Experimental Investigation and Machine Learning Modeling of Tribological Characteristics of AZ31/B4C/GNPs Hybrid Composites
<p>Flow chart.</p> "> Figure 2
<p>SEM image of (<b>a</b>) GNPs and (<b>b</b>) B<sub>4</sub>C; EDS image of (<b>c</b>) GNPs and (<b>d</b>) B<sub>4</sub>C; XRD image of (<b>e</b>) GNPs and (<b>f</b>) B<sub>4</sub>C.</p> "> Figure 2 Cont.
<p>SEM image of (<b>a</b>) GNPs and (<b>b</b>) B<sub>4</sub>C; EDS image of (<b>c</b>) GNPs and (<b>d</b>) B<sub>4</sub>C; XRD image of (<b>e</b>) GNPs and (<b>f</b>) B<sub>4</sub>C.</p> "> Figure 3
<p>(<b>a</b>) Wear testing machine. (<b>b</b>) Experimental setup.</p> "> Figure 4
<p>SEM microstructures of (<b>a</b>) AZ31 + 1 wt.% graphene + 1 wt.% B<sub>4</sub>C; (<b>b</b>) AZ31 + 1 wt.% graphene + 2 wt.% B<sub>4</sub>C; and (<b>c</b>) AZ31 + 1 wt.% graphene + 3 wt.% B<sub>4</sub>C.</p> "> Figure 5
<p>Effect of various factors on WR (means data).</p> "> Figure 6
<p>Effect of various factors on WR (S/N ratios data).</p> "> Figure 7
<p>Interaction plot for means.</p> "> Figure 8
<p>Residual plots for WR.</p> "> Figure 9
<p>(<b>a</b>,<b>b</b>) High worn surfaces. (<b>c</b>,<b>d</b>) Low worn out surfaces.</p> "> Figure 9 Cont.
<p>(<b>a</b>,<b>b</b>) High worn surfaces. (<b>c</b>,<b>d</b>) Low worn out surfaces.</p> "> Figure 10
<p>Regression plots for WR data with (<b>a</b>) LR, (<b>b</b>) PR, (<b>c</b>) RF, and (<b>d</b>) GPR. (<b>e</b>) Comparison plot for training and testing of LR, PR, RF, and GPR techniques.</p> "> Figure 11
<p>Regression plots for COF data with (<b>a</b>) LR, (<b>b</b>) PR, (<b>c</b>) RF, and (<b>d</b>) GPR. (<b>e</b>) Comparison plot for training and testing of LR, PR, RF, and GPR techniques.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Composites
2.2. Experimental Procedure
2.3. Experimental Design
3. Supervised Machine Learning (ML) Methods
3.1. Linear Regression
3.2. Polynomial Regression
3.3. Random Forest (RF) Regression
3.4. Gaussian Process Regression
4. Results and Discussions
4.1. Microstructure Analysis
4.2. Taguchi Analysis
4.3. Wear Surface Analysis
5. Performance Evaluation of ML Techniques
6. Conclusions
- The findings indicate that the load is the most critical variable affecting WR, followed by distance (D), reinforcement (R%), and velocity (V).
- Based on the mean effect illustrations for WR, the ideal conditions for achieving the lowest WR are R% = 4, L = 15 N, V = 3 m/s, and D = 500 m.
- The wear resistance of the AZ31 composite with a higher concentration of B4C demonstrates superior wear resistance attributable to its elevated hardness compared to other materials.
- Wear rate was diminished for low load, short distance, and high velocity, whereas it peaked at high load, extended distance, and low velocity.
- The wear mechanisms of oxidation, delamination, and abrasion are discernible in both minimal and extreme wear conditions. The findings of the SEM investigation show that abrasion and delamination are frequently encountered under higher wear conditions, whereas abrasion is more prevalent under low wear surfaces.
- Analysis of the regression and comparative graphs revealed that the PR model has superior predictive capacity for the tested data of WR (R2 = 0.953, MSE = 0.011, and RMSE = 0.103) and COF (R2 = 0.937, MSE = 0.013, and RMSE = 0.114).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kulekci, M.K. Magnesium and Its Alloys Applications in Automotive Industry. Int. J. Adv. Manuf. Technol. 2008, 39, 851–865. [Google Scholar] [CrossRef]
- Gupta, M.; Sharon, N.M.L. Magnesium, Magnesium Alloys, and Magnesium Composites, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; ISBN 9780470494172. [Google Scholar]
- Tan, J.; Ramakrishna, S. Applications of Magnesium and Its Alloys: A Review. Appl. Sci. 2021, 11, 6861. [Google Scholar] [CrossRef]
- Ammisetti, D.K.; Sai Sarath, K.; Kruthiventi, S.S. A Review on Mechanical and Wear Characteristics of Magnesium Metal Matrix Composites. J. Tribol. 2024, 147, 020801. [Google Scholar] [CrossRef]
- Wang, H.Y.; Jiang, Q.C.; Wang, Y.; Ma, B.X.; Zhao, F. Fabrication of TiB2 Participate Reinforced Magnesium Matrix Composites by Powder Metallurgy. Mater. Lett. 2004, 58, 3509–3513. [Google Scholar] [CrossRef]
- Khatkar, S.K.; Verma, R.; Kant, S.; Suri, N.M. Optimization of Wear Behavior of AZ91D-SiC-Gr Hybrid Composites Using Taguchi Experimental Design. Adv. Intell. Syst. Comput. 2020, 1053, 1151–1163. [Google Scholar] [CrossRef]
- Tajdeen, A.; Megalingam, A.; Sivanesh Prabhu, M.; Wasim Khan, M. Role of Tungsten Disulfide Particles on the Microstructure, Mechanical, and Tribological Behaviors of Friction Stir-Processed Magnesium-Based Composite. J. Tribol. 2023, 145, 014501. [Google Scholar] [CrossRef]
- Vedabouriswaran, G.; Aravindan, S. Wear Characteristics of Friction Stir Processed Magnesium RZ 5 Composites. ASME J. Tribol. 2019, 141, 041601. [Google Scholar] [CrossRef]
- Li, C.D.; Wang, X.J.; Wu, K.; Liu, W.Q.; Xiang, S.L.; Ding, C.; Hu, X.S.; Zheng, M.Y. Distribution and Integrity of Carbon Nanotubes in Carbon Nanotube/Magnesium Composites. J. Alloys Compd. 2014, 612, 330–336. [Google Scholar] [CrossRef]
- Sari, F.N.; Karamis, M.B.; Kaya, Y. Friction Characteristics of Hybrid Magnesium Alloy Composites Reinforced with Carbon Nanotube and Cerium. Ind. Lubr. Tribol. 2017, 69, 52–58. [Google Scholar] [CrossRef]
- Kaviti, R.V.P.; Jeyasimman, D.; Parande, G.; Gupta, M.; Narayanasamy, R.; Koppad, P.G. Improving the Friction and Wear Characteristics of AZ31 Alloy with the Addition of Al2O3 Nanoparticles. Mater. Res. Express 2019, 6, 126505. [Google Scholar] [CrossRef]
- Kartheesan, S.; Shahul Hamid Khan, B.; Kamaraj, M.; Tekumalla, S.; Gupta, M. Dry Sliding Wear Behavior of Magnesium Nanocomposites Using Response Surface Methodology. J. Tribol. 2022, 144, 011704. [Google Scholar] [CrossRef]
- Abebe, S.K.; Beri, H.; Sinha, D.K.; Rajhi, A.A.; Hossain, N.; Duhduh, A.A.; Zainuddin, S.; Mohammed, G.; Ahmed, S. Wear Behavior of AZ61 Matrix Hybrid Composite Fabricated via Friction Stir Consolidation: A Combined RSM Box—Behnken and Genetic Algorithm Optimization. J. Compos. Sci. 2023, 7, 275. [Google Scholar] [CrossRef]
- Jalilvand, M.M.; Mazaheri, Y. Effect of Mono and Hybrid Ceramic Reinforcement Particles on the Tribological Behavior of the AZ31 Matrix Surface Composites Developed by Friction Stir Processing. Ceram. Int. 2020, 46, 20345–20356. [Google Scholar] [CrossRef]
- Thoufiq Mohammed, K.; Manisekar, K. Mechanical and Dry Sliding Wear Behaviour of AZ31-TiO2 and AZ31-TiO2-Sn Metal Matrix Composites. Int. J. Met. 2022, 17, 1883–1898. [Google Scholar] [CrossRef]
- Aydin, F.; Durgut, R. Estimation of Wear Performance of AZ91 Alloy under Dry Sliding Conditions Using Machine Learning Methods. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2021, 31, 125–137. [Google Scholar] [CrossRef]
- Kaviti, R.V.P.; Jeyasimman, D.; S C, R.K.; Babu, M. Investigation of Wear Behaviour of Magnesium Reinforced with Boron Nitride Nanocomposite Using ANN. J. Mines Met. Fuels 2022, 69, 190. [Google Scholar] [CrossRef]
- Kruthiventi, S.S.H.; Ammisetti, D.K. Experimental Investigation and Machine Learning Modeling of Wear Characteristics of AZ91 Composites. ASME J. Tribol. 2023, 145, 101704. [Google Scholar] [CrossRef]
- Yu, S.R.; Huang, Z.Q. Dry Sliding Wear Behavior of Fly Ash Cenosphere/AZ91D Mg Alloy Composites. J. Mater. Eng. Perform. 2014, 23, 3480–3488. [Google Scholar] [CrossRef]
- Xiu, K.; Wang, H.Y.; Sui, H.L.; Wang, Y.; Xu, C.L.; Wang, J.G.; Jiang, Q.C. The Sliding Wear Behavior of TiCp/AZ91 Magnesium Matrix Composites. J. Mater. Sci. 2006, 41, 7052–7058. [Google Scholar] [CrossRef]
- Ammisetti, D.K.; Kruthiventi, S.S.H. Experimental Investigation of the Influence of Various Wear Parameters on the Tribological Characteristics of AZ91 Hybrid Composites and Their Machine Learning Modeling. ASME J. Tribol. 2024, 146, 051704. [Google Scholar] [CrossRef]
- Vignesh, R.V.; Padmanaban, R. Forecasting Tribological Properties of Wrought AZ91D Magnesium Alloy Using Soft Computing Model. Russ. J. Non-Ferrous Met. 2018, 59, 135–141. [Google Scholar] [CrossRef]
- Hasan, M.S.; Kordijazi, A.; Rohatgi, P.K.; Nosonovsky, M. Triboinformatics Approach for Friction and Wear Prediction of Al-Graphite Composites Using Machine Learning Methods. J. Tribol. 2022, 144, 011701. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Coefficient of Determination R-Squared Is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Alagarsamy, S.V.; Balasundaram, R.; Ravichandran, M.; Mohanavel, V.; Karthick, A.; Devi, S.S. Taguchi Approach and Decision Tree Algorithm for Prediction of Wear Rate in Zinc Oxide-Filled AA7075 Matrix Composites. Surf. Topogr. Metrol. Prop. 2021, 9, 035005. [Google Scholar] [CrossRef]
Element | Al | Zn | Mn | Si | Cu | Fe | Ni | Others | Mg |
---|---|---|---|---|---|---|---|---|---|
Content (%) | 3.12 | 1.05 | 0.15 | 0.1 | 0.03 | 0.005 | 0.002 | 0.02 | 89.523 |
S. No | AZ31 Alloy (wt.%) | Graphene (wt.%) | Boron Carbide (wt.%) | Designation |
---|---|---|---|---|
1 | 98 | 1 | 1 | C1 |
2 | 97 | 1 | 2 | C2 |
3 | 96 | 1 | 3 | C3 |
S. No | Factors | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|
1 | Reinforcement wt.% (R %) | 2 | 3 | 4 |
2 | Velocity (V), m/s | 1 | 2 | 3 |
3 | Load (L), N | 15 | 30 | 45 |
4 | Distance (D), m | 500 | 1000 | 1500 |
S. No | Reinforcement (R%) | Load (N) | Velocity (m/s) | Distance (m) | Wear Rate (×10−3 mm3/m) | COF (µ) |
---|---|---|---|---|---|---|
1 | 2 | 15 | 1 | 500 | 6.5753 | 0.24 |
2 | 2 | 15 | 2 | 1000 | 7.1233 | 0.26 |
3 | 2 | 15 | 3 | 1500 | 7.6712 | 0.29 |
4 | 3 | 30 | 1 | 500 | 7.1840 | 0.27 |
5 | 3 | 30 | 2 | 1000 | 7.8081 | 0.29 |
6 | 3 | 30 | 3 | 1500 | 8.1800 | 0.31 |
7 | 4 | 45 | 1 | 500 | 8.3825 | 0.28 |
8 | 4 | 45 | 2 | 1000 | 10.4147 | 0.29 |
9 | 4 | 45 | 3 | 1500 | 12.1928 | 0.21 |
10 | 3 | 45 | 1 | 1000 | 8.1800 | 0.29 |
11 | 3 | 45 | 2 | 1500 | 9.6672 | 0.36 |
12 | 3 | 45 | 3 | 500 | 6.6927 | 0.24 |
13 | 4 | 15 | 1 | 1000 | 4.9533 | 0.28 |
14 | 4 | 15 | 2 | 1500 | 5.3343 | 0.27 |
15 | 4 | 15 | 3 | 500 | 3.0482 | 0.18 |
16 | 2 | 30 | 1 | 1000 | 11.5068 | 0.30 |
17 | 2 | 30 | 2 | 1500 | 9.8630 | 0.27 |
18 | 2 | 30 | 3 | 500 | 9.4977 | 0.32 |
19 | 4 | 30 | 1 | 1500 | 8.6305 | 0.27 |
20 | 4 | 30 | 2 | 500 | 6.8584 | 0.28 |
21 | 4 | 30 | 3 | 1000 | 7.6205 | 0.21 |
22 | 2 | 45 | 1 | 1500 | 15.1307 | 0.35 |
23 | 2 | 45 | 2 | 500 | 10.9589 | 0.31 |
24 | 2 | 45 | 3 | 1000 | 13.1507 | 0.28 |
25 | 3 | 15 | 1 | 1500 | 5.7012 | 0.29 |
26 | 3 | 15 | 2 | 500 | 3.7182 | 0.26 |
27 | 3 | 15 | 3 | 1000 | 3.3463 | 0.21 |
Composite | Density (g/cm3) | Hardness (HB) |
---|---|---|
C1 | 1.78 ± 0.005 | 68 ± 2 |
C2 | 1.82 ± 0.011 | 76 ± 3 |
C3 | 1.86 ± 0.016 | 87 ± 5 |
Level | R% | L | V | D |
---|---|---|---|---|
1 | −16.93 | −10.80 | −15.22 | −12.46 |
2 | −14.68 | −15.98 | −14.94 | −15.35 |
3 | −13.08 | −17.90 | −14.53 | −16.88 |
Delta | 3.85 | 7.10 | 0.69 | 4.42 |
Rank | 3 | 1 | 4 | 2 |
Source | DF | Seq SS | Adj SS | Adj MS | F | P | Contribution % |
---|---|---|---|---|---|---|---|
R% | 2 | 27.185 | 27.185 | 13.5926 | 35.26 | 0.000 | 17.34 |
L | 2 | 87.605 | 87.605 | 43.8027 | 113.63 | 0.000 | 55.87 |
V | 2 | 0.605 | 0.605 | 0.3025 | 0.78 | 0.498 | 0.39 |
D | 2 | 34.798 | 34.798 | 17.3990 | 45.14 | 0.000 | 22.19 |
L × V | 4 | 0.193 | 0.193 | 0.0483 | 0.13 | 0.968 | 0.12 |
L × D | 4 | 2.167 | 2.167 | 0.5417 | 1.41 | 0.337 | 1.38 |
V × D | 4 | 1.932 | 1.932 | 0.4829 | 1.25 | 0.383 | 1.23 |
Residual Error | 6 | 2.313 | 2.313 | 0.3855 | 1.48 | ||
Total | 26 | 156.798 | 100 |
Data | ML Model | MSE | RMSE | R2 |
---|---|---|---|---|
WR | LR | 0.056 | 0.236 | 0.647 |
PR | 0.011 | 0.103 | 0.953 | |
RF | 0.041 | 0.201 | 0.689 | |
GPR | 0.017 | 0.129 | 0.807 | |
COF | LR | 0.021 | 0.176 | 0.532 |
PR | 0.031 | 0.114 | 0.937 | |
RF | 0.025 | 0.158 | 0.648 | |
GPR | 0.016 | 0.126 | 0.772 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammisetti, D.K.; Chigilipalli, B.K.; Gaddala, B.; Kottala, R.K.; Aepuru, R.; Rao, T.S.; Praveenkumar, S.; Kumar, R. Experimental Investigation and Machine Learning Modeling of Tribological Characteristics of AZ31/B4C/GNPs Hybrid Composites. Crystals 2024, 14, 1007. https://doi.org/10.3390/cryst14121007
Ammisetti DK, Chigilipalli BK, Gaddala B, Kottala RK, Aepuru R, Rao TS, Praveenkumar S, Kumar R. Experimental Investigation and Machine Learning Modeling of Tribological Characteristics of AZ31/B4C/GNPs Hybrid Composites. Crystals. 2024; 14(12):1007. https://doi.org/10.3390/cryst14121007
Chicago/Turabian StyleAmmisetti, Dhanunjay Kumar, Bharat Kumar Chigilipalli, Baburao Gaddala, Ravi Kumar Kottala, Radhamanohar Aepuru, T. Srinivasa Rao, Seepana Praveenkumar, and Ravinder Kumar. 2024. "Experimental Investigation and Machine Learning Modeling of Tribological Characteristics of AZ31/B4C/GNPs Hybrid Composites" Crystals 14, no. 12: 1007. https://doi.org/10.3390/cryst14121007
APA StyleAmmisetti, D. K., Chigilipalli, B. K., Gaddala, B., Kottala, R. K., Aepuru, R., Rao, T. S., Praveenkumar, S., & Kumar, R. (2024). Experimental Investigation and Machine Learning Modeling of Tribological Characteristics of AZ31/B4C/GNPs Hybrid Composites. Crystals, 14(12), 1007. https://doi.org/10.3390/cryst14121007