted by a piecewise analytic
hyper-surface, a manifold of (3m− 1) dimensions called the isosurface of |F(hkl)|. Generally,

Crystals 2024, 14, 684. https://doi.org/10.3390/cryst14080684 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst14080684
https://doi.org/10.3390/cryst14080684
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-5850-4469
https://orcid.org/0000-0002-6796-9989
https://doi.org/10.3390/cryst14080684
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst14080684?type=check_update&version=2


Crystals 2024, 14, 684 2 of 15

each intersecting isosurface reduces the possible structure solutions by one dimension.
The solution vector is the intersection of all such isosurfaces [3].

An essential feature of the PSC is as follows: If more than one solution reproduces the
experimental observations within the accuracy limit, the PSC presents all those solutions,
in contrast to conventional methods. Furthermore, the PSC intrinsically allows for the
easy implementation of resonant scattering contrast, which may significantly boost the
resolution, as demonstrated in Section 3.

To keep computing demand under control, we simplify the problem by one-dimensional
projections of the structure onto the x, y, and z axes and subsequently interconnect these
projected solutions [4]. For a one-dimensional structure projection, e.g., onto the z axis,
only m independent isosurfaces for |F(l)| := |F(00l)| are needed to define the “solution
point” for the structure projection onto this axis.

2. The Object and Its PSC-Handling

Regarding the positions of La and Sr within the crystal structure of the multifer-
roic (La0.5Sr1.5)MnO4 in the context of the present work, which is isostructural to the
high-temperature super-conductor (La1 – xSr1+x)CuO4 and shows complex spin, charge,
and orbital ordered ground states below 230 K [5], initial data can be used from prior ex-
periments reported in the literature, and theoretical considerations can be assessed through
DFT modeling. As has been determined by powder and by single crystal diffraction using
neutrons as well as X-rays, the crystal structure of (La0.5Sr1.5)MnO4 has a space group
I4/mmm (139), with the lattice parameters a = 3.863 Å and c = 12.421 Å [6]. In the
reported structure, La and Sr occupy the same equal point (0, 0, z0) with an originally
determined z0 of 0.35816(3) (error in brackets of the presented digital precision), and
thus, 0.5 − z0 = 0.14184. In addition, multipole refinements on accurate high-energy data

(100 keV, i.e., λ = 0.124 Å) up to sin θ/λ = 1.1 Å
−1

and R(F) = 0.009 were performed [7]
with a resolution of about 1 pm. These data indicated the possibility of split positions for
the cations La and Sr with a difference in z of ∆z := |zSr − zLa| ≈ 0.0016, i.e., ≈2.0 pm, well
beyond the limit of resolution for this data set. To achieve a reliable estimate from ab initio
electronic structure calculations, we performed preliminary modeling by means of density
functional theory (see Appendix A for more details) in a 2 × 2 × 1 supercell. The results
support an atomistic La/Sr split, predicting a value of about ∆z = 0.0034 (≈4.2 pm).

Instead of performing, e.g., a least-squares refinement on all structure parameters
based on a full three-dimensional data set, this problem can be investigated with PSC,
as has already been carried out by Kirfel et al. [8]. Since the free coordinates only point
along the c direction, the problem can be treated in a one-dimensional primitive lattice
by employing only 0 0 l reflections, which account for the projection of the structure onto
[0 0 l] [8]. Considering La/Sr partial structure contributions according to the Equal Point
Atom (EPA) model [1,3] upon using for the atomic structure factors f the simplification
fLa = fSr = 1, the corresponding PSC model for the La/Sr split position is a centric two-
dimensional Parameter Space P2. The permutation symmetry is reflected in the small
asymmetric unit of the Partial Geometric Structure Factor G2 within the Parameter Space
P2 = zLa ⊗ zSr, as indicated by the gray shaded area in Figure 1 (cf. Ref. [8]). Here, G2 is
defined as

G2(l) = s(l)g(l) = 2 ∑
j=Sr,La

oj
(
cos 2πlzj + cos 2πl(zj + 0.5)

)
, (1)

where s(l) depicts the sign and g(l) the amplitude of the expression, and oj is the occupancy
of the crystallographic site. In general, the Geometric Structure Factor G(l) = ∑m

j=1 cos 2πlzj
represents the full centrosymmetric structure of m atoms in the EPA model.
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Figure 1. The 2-dimensional Parameter Space zLa ⊗ zSr for the La/Sr Partial Geometric Structure
Factors G2(l) (Equation (1)) of (La0.5Sr1.5)MnO4, I4/mmm. The data are visualized in the full functional
region (left) and the magnified region of interest (right) as isosurfaces, including positive (solid lines)
and negative signs (dotted lines). The permutation symmetry of P2 adds an exact pseudo-solution
z∗La = 0.35316, z∗Sr = 0.36316 to the presumed split position zLa = 0.36316, zSr = 0.35316 (green dots).
The gray shaded areas depict two different but equivalent asymmetric units, the conventional one (dark
gray) and the one used in the literature (light gray), for better comparison. Gray solid lines depict mirrors
and gray dashed lines anti-mirrors.

In the early test calculations, Kirfel et al. assumed a rather large split of ∆z = 0.01 [8],
as they did not expect to reach the (much smaller) estimation of the experiment [7]. The PSC
approach then recovered the positions zLa = 0.349(2) and zSr = 0.362(2) with a split
of ∆z = 0.013. Alternatively, they also determined the z coordinates, using a batch of
300 calculations, to be zSr − zLa = 0.0142 . . . 0.0150 with estimated errors of 0.0021 . . . 0.0038
(from Gaussian distribution fits and their single half-widths). For this approach, they put a
maximum relative statistical data error of 10% or 20%, respectively, onto the G2 values [8].
Both results reflect the identified split position close to the presumed zSr − zLa = 0.360 −
0.350 = 0.010, albeit with a significant offset of about 30%.

As a basis for the subsequent analysis of smaller and more reasonable splits, we
recreated these calculations within the EPA model with state-of-the-art computing equip-
ment, only using the Sr/La substructure with the originally applied split of ∆z = 0.01 for
comparison. We calculated the diffraction amplitudes from the (La0.5Sr1.5)MnO4 structure,
as determined by Senff et al., at room temperature [6]. Figure 1 shows the corresponding
isolines for the reflections 0 0 l with l = 2, 4, . . . , 20 for this very simple case. The PSC
approach finds the exact solution without offset. Due to the permutation symmetry of P2,
a second exact pseudo-solution is evident with interchanged La/Sr z-coordinates. None
of the five selected reflections used in this figure had small amplitudes (this also applies
to Figure 2); they were chosen because their isolines intersect at large angles, while others
present severe correlation effects, and hence, do not provide optimal resolution results.
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Figure 2. The 2-dimensional Parameter Space zSr ⊗ zLa for the complete structure of (La0.5Sr1.5)MnO4,
I4/mmm, with computed diffraction data F(l) (Equation (2)) in the first quadrant (left) and the magni-
fied region of interest (right). The functions are visualized as isosurfaces including positive (solid lines)
and negative signs (dotted lines), with asymmetric units and mirrors in analogy to Figure 1. The mirror
along zSr = zLa lifts via loss of permutation symmetry from fSr ̸= fLa and the pseudo-solution (z∗La, z∗Sr)

with approximately interchanged coordinates shifts.

3. Resolution Studies

The following resolution study improves the performance of the simple PSC approach
used by Kirfel et al. [8]. We evaluated the limits of the PSC method with dependence
on different data qualities for this specific structural case. This goal was achieved, on
the one hand, by abandoning the EPA model and taking into account a series of smaller
positional splits, and on the other hand, by introducing enhanced (resonant) scattering
contrast. The 0 0 l reflection intensities were calculated for l = 2, 4, . . . , 20 at a wavelength
of λ = 0.82656 Å (i.e., 15 keV) and, in addition, at λe = 0.77009 Å (i.e., 16.1 keV), which is
just below the excitation of the Sr-K absorption edge. These complementary calculations
vary the scattering strength specifically of Sr and artificially enhance the contrast by means
of dispersion-modified |F(l)| based on a significantly varying f ′Sr (−2.25 at 15 keV up to
−11.04 at 16.1 keV) with f ′′Sr about constant at ≈0.61 . . . 0.54 [9]. The structural scenario
is not altered; only the incident photon energy is altered. This resonant contrast has
been widely used in Resonant X-ray Diffraction for accurate crystal structure refinements
(e.g., [10–13]), and may even become the dominant signal in the case of purely resonant
diffraction at forbidden reflections (e.g., [14–16]).

In short, the following consecutive enhancements cover the following: (a) different
real f (thus breaking the permutation symmetry of the EPA model; see solutions in Figure 1),
(b) some smaller ∆z model assumptions and respective PSC resolution for several data
qualities, and (c) resolution enhancement using energy-dispersive amplitude differences
and the respective resonant contrast.

3.1. Step 1: Going beyond the Equal Point-Atom Model

In the first step, the scattering contributions of La and Sr are treated by computing the
conventional structure factor F(l)

F(l) = 2 ∑
j=Sr,La

oj f j
(
cos 2πlzj + cos 2πl(zj + 0.5)

)
+ Ffix

MnO4
(l) (2)

taking into account the specific scattering power of each atomic species by including the re-
spective atomic scattering factors f j, omitting temperature effects (and accordingly, atomic
displacement parameters). Again, we explore the Parameter Space for zSr and zLa, but with
an additionally fixed MnO4 partial structure contribution Ffix

MnO4
. Potential charge ordering

on Mn electronic configurations is not accounted for in the presented work. To better un-
derstand the positional correlations, we incrementally increase the complexity and consider
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in this step only the non-resonant Thomson scattering contributions f j(l) = f0,j(l) [17]
without dispersion corrections. While irrelevant for the EPA solution, now, a qualitative
choice has to be made regarding the displacement direction of La and Sr. Following our
preliminary DFT results, we define La as depicted in the zoomed-in area of Figure 2 (green
dot) with the larger z coordinate. As fSr ̸= fLa, this induces a break of permutation sym-
metry in the Parameter Space, doubling the two-dimensional asymmetric unit (Figure 2,
in comparison to Figure 1), as expected. The disproportionated La/Sr scattering strength
results in elongation and contraction of the isosurfaces, which lifts the mirror symmetry
along zSr = zLa. Additional qualitative changes in the isosurfaces’ landscapes originate
from the inclusion of the MnO4 partial structure. By fixing the known MnO4 contribution,
the herein defined “core question” of determining two z parameters can be approached
independently of the noise from all the other structural parameters (and from almost all
three-dimensional experimental measurements). Again, the PSC approach finds the exact
solution without offset. Now, the exact pseudo-solution (z∗Sr, z∗La), formerly at inverted
coordinates (cf. with Figure 1), shifts to the coordinates z∗Sr ≈ 0.36, z∗La ≈ 0.35.

For the discussed Sr/La split position, the “broken symmetry” may result either
in two statistically occupied, equivalent 4e positions (0, 0, z) for Sr and La, keeping the
space group I4/mmm, or in an asymmetric split of the position, a reduction in the space
group’s symmetry, and possibly a superstructure of a multiple-cell volume. This cannot be
answered at present without experimental details.

Figure 2 reveals that in general, isosurfaces (herein isolines) of larger l have stronger
curvatures and higher gradients due to shorter periodicities, which is valid for the Parame-
ter Space of any dimension. In terms of contrast, gradients may become especially large
for isosurfaces of small or vanishing amplitudes (though they vary along the isosurfaces).
This can be seen from the development of a structure factor close to zero intensity for small
atomic displacement r⃗j → r⃗ 0

j + u⃗

F(E, Q⃗) =
m

∑
j=1

oj f j(E, Q⃗)e−Mj eiQ⃗⃗rj

= F|u⃗=0︸ ︷︷ ︸
→0

+
∂F
∂uk

∣∣∣∣
u⃗=0

⟨uk⟩+ 1
2

∂2F
∂uk∂ul

∣∣∣∣
u⃗=0

⟨ukul⟩+ · · ·

≈
m

∑
j=1

oj f je
−Mj eiQ⃗⃗r 0

j ·
(

iQk⟨uk⟩ − 1
2

QkQl⟨ukul⟩
)

,

(3)

with occupancy of the crystallographic site oj, the momentum transfer vector Q⃗, and the
Debye–Waller factor e−Mj taking into account the reduction in the scattering amplitude due to
the uncertainty in the position r⃗j of atom j (Einstein’s sum convention on k, l) [13]. Thus, these
regions of high contrast provide the largest change in the amplitude’s interference balance,
accompanied by enhanced sensitivity, reflecting the correlated structural dependencies not
only respecting the direction of the gradient, but generally of any individual atomic position
as well. Only for very specific correlated parameter changes along the m − 1 dimensional
manifold of the isosurface can the balance of destructive interference be kept fulfilled. This
enhanced sensitivity to positional changes is similar to the high contrast for atomic displace-
ments achieved by the Resonantly Suppressed Diffraction method, which varies the scattering
power of certain atomic species by means of dispersion corrections [13].

Error-free isosurfaces of a given amplitude have no thickness, and are thus manifolds
of no volume in the respective Parameter Space. Yet, a certain thickness occurs as soon as
data sets have an error distribution. However, this non-vanishing volume for the solution
space is less pronounced along large gradients. Thus, for obtaining a high resolution,
the optimal reflections can be selected from a given set of observations (provided the
parameter region investigated is sufficiently close to the final result), choosing high order,
low amplitude, minimal |F|/|l|, and a low correlation with other isosurfaces (i.e., large
intersection angles). If these (few) optimal reflections are measured more accurately, they
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provide the best basis for high resolution at low cost for synchrotron or neutron beamtimes.
To select a set of low-correlated reflections, possible candidates are easily identifiable in
the Parameter Space from isosurface representations as well; high correlation coefficients
between two parameters show themselves on the basis of nearly parallel isosurfaces, i.e.,
through small intersection angles. The optimal parameters are thus obtained by selecting
reflection amplitudes that intersect orthogonally at best.

3.2. Step 2: Variations in Atomic Scattering Power

To assess the general impact of resonant scattering contrast on the positional resolu-
tion, e.g., specifically in the smooth pre-edge regions of La and Sr without fine structure
oscillations due to absorption effects, we varied the scattering strength ratio fLa/ fSr while
keeping the product fLa · fSr fixed. Within the chosen range of fLa/ fSr up to a scaling
factor of 10, the coordinates of the sharp solution vector have to remain constant, of course,
as they resemble the true structural positions. However, the position of the pseudo-solution
changes significantly in the relative coordinates (Figure 3a). As is evident, this qualitative
displacement of the pseudo-solution vector in Parameter Space scales with the variation
in the scattering power. This conclusion will generally hold for any structural pseudo-
symmetry scenario with a false solution close to the true one. Since the element-specific
weights of the partial structure contributions are directly varied, the isosurfaces’ boundary
conditions of fixed amplitudes (Figure 3b,c) can only be maintained for the pseudo-solution
by a hypothetical positional shift in the Parameter Space, whereas the true solution acts like
an anchor for each isosurface. This immediately suggests the existence of a general concept
to separate PSC solution volumes and identify false pseudo-solutions by using data sets of
two photon energies offering different atomic scattering strength ratios, similar to resonant
contrast in Resonant X-ray Diffraction methods. As expected from symmetry considera-
tions according to the EPA model, the pseudo-solution has a minimum standard deviation
of about 1 × 10−4 for fLa = fSr and increases by about one decade for disproportionated
scattering strengths.

(a)

(b)

(c)

Figure 3. (a) Model study of both the true and the pseudo-symmetric solutions as a function of
scattering strength ratio by fitting intersecting isosurfaces F(l) (Equation (2), least-squares). The ratio
was varied by a scaling factor of 10, keeping the mean product fLa · fSr fixed. The isosurfaces F(l)
were calculated for reflections l = 2, 4, . . . , 20. Confidence regions are given as error bars of 2.6σ,
magnified by a factor of 10 for better visibility. The true solution (zLa, zSr) is independent of the
varying ratio (green dot), whereas the pseudo-solutions result in a linear series between the limits
at a distance of 2 · ∆z (red dots). As expected, the positional errors scale inversely to the scattering
power. The change in scattering power directly reflects the distortion of the respective isosurface
features, i.e., light weights act as elongations that increase the respective positional errors, shown for
the limits of the series in (b) for “light La” (violet dot) and in (c) for “light Sr” (yellow dot).



Crystals 2024, 14, 684 7 of 15

Further, the positions of the “lighter” atoms (with smaller f ) are less well-defined (see
Figure 3a), which coincides with the elongation of isosurfaces in these directions (Figure 3b,c).
In the limit of zero contribution, the isosurfaces are indifferent to the position of that particular
“zero electron” atom. Although in an absolute comparison, La is the heavier atomic species,
the errors for “light La” are in the same magnitude as those for “light Sr”, because Sr has a
triple stoichiometric weight. In addition, the limits for the resulting linear solution vector
series (red dots in Figure 3a) are defined by twice the presumed difference ∆z.

3.3. Step 3: Intensity Errors and Monte-Carlo Calculations

In this step, we studied the robustness of the PSC to reveal the presumed split position
with respect to reflection intensity errors by means of Monte-Carlo calculations, similar
to the approach by Kirfel et al. [8] and later by Zschornak et al. [18], now using the DFT-
predicted more realistic split of ∆z = 0.0034 (≈4.2 pm) for three error distributions ∆I/I of
20%, 5%, and 1% (Figure 4). Again, we performed the calculations with structure factors
for the full structure, varying zLa and zSr while keeping the MnO4 contribution fixed.
To implement conditions as close as possible to the experimental observations, we then
analyzed the reflection intensities I = |F(l)|2.

Figure 4. Monte-Carlo study of the split position with ∆z = 0.0034 for different Gaussian-distributed
random errors of the reflection intensities for l = 2, 4, . . . , 20 with 100 test samples each (Equation (2),
least-squares fits). The solution is in black and the pseudo-solution in red, each with two confidence
regions, 1σ ≈ 68% (heavy color shade) and 2.6σ ≈ 99% (light color shade). Whereas an intensity error
of 5% resolves the true solution within σ confidence, highly precise intensity data with an intensity
error better than 1% are needed for 2.6σ confidence.

By applying statistically, i.e., Gaussian, distributed artificial intensity errors of up
to 20% to the theoretical data, we obtain quite different behavior as a function of the
introduced intensity error. For the low-quality data with ∆I/I = 20%, only one solution
vector is allocable within the 2.6σ and 1σ confidence regions in Parameter Space. In the
free z parameters of La and Sr, the statistical center of the best fits is the high-symmetry
position. Hence, low-quality data cannot identify two separate solutions. However, they
may provide a hint, and by using better measurements, this hint is confirmed [18]. For the
medium-quality data with ∆I/I = 5%, two distinct solution vectors (Figure 4) become
evident within the σ confidence region, confirming a split position. Only a few random
error distributions result in the high-symmetry solution in the central region of the depicted
Parameter Space. For the high-quality data with ∆I/I = 1%, the split positions are the
clear structure solution even within the 2.6σ confidence region, with the pseudo-symmetric
solution well separated as a second solution vector.

In conclusion, the split along the z axis can be effectively resolved as 0.0034 ± 0.0003,
corresponding to approx. (4.2 ± 0.4)pm, for sufficiently good data quality. The positional
least-squares fit errors from random intensity errors are dominant in comparison to the fit
errors from disproportionated scattering factors of the pseudo-solution (Step 2, magnified
by a factor of 10 in Figure 3).
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3.4. Step 4: Dependence of the Resolution on the Intensity Error

We tried to answer the question “What is the smallest difference ∆z that can be
separated with a confidence level of 2.6σ = 99% by the above Monte-Carlo calculations?”.
Figure 5 shows Monte-Carlo simulations of the (La0.5Sr1.5)MnO4, I4/mmm, structure for
a series of different zLa and zSr input values and for different assumed data qualities.
The resulting fits represent overlapping error envelopes for the zSr and zLa positions,
respectively. For medium-quality data with ∆I/I = 5%, a ∆z of 0.007 can be separated,
which corresponds to 8.5 pm. For ∆I/I = 1%, a resolution of ∆z > 0.003 (3.7 pm) is possible.
The precision of the method is even much (>101) better for finding the respective solution
vectors. Further, it is evident what has already been found in Step 2: for poor data quality
∆I/I = 20%, the split position cannot be verified within the calculated ∆z range.

Figure 5. Fitted positions zLa (blue +) and zSr (green ×) for a series of presumed splits 0 ≤ ∆z ≤ 0.02
(between green and blue circles, accordingly) and three data qualities, given with a confidence level
of 99% (error envelopes, 100 samples each, Equation (2), least-squares fit). For the three different
intensity errors ∆I/I = 20%, 5% and 1%, the distinct split positions can be resolved for splits ∆z > 0.02
(≈25 pm), ∆z > 0.007 (≈8.5 pm), and ∆z > 0.003 (≈3.7 pm), respectively.

3.5. Step 5: Pushing the Limits of the PSC

Here, we offer an estimate of the maximum resolution that may be achieved by
means of enhanced resonant scattering contrast, as well as extraordinary data quality, with
∆I/I = 1%, e.g., in synchrotron conditions. For this purpose, we consider two different
X-ray photon energies: one far away and one just below the Sr-K absorption edge at
15 keV and 16.1 keV, respectively, and apply the tabulated dispersion corrections, at 15 keV:
f ′Sr + i f ′′Sr = −2.25 + i 0.61 and at 16.1 keV: f ′Sr + i f ′′Sr = −11.04 + i 0.54 [9]. The dispersion
contrast results in particular from the huge change in the Sr partial structure weight induced
by strongly varying f ′Sr in the structure factor.

Regarding the pseudo-solution, the relative influence of this correction to the scat-
tering power of Sr is different for each reflection, and therefore, the deformation of the
corresponding isosurface as well. The pair-wise intersections are thus distributed for the
pseudo-solution in the pm range. For low-indexed reflections l ≤ 10, this effect appears
as two accumulation points along the linear relation depicted in Figure 3. (Figure 6, inset,
upper right). Including higher-indexed reflections, the distribution of isosurface intersec-
tions becomes even broader and the volume of the pseudo-solution “blurs” (Figure 6, inset,
lower right), whereas the true solution remains sharp. Consequently, as long as the error
margins of the isosurfaces are sufficiently small, the pseudo-solution can be identified as a
“false” solution, which is incompatible with the experimental observations.

Further, we focus on the sharp solution, which is equivalent to studying the sheer
difference ∆z, without the discussion of the pseudo-solution. Specifically, Figure 6 demon-
strates that reflections with low indices show strong covariance for an antisymmetric
change in positions; in particular, the reflection 0 0 14 lifts this correlation. We achieved an
estimated theoretical precision in the z coordinates of ±0.00015 corresponding to about
±0.19 pm (Figure 6). Besides the resonant contrast, this seemingly extreme value is due to
strong gradients of high-indexed reflections [18], which is valid here, especially for both
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energies of reflection 0 0 16. Additional improvements are possible in principle, e.g., if
high-indexed small amplitudes are available, presenting strong relative resonant contrast.

Figure 6. Two-dimensional Parameter Space zSr ⊗ zLa for the structure (La0.5Sr1.5)MnO4, I4/mmm,
in the vicinity of the split position (green dot). The diffraction data are given as intensity isosurfaces
I(l) (Equation (2)) for two photon energies E = 15 keV and E = 16.1 keV (just below the Sr absorption
edge) and for error envelopes of ±1% (blue and red lines). The contrast enhancement and respective
superior resolution (small black region) originate from multiple large-angle intersections (upper right
l = 2, 4, . . . , 10; lower right l = 2, 4, . . . , 20), and especially the small envelope of the low-intensity
high-indexed reflection 0 0 16 (increased opacity in lower inset). In addition, the second wavelength
severely lifts the degeneracy of the pseudo-solution.

4. Discussion

The present work is a feasibility study based on synthetic data. It is, however, close to
reality because several typical intensity error distributions are considered in the framework
of kinematic diffraction. While abandoning the EPA model (Step 1, generally better for
neutron diffraction), we prove both the enhanced resolution and precision of the coordinates
through f ′ contrast (Steps 2 and 5). Compared with preceding work [18], further qualitative
and quantitative progress is achieved, as we now resolve realistic splits in the order of 4 pm
(Step 3 and 4), as indicated by our preliminary DFT modeling.

In terms of resolution limits, the PSC offers very high theoretical precision, even
well below the 1 pm range, when additionally using resonant contrast enhancement for
the discussed two-dimensional Parameter Space case. This result is feasible, since the
method does allow the easy implementation of resonant scattering contrast and directly
relies on absolute intensities (normalized to the primary beam) errors. The resolution of
±0.19 pm is comparable with that of Richter et al. [13]. Instead of fitting full spectra, herein,
we employ precise standard reflection amplitudes for two wavelengths. Nevertheless,
as soon as intensity errors are considered within a typical range between 5% and 20%,
the precision drops significantly to about 10 pm, and pseudo-symmetries based on static
atomic displacements smaller than this limit cannot be resolved. Crystal preparation
techniques [19,20] as well as changes in environmental conditions [21–23], may severely
affect X-ray diffraction data quality, with high data quality being an essential prerequisite
for obtaining precise and reliable structural data. The influence of real structure and
temperature effects on the resolution is the focus of ongoing research and will be discussed
in consecutive work. In principle, isotropic as well as anisotropic atomic displacement
parameters may be treated within the PSC methodology as additional degrees of freedom.

In particular, the qualitative changes in isosurfaces due to resonant scattering contrast,
i.e., their individual elongations and contractions, offer unique dependencies to further
restrict the solution volume in Parameter Space. As demonstrated here for the La/Sr
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split position in the structure of (La0.5Sr1.5)MnO4, this contrast may even help to reveal
pseudo-symmetric solutions, as they move in Parameter Space with variations in the atomic
scattering power ratios, while the “true” solution will remain fixed (Step 2). In general,
model calculations of isosurfaces (preferably close to the solution region) can provide hints
for the precise measurement of selected reflections that, in turn, lead to highly precise
structure solutions (see text after Figure 2). The specific influence of f ′′, considering
supplementary absorption effects, must still be investigated. Work on how a relevant f ′′,
apart from being 0 or π, acts on the reflection phases is in progress.

The presumed shift ∆z ≈ 0.0034 (4.2 pm) is obtained twice in the PSC picture: (i) pre-
cisely using the coordinate difference of the sharp solution (e.g., Figure 6) and (ii) in a less
well-defined manner through the separation between both solutions (confidence regions in
Figures 4 and 5). A further “free” z parameter exists in the structure, that of O2 [6], also
occupying a 4e Wyckoff site, exactly as in Sr/La. Due to the split of La/Sr, this adjacent
oxygen is affected as well, which might give rise to a second z split for this 4e position. In a
four-dimensional Parameter Space, the oxygen displacement may also be determined by
PSC together with that of Sr and La, based on 0 0 l data.

5. Conclusions and Outlook

In summary, this article revises the application of the recently developed PSC method
to resolve the La/Sr split position within the reported crystal structure of the potential
high-temperature super-conductor (La0.5Sr1.5)MnO4. Based on methodical enhancements
abandoning the Equal Point-Atom Model and varying the La/Sr scattering contributions by
means of resonant contrast, the formerly found systematic offset in the determined solution
vector could be eliminated. The originally proposed pseudo-solution could be identified as
incompatible with the theoretical amplitudes of 0 0 l reflections (l = 2, 4, . . . , 20). Further,
a postulated shift in the order of 4 pm was revealed for sufficiently good data quality.

To the best of our knowledge, resolution limits within the PSC have no theoretical
basis yet, as compared to the complete “theoretical optics” for the “optical picture” of
scattering densities. The consequences of intensity errors broadening isosurface restrictions
and the solution region strongly depend on the specific structure. In general, the arising
dependencies show non-linear behavior and result in an inverse problem. (La0.5Sr1.5)MnO4
did not offer small and uncorrelated 0 0 l amplitudes at the same time. Thus, the optimal
resolution of the PSC methods was not reached.

In terms of resolution limits, the PSC offers very high theoretical precision when
additionally using resonant contrast enhancement, even well below the 1 pm range. To in-
clude this resonant enhancement in conventional Fourier inversion is not straightforward,
and in general, the conventional diffraction limit applies. The advantages of the presented
PSC method are that correlations between the parameters are directly observable from
the crossings of isosurfaces, that errors in the positions are directly accessible from the
remaining solution region of the parameter space, and that resonant contrast can easily
be implemented as additional sets of diffraction data in the routines. Similar resolutions
to that of the herein discussed two-dimensional Parameter Space case can be expected
for any structural problem. We plan to conduct further work on this and hope this study
contributes to revealing these limits.

By reducing the Parameter Space (of a given substance) to a subspace covering only
the equipoints in question, the high-dimensional data set is correspondingly reduced to
much fewer reflection amplitudes, as fewer are necessary for solving this specific problem,
as was shown here for the La/Sr split position. Since only a few reflections or amplitudes
are sufficient (and not a complete XRD data set), this approach is especially interesting
for studying time-dependent processes in already-known crystal structures, e.g., during
phase transformations, dynamic transport processes, etc. In most cases, these reflections
can be precisely specified in a preliminary analysis. This makes the PSC very attractive
for in situ diffraction at synchrotron beamlines to localize or detect the smallest changes
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in atomic positions in material systems with known atomistic models, which meets the
current demands of in situ and in operando research.
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Appendix A. Simulation Details

Density functional theory (DFT) calculations were performed as implemented in
the VASP code [24–27]. The electron–electron interactions were treated with generalized-
gradient approximation using the Perdew–Burke–Ernzerhof functional [28–30]. The plane
waves were generated using 600 eV as the plane-wave cutoff energy. The integration of

wave functions in the reciprocal space was performed with k-spacing ∆k < 0.02 × 2π Å
−1

,
generated with the Monkhorst–Pack scheme [31]. The input atomic coordinates of Lan-
thanum strontium manganese oxide system was obtained from the ICSD database (ICSD
Collection code: 153653). As mentioned above, the unit cell was multiplied in the x and
y directions to model 2 × 2 × 1 supercells, cf. Table A1. The supercell was then relaxed

precisely up to an accuracy level of 10−6 eV for ground-state energy and 10−4 eV Å
−1

for
the force on each atom. The relaxed cell was then investigated to analyze the La/Sr split
position. For comparison purposes, the relaxed supercell details are given in Table A2.

Table A1. The initial atomic coordinates considered for the DFT simulation are summarized.
The atoms are listed in VASP input format.

Distrontium manganate (IV)

1.00000000000000
7.6736389600347810 0.0000000000000000 −0.0000000000000000
0.0000000000000000 7.6736389600347810 −0.0000000000000000
0.0000000000000000 −0.0000000000000000 12.5427138414602393

Sr Mn O La
12 8 32 4

Direct
−0.0000000000000000 0.5000000000000000 0.3564199328324650

0.5000000000000000 0.0000000000000000 0.3564199328324650
0.5000000000000000 0.5000000000000000 0.3564199328324650
0.0000000000000000 0.0000000000000000 0.6435800671675350
0.0000000000000000 0.5000000000000000 0.6435800671675350
0.5000000000000000 0.0000000000000000 0.6435800671675350
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Table A1. Cont.

0.2500000000000000 0.2500000000000000 0.8564199328324650
0.7500000000000000 0.2500000000000000 0.8564199328324650
0.7500000000000000 0.7500000000000000 0.8564199328324650
0.2500000000000000 0.2500000000000000 0.1435800671675351
0.2500000000000000 0.7500000000000000 0.1435800671675351
0.7500000000000000 0.7500000000000000 0.1435800671675351
0.0000000000000000 0.0000000000000000 0.0000000000000000
0.0000000000000000 0.5000000000000000 0.0000000000000000
0.5000000000000000 0.0000000000000000 0.0000000000000000
0.5000000000000000 0.5000000000000000 0.0000000000000000
0.2500000000000000 0.2500000000000000 0.5000000000000000
0.2500000000000000 0.7500000000000000 0.5000000000000000
0.7500000000000000 0.2500000000000000 0.5000000000000000
0.7500000000000000 0.7500000000000000 0.5000000000000000
0.0000000000000000 0.2500000000000000 0.0000000000000000
0.0000000000000000 0.7500000000000000 0.0000000000000000
0.5000000000000000 0.2500000000000000 0.0000000000000000
0.5000000000000000 0.7500000000000000 0.0000000000000000
0.2500000000000000 0.0000000000000000 0.0000000000000000
0.2500000000000000 0.5000000000000000 0.0000000000000000
0.7500000000000000 0.0000000000000000 0.0000000000000000
0.7500000000000000 0.5000000000000000 0.0000000000000000
0.2500000000000000 0.0000000000000000 0.5000000000000000
0.2500000000000000 0.5000000000000000 0.5000000000000000
0.7500000000000000 0.0000000000000000 0.5000000000000000
0.7500000000000000 0.5000000000000000 0.5000000000000000
0.0000000000000000 0.2500000000000000 0.5000000000000000
0.0000000000000000 0.7500000000000000 0.5000000000000000
0.5000000000000000 0.2500000000000000 0.5000000000000000
0.5000000000000000 0.7500000000000000 0.5000000000000000
0.0000000000000000 0.0000000000000000 0.1553844246870802
0.0000000000000000 0.5000000000000000 0.1553844246870802
0.5000000000000000 0.0000000000000000 0.1553844246870802
0.5000000000000000 0.5000000000000000 0.1553844246870802
0.0000000000000000 0.0000000000000000 0.8446155603129220
0.0000000000000000 0.5000000000000000 0.8446155603129220
0.5000000000000000 0.0000000000000000 0.8446155603129220
0.5000000000000000 0.5000000000000000 0.8446155603129220
0.2500000000000000 0.2500000000000000 0.6553844396870780
0.2500000000000000 0.7500000000000000 0.6553844396870780
0.7500000000000000 0.2500000000000000 0.6553844396870780
0.7500000000000000 0.7500000000000000 0.6553844396870780
0.2500000000000000 0.2500000000000000 0.3446155603129222
0.2500000000000000 0.7500000000000000 0.3446155603129222
0.7500000000000000 0.2500000000000000 0.3446155603129222
0.7500000000000000 0.7500000000000000 0.3446155603129222
0.0000000000000000 0.0000000000000000 0.3564199328324650
0.5000000000000000 0.5000000000000000 0.6435800671675350
0.2500000000000000 0.7500000000000000 0.8564199328324650
0.7500000000000000 0.2500000000000000 0.1435800671675351
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Table A2. The relaxed final atomic coordinates of (La0.5Sr1.5)MnO4 are summarized. The atoms are
listed in VASP input format.

Distrontium manganate (IV)

1.00000000000000
7.7858372911179767 −0.0023080817258195 −0.0000000000000000

−0.0023080817258195 7.7858372911179767 0.0000000000000000
0.0000000000000000 −0.0000000000000000 12.4406398723994869

Sr Mn O La
12 8 32 4

Direct
0.9993390456930498 0.5000586100218309 0.3581710826731619
0.4999413899781686 0.0006609543069503 0.3581710826731619
0.4998422129389304 0.5001577870610703 0.3562283827350087
0.9998422129389297 0.0001577870610699 0.6437716172649915
0.9999413899781691 0.5006609543069502 0.6418289173268383
0.4993390456930496 0.0000586100218313 0.6418289173268383
0.2506609543069504 0.2499413899781685 0.8581710826731617
0.7501577870610703 0.2498422129389301 0.8562283827350085
0.7500586100218309 0.7493390456930498 0.8581710826731617
0.2500586100218314 0.2493390456930496 0.1418289173268383
0.2501577870610696 0.7498422129389297 0.1437716172649916
0.7506609543069502 0.7499413899781691 0.1418289173268383
0.0007040310887861 0.9992959689112139 0.9995586822748290
0.0003266625387670 0.4996733374612328 0.0000000000000000
0.5003266625387670 0.9996733374612330 0.0000000000000000
0.5007040310887861 0.4992959689112138 0.0004413177251704
0.2496733374612332 0.2503266625387672 0.5000000000000000
0.2492959689112141 0.7507040310887861 0.4995586822748297
0.7492959689112139 0.2507040310887862 0.5004413177251710
0.7496733374612330 0.7503266625387670 0.5000000000000000
0.9969015784365151 0.2485667013989529 0.9987789905873521
0.0040134074384836 0.7502865612238758 0.0035995740597406
0.5040134074384829 0.2502865612238757 0.9964004259402590
0.4969015784365147 0.7485667013989531 0.0012210094126476
0.2497134387761242 0.9959865925615171 0.0035995740597406
0.2514332986010470 0.5030984215634849 0.0012210094126476
0.7514332986010469 0.0030984215634851 0.9987789905873521
0.7497134387761242 0.4959865925615162 0.9964004259402590
0.2459865925615165 0.9997134387761242 0.5035995740597410
0.2530984215634853 0.5014332986010469 0.4987789905873524
0.7530984215634849 0.0014332986010472 0.5012210094126479
0.7459865925615171 0.4997134387761243 0.4964004259402596
0.9985667013989531 0.2469015784365148 0.5012210094126479
0.0002865612238759 0.7540134074384829 0.5035995740597410
0.5002865612238758 0.2540134074384838 0.4964004259402596
0.4985667013989530 0.7469015784365151 0.4987789905873524
0.9913350885907994 0.0086649114092009 0.1661123553773317
0.9901280854182514 0.4897377050298622 0.1581879674051064
0.5102622949701375 0.0098719145817487 0.1581879674051064
0.5101079791093830 0.4898920208906173 0.1583105610085629
0.0101079791093830 0.9898920208906170 0.8416894239914393
0.0102622949701379 0.5098719145817557 0.8418120175948965
0.4901280854182511 0.9897377050298625 0.8418120175948965
0.4913350885907990 0.5086649114092006 0.8338876296226700
0.2598719145817489 0.2602622949701378 0.6581879824051035
0.2586649114092010 0.7413350885907994 0.6661123703773300
0.7398920208906170 0.2601079791093827 0.6583105760085607
0.7397377050298625 0.7401280854182443 0.6581879824051035
0.2397377050298622 0.2401280854182512 0.3418120175948958
0.2398920208906170 0.7601079791093830 0.3416894239914393
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Table A2. Cont.

0.7586649114092006 0.2413350885907992 0.3338876296226703
0.7598719145817557 0.7602622949701375 0.3418120175948958
0.9991455283709102 0.0008544716290899 0.3609141141875367
0.4991455283709101 0.5008544716290898 0.6390858858124635
0.2508544716290899 0.7491455283709102 0.8609141141875365
0.7508544716290898 0.2491455283709099 0.1390858858124634
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