β-Yb2CdSb2—A Complex Non-Centrosymmetric Zintl Polymorph
<p>Ternary Yb−Cd−Sb compositional diagram. The newly identified Yb<sub>2</sub>CdSb<sub>2</sub> polymorph is identified as a red star. Known binary and ternary phases are indicated as well. Note that Yb<sub>14</sub>CdSb<sub>11</sub> and Yb<sub>10.5</sub>Cd<sub>0.5</sub>Sb<sub>9</sub> have not yet been reported.</p> "> Figure 2
<p>Crystal structures of β-Yb<sub>2</sub>CdSb<sub>2</sub> (<b>a</b>), β-Ca<sub>2</sub>CdSb<sub>2</sub> (<b>b</b>), β-Ca<sub>2</sub>CdAs<sub>2</sub> (<b>c</b>), and α-Yb<sub>2</sub>CdSb<sub>2</sub> (<b>d</b>) viewed along the <span class="html-italic">b</span>-axis. The unit cell of β-Yb<sub>2</sub>CdSb<sub>2</sub> is doubled along the <span class="html-italic">c</span>-axis for clarity. The Ca and Yb atoms are drawn as dark gray, Cd atoms are green, and <span class="html-italic">Pn</span> = Sb/As atoms are blue-gray. [Cd<span class="html-italic">Pn</span><sub>4</sub>] tetrahedral units are drawn in dark green. The unit cells are outlined. Interatomic Cd–Sb contacts exceeding 3.10 Å are not displayed.</p> "> Figure 3
<p>The representation of the β-Yb<sub>2</sub>CdSb<sub>2</sub> structure with the labeled ABC layers. The unit cell of β-Yb<sub>2</sub>CdSb<sub>2</sub> is doubled along the <span class="html-italic">c</span>-axis. Cd atoms with less than 50% occupancy are avoided for clarity (<b>a</b>). Close-up view of the A layer in β-Yb<sub>2</sub>CdSb<sub>2</sub> (<b>b</b>), <sub>∞</sub><sup>2</sup>[CdSb<sub>2</sub>]<sup>4–</sup> layer in β-Ca<sub>2</sub>CdSb<sub>2</sub> (<b>c</b>), and [Cd<sub>3</sub>Sb<sub>10</sub>] units composing B/C layers (<b>d</b>). Typical six-coordinated octahedral coordination environment of [YbSb<sub>6</sub>] units (<b>e</b>) and five-coordinated square pyramidal [YbSb<sub>5</sub>] units (<b>f</b>). Completeness of the spheres visualizes SOFs. Similar structural units in β-Yb<sub>2</sub>CdSb<sub>2</sub> and β-Ca<sub>2</sub>CdSb<sub>2</sub> are highlighted by red tetrahedra. The color code is the same as in <a href="#crystals-14-00920-f002" class="html-fig">Figure 2</a>.</p> "> Figure 4
<p>Calculated (<b>a</b>) band structure, (<b>b</b>) total (DOS) density of states, and partial (PDOS) density of states for (<b>d</b>) Yb, (<b>e</b>) Cd, and (<b>f</b>) Sb for Yb<sub>2</sub>CdSb<sub>2</sub>. An enlarged view of the band structure at the Fermi level is provided in (<b>c</b>). The Fermi level is the energy reference at 0 eV. The second dashed line at 0.08 eV indicates a 2-electron shift per unit cell.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Structural Characterization
2.3. Electronic Structure Calculations
3. Results and Discussions
3.1. Synthesis
3.2. Crystal Structure and Structural Relationships
3.3. Electronic Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ovchinnikov, A.; Smetana, V.; Mudring, A.-V. Metallic alloys at the edge of complexity: Structural aspects, chemical bonding and physical properties. J. Phys. Condens. Matter 2020, 32, 243002. [Google Scholar] [CrossRef] [PubMed]
- Kauzlarich, S.M. Zintl Phases: From Curiosities to Impactful Materials. Chem. Mater. 2023, 35, 7355–7362. [Google Scholar] [CrossRef] [PubMed]
- Toberer, E.S.; Zevalkink, A.; Snyder, G.J. Phonon engineering through crystal chemistry. J. Mater. Chem. 2011, 21, 15843–15852. [Google Scholar] [CrossRef]
- Kauzlarich, S.M.; Zevalkink, A.; Toberer, E.; Snyder, G.J. Zintl phases: Recent developments in thermoelectrics and future outlook. In Thermoelectric Materials and Devices; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Kauzlarich, S.M.; Brown, S.R.; Snyder, G.J. Zintl phases for thermoelectric devices. Dalton Trans. 2007, 2099–2107. [Google Scholar] [CrossRef]
- Nesper, R. The Zintl-Klemm concept–a historical survey. Z. Anorg. Allg. Chem. 2014, 640, 2639–2648. [Google Scholar] [CrossRef]
- Fang, S.; Li, J.; Zou, K.; Shuai, H.; Xu, L.; Deng, W.; Zou, G.; Hou, H.; Ji, X. Zintl chemistry: Current status and future perspectives. Chem. Eng. J. 2022, 433, 133841. [Google Scholar] [CrossRef]
- Kauzlarich, S.M.; Devlin, K.P.; Perez, C.J. Chapter 2.5. Zintl phases for thermoelectric applications. In Thermoelectric Energy Conversion; Elsevier: Amsterdam, The Netherlands, 2021; pp. 157–182. [Google Scholar]
- Liu, K.-F.; Xia, S.-Q. Recent progresses on thermoelectric Zintl phases: Structures, materials and optimization. J. Solid State Chem. 2019, 270, 252–264. [Google Scholar] [CrossRef]
- Rosa, P.; Xu, Y.; Rahn, M.; Souza, J.; Kushwaha, S.; Veiga, L.; Bombardi, A.; Thomas, S.; Janoschek, M.; Bauer, E. Colossal magnetoresistance in a nonsymmorphic antiferromagnetic insulator. NPJ Quantum Mater. 2020, 5, 52. [Google Scholar] [CrossRef]
- Morano, V.C.; Gaudet, J.; Varnava, N.; Berry, T.; Halloran, T.; Lygouras, C.J.; Wang, X.; Hoffman, C.M.; Xu, G.; Lynn, J.W. Noncollinear 2 k antiferromagnetism in the Zintl semiconductor Eu5In2Sb6. Phys. Rev. B 2024, 109, 014432. [Google Scholar] [CrossRef]
- Berry, T.; Varnava, N.; Ryan, D.H.; Stewart, V.J.; Rasta, R.; Heinmaa, I.; Kumar, N.; Schnelle, W.; Bhandia, R.; Pasco, C.M. Bonding and Suppression of a Magnetic Phase Transition in EuMn2P2. J. Am. Chem. Soc. 2023, 145, 4527–4533. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.N.R.; Villaos, R.A.B.; Feng, L.-Y.; Maghirang, A.B.; Cheng, C.-P.; Huang, Z.-Q.; Hsu, C.-H.; Bansil, A.; Chuang, F.-C. Quantum spin Hall insulating phase and van Hove singularities in Zintl single-quintuple-layer AM2X2 (A = Ca, Sr, or Ba; M = Zn or Cd; X = Sb or Bi) family. Appl. Phys. Rev. 2022, 9, 11410. [Google Scholar] [CrossRef]
- Feng, L.-Y.; Villaos, R.A.B.; Maghirang III, A.B.; Huang, Z.-Q.; Hsu, C.-H.; Lin, H.; Chuang, F.-C. Prediction of topological Dirac semimetal in Ca-based Zintl layered compounds CaM2X2 (M = Zn or Cd; X = N, P, As, Sb, or Bi). Sci. Rep. 2022, 12, 4582. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Y.; Kauzlarich, S.M.; Klavins, P.; Shelton, R.N.; Webb, D.J. Colossal magnetoresistance in the transition-metal Zintl compound Eu14MnSb11. Chem. Mater. 1997, 9, 3132–3135. [Google Scholar] [CrossRef]
- Ovchinnikov, A.; Saparov, B.; Xia, S.-Q.; Bobev, S. The ternary alkaline-earth metal manganese bismuthides Sr2MnBi2 and Ba2Mn1–xBi2 (x ≈ 0.15). Inorg. Chem. 2017, 56, 12369–12378. [Google Scholar] [CrossRef]
- Ishtiyak, M.; Watts, S.R.; Thipe, B.; Womack, F.; Adams, P.; Bai, X.; Young, D.P.; Bobev, S.; Baranets, S. Advancing Heteroanionicity in Zintl Phases: Crystal Structures, Thermoelectric and Magnetic Properties of Two Quaternary Semiconducting Arsenide Oxides, Eu8Zn2As6O and Eu14Zn5As12O. Inorg. Chem. 2024. [Google Scholar] [CrossRef]
- Baranets, S.; Ovchinnikov, A.; Samarakoon, S.G.K.; Bobev, S. Synthesis, crystal and electronic structure of the Zintl phase Ba16Sb11. A case study uncovering greater structural complexity via monoclinic distortion of the tetragonal Ca16Sb11 structure type. Z. Anorg. Allg. Chem. 2023, 649, e202300148. [Google Scholar] [CrossRef]
- Smiadak, D.M.; Baranets, S.; Rylko, M.; Marshall, M.; Calderón-Cueva, M.; Bobev, S.; Zevalkink, A. Single crystal growth and characterization of new Zintl phase Ca9Zn3.1In0.9Sb9. J. Solid State Chem. 2021, 296, 121947. [Google Scholar] [CrossRef]
- Ogunbunmi, M.O.; Baranets, S.; Bobev, S. Structural complexity and tuned thermoelectric properties of a polymorph of the Zintl phase Ca2CdSb2 with a non-centrosymmetric monoclinic structure. Inorg. Chem. 2022, 61, 10888–10897. [Google Scholar] [CrossRef]
- Xia, S.-Q.; Bobev, S. Cation–anion interactions as structure directing factors: Structure and bonding of Ca2CdSb2 and Yb2CdSb2. J. Am. Chem. Soc. 2007, 129, 4049–4057. [Google Scholar] [CrossRef]
- Hauble, A.K.; Crawford, C.M.; Adamczyk, J.M.; Wood, M.; Fettinger, J.C.; Toberer, E.S.; Kauzlarich, S.M. Deciphering Defects in Yb2–xEuxCdSb2 and Their Impact on Thermoelectric Properties. Chem. Mater. 2022, 34, 9228–9239. [Google Scholar] [CrossRef]
- Qu, J.; Balvanz, A.; Baranets, S.; Bobev, S.; Gorai, P. Computational design of thermoelectric alloys through optimization of transport and dopability. Mater. Horiz. 2022, 9, 720–730. [Google Scholar] [CrossRef] [PubMed]
- Devlin, K.P.; Chen, S.; Donadio, D.; Kauzlarich, S.M. Solid Solution Yb2–xCaxCdSb2: Structure, Thermoelectric Properties, and Quality Factor. Inorg. Chem. 2021, 60, 13596–13606. [Google Scholar] [CrossRef]
- Cooley, J.A.; Promkhan, P.; Gangopadhyay, S.; Donadio, D.; Pickett, W.E.; Ortiz, B.R.; Toberer, E.S.; Kauzlarich, S.M. High Seebeck Coefficient and Unusually Low Thermal Conductivity Near Ambient Temperatures in Layered Compound Yb2–xEuxCdSb2. Chem. Mater. 2017, 30, 484–493. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, C.; Chen, J.; Xu, F.; Yang, S.; Li, B.; Yang, G.; Luo, M.; Ye, N. α-Ca2CdP2 and β-Ca2CdP2: Two polymorphic phosphide-based infrared nonlinear crystals with distorted NLO-active tetrahedral motifs realizing large second harmonic generation effects and suitable band gaps. Inorg. Chem. 2021, 60, 7553–7560. [Google Scholar] [CrossRef]
- Aman, S.; Albalawi, H.; Farid, H.M.T.; Mahmoud, K.H.; El-Bahy, Z.M. Electronic structure, optical, thermoelectric and magnetic properties of A2CdP2 (A = Ca, Sr and Ba) n-type narrow band gap semiconductors. Mater. Sci. Semicond. Process. 2022, 142, 106443. [Google Scholar] [CrossRef]
- Khan, W.; Minar, J. Theoretical study on optical and thermoelectric properties of the direct band gap α/β-Ca2CdAs2 pnictide semiconductors. RSC Adv. 2014, 4, 46791–46799. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J.; Shin, S.; Jo, H.; Moon, D.; Ok, K.M.; You, T.-S. Chemical Driving Force for Phase-Transition in the Ca2–xRExCdSb2 (RE = Yb, Eu; 0.11 (1) ≤ x ≤ 1.36 (2)) System. Cryst. Growth Des. 2019, 20, 746–754. [Google Scholar] [CrossRef]
- Zuxiang, Y.; Hanggen, W. Study on the Crystal of Daomanite. Acta Geol. Sin.-Engl. Ed. 2015, 89, 1865–1868. [Google Scholar] [CrossRef]
- Wang, J.; Yang, M.; Pan, M.-Y.; Xia, S.-Q.; Tao, X.-T.; He, H.; Darone, G.; Bobev, S. Synthesis, crystal and electronic structures, and properties of the new Pnictide semiconductors A2CdPn2 (A = Ca, Sr, Ba, Eu; Pn = P, As). Inorg. Chem. 2011, 50, 8020–8027. [Google Scholar] [CrossRef]
- Kim, K.; Jo, H.; Ok, K.M.; You, T.S. Experimental and Theoretical Investigations for the Quaternary Mixed-Cation Zintl Phase Ca1.82(1)Eu0.18CdSb2. Bull. Korean Chem. Soc. 2020, 41, 245–247. [Google Scholar] [CrossRef]
- Clark, H.; Simpson, H.; Steinfink, H. Crystal structure of Yb11Sb10. Inorg. Chem. 1970, 9, 1962–1964. [Google Scholar] [CrossRef]
- SAINT, Bruker AXS Inc.: Fitchburg, WI, USA, 2014.
- SADABS, Bruker AXS Inc.: Fitchburg, WI, USA, 2014.
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. XPREP, Bruker AXS Inc.: Madison, WI, USA, 2018.
- Gelato, L.; Parthé, E. STRUCTURE TIDY—A computer program to standardize crystal structure data. J. Appl. Crystallogr. 1987, 20, 139–143. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Generalized gradient approximation for solids and their surfaces. arXiv 2007, arXiv:0707.2088. [Google Scholar]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Kohlmann, H. Looking into the Black Box of Solid-State Synthesis. Eur. J. Inorg. Chem. 2019, 2019, 4174–4180. [Google Scholar] [CrossRef]
- Artmann, A.; Mewis, A.; Roepke, M.; Michels, G. AM2X2-Verbindungen mit CaAl2Si2-Struktur. XI. Struktur und Eigenschaften der Verbindungen ACd2X2 (A: Eu, Yb; X: P, As, Sb). Z. Anorg. Allg. Chem. 1996, 622, 679–682. [Google Scholar] [CrossRef]
- Zelinska, O.Y.; Tkachuk, A.V.; Grosvenor, A.P.; Mar, A. Structure and physical properties of YbZn2Sb2 and YbCd2Sb2. Chem. Met. Alloys 2008, 1, 204–209. [Google Scholar] [CrossRef]
- Liu, K.; Liu, J.; Liu, Q.; Wang, Q.; Yu, F.; Liu, X.-C.; Xia, S.-Q. Phase transitions, structure evolution, and thermoelectric properties based on A2MnSb2 (A = Ca, Yb). Chem. Mater. 2021, 33, 9732–9740. [Google Scholar] [CrossRef]
- Chen, C.; Xue, W.; Li, S.; Zhang, Z.; Li, X.; Wang, X.; Liu, Y.; Sui, J.; Liu, X.; Cao, F. Zintl-phase Eu2ZnSb2: A promising thermoelectric material with ultralow thermal conductivity. Proc. Nat. Acad. Sci. USA 2019, 116, 2831–2836. [Google Scholar] [CrossRef]
- Maghirang III, A.B.; Villaos, R.A.B.; Perez, M.N.R.; Feng, L.-Y.; Huang, Z.-Q.; Hsu, C.-H.; Chuang, F.-C. Large Gap Topological Insulating Phase and Anisotropic Rashba and Chiral Spin Textures in Monolayer Zintl A2MX2. ACS Appl. Electron. Mater. 2022, 4, 5308–5316. [Google Scholar] [CrossRef]
- Park, S.-M.; Kim, S.-J.; Kanatzidis, M.G. Sr2MnSb2: A new ternary transition metal zintl phase. Inorg. Chem. 2005, 44, 4979–4982. [Google Scholar] [CrossRef]
- Wilson, D.K.; Saparov, B.; Bobev, S. Synthesis, crystal structures and properties of the Zintl phases Sr2ZnP2, Sr2ZnAs2, A2ZnSb2 and A2ZnBi2 (A = Sr and Eu). Z. Anorg. Allg. Chem. 2011, 637, 2018–2025. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Q.; Wang, Q.; Su, Y.; Zhou, S.; Liu, X.-C.; Xia, S.-Q. Cation Substitution and Size Effects in Ca2ZnSb2 and Yb2MnSb2: Crystal and Electronic Structures and Thermoelectric Properties. Inorg. Chem. 2023, 62, 7333–7341. [Google Scholar] [CrossRef]
- Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 2832–2838. [Google Scholar] [CrossRef]
- Wang, Y.; Bobev, S. Rare-Earth Metal Substitutions in Ca9–xRExMn4Sb9 (RE = La–Nd, Sm; x ≈ 1). Synthesis and Characterization of a New Series of Narrow-Gap Semiconductors. Chem. Mater. 2018, 30, 3518–3527. [Google Scholar] [CrossRef]
- Toriyama, M.Y.; Snyder, G.J. Are topological insulators promising thermoelectrics? Mater. Horizons 2024, 11, 1188–1198. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Xu, Y.; Zhu, J. Topological insulators for thermoelectrics. NPJ Quantum Mater. 2017, 2, 51. [Google Scholar] [CrossRef]
Empirical formula | Yb1.98(1)Cd1.01(1)Sb2 |
Formula weight | 699.62 |
a/Å | 81.801(5) |
b/Å | 4.6186(3) |
c/Å | 12.6742(7) |
β/° | 93.0610(10) |
V/Å3 | 4781.6(5) |
ρcalc g/cm3 | 8.018 |
μ/mm−1 | 44.311 |
Collected/independent reflections | 29,216/10,902 |
R1 (I > 2σ(I)) a | 0.0333 |
wR2 (I > 2σ(I)) a | 0.0589 |
R1 (all data) a | 0.0395 |
wR2 (all data) a | 0.0616 |
Δρmax,min/e− Å−3 | 2.35, −2.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watts, S.R.; Najera, L.; Ogunbunmi, M.O.; Bobev, S.; Baranets, S. β-Yb2CdSb2—A Complex Non-Centrosymmetric Zintl Polymorph. Crystals 2024, 14, 920. https://doi.org/10.3390/cryst14110920
Watts SR, Najera L, Ogunbunmi MO, Bobev S, Baranets S. β-Yb2CdSb2—A Complex Non-Centrosymmetric Zintl Polymorph. Crystals. 2024; 14(11):920. https://doi.org/10.3390/cryst14110920
Chicago/Turabian StyleWatts, Spencer R., Larissa Najera, Michael O. Ogunbunmi, Svilen Bobev, and Sviatoslav Baranets. 2024. "β-Yb2CdSb2—A Complex Non-Centrosymmetric Zintl Polymorph" Crystals 14, no. 11: 920. https://doi.org/10.3390/cryst14110920
APA StyleWatts, S. R., Najera, L., Ogunbunmi, M. O., Bobev, S., & Baranets, S. (2024). β-Yb2CdSb2—A Complex Non-Centrosymmetric Zintl Polymorph. Crystals, 14(11), 920. https://doi.org/10.3390/cryst14110920