Effect of Powder Preparation Techniques on Microstructure, Mechanical Properties, and Wear Behaviors of Graphene-Reinforced Copper Matrix Composites
<p>Schematic view of the preparation process for Gr/Cu powder by using high energy ball milling (HEB-Approach 1) and nanoscale dispersion (ND, Approach 2).</p> "> Figure 2
<p>SEM images of (<b>a</b>) Cu powder and (<b>b</b>) graphene powders.</p> "> Figure 3
<p>Sintering process of Gr/Cu composite by hot isostatic pressing technique.</p> "> Figure 4
<p>SEM images and EDS spectra of Gr/Cu powder prepared by using different techniques (<b>a</b>) HEB and (<b>b</b>) ND.</p> "> Figure 5
<p>SEM images of Gr/Cu composite using powder prepared by using different techniques: (<b>a</b>) HEB and (<b>b</b>) ND.</p> "> Figure 6
<p>EBSD inverse pole figure (IPF) maps of (<b>a</b>) pure Cu (HEB), (<b>b</b>) Gr/Cu (HEB), (<b>c</b>) pure Cu (ND), and (<b>d</b>) Gr/Cu (ND).</p> "> Figure 7
<p>(<b>a</b>) XRD patterns and (<b>b</b>) crystallite size of pure Cu and Gr/Cu with powder prepared by HEB and ND techniques.</p> "> Figure 8
<p>(<b>a</b>) Microhardness and (<b>b</b>) tensile strength of pure Cu and Gr/Cu with powder prepared by HEB and ND techniques.</p> "> Figure 9
<p>Contribution of strengthening mechanisms to the yield strength of Gr/Cu composites with powder prepared by HEB technique.</p> "> Figure 10
<p>Contribution of strengthening mechanisms to the yield strength of Gr/Cu composites with powder prepared by ND technique.</p> "> Figure 11
<p>(<b>a</b>,<b>b</b>) Friction coefficient and (<b>c</b>) wear rate of pure Cu and Gr/Cu with powder prepared by HEB and ND techniques.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Gr/Cu Composites
2.2. Characterizations
3. Results
3.1. Microstructure
3.2. Mechanical Properties
3.3. Wear Behaviors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Madhesh, D.; Jagatheesan, K.; Sathish, T.; Balamanikandasuthan, K. Microstructural and Mechanical Properties of Copper Matrix Composites. Mater. Today Proc. 2021, 37, 1437–1441. [Google Scholar] [CrossRef]
- Jamwal, A.; Mittal, P.; Agrawal, R.; Gupta, S.; Kumar, D.; Sadasivuni, K.K.; Gupta, P. Towards Sustainable Copper Matrix Composites: Manufacturing Routes with Structural, Mechanical, Electrical and Corrosion Behaviour. J. Compos. Mater. 2020, 54, 2635–2649. [Google Scholar] [CrossRef]
- Luo, H.; Bao, R.; Ma, R.; Liu, J.; Nie, Y.; Yi, J. Preparation and Properties of Copper Matrix Composites Synergistically Strengthened by Al2O3 and CPD. Diam. Relat. Mater. 2022, 124, 108916. [Google Scholar] [CrossRef]
- Sivasubramaniyam, V.; Ramasamy, S.; Venkatraman, M.; Gatto, G.; Kumar, A. Carbon Nanotubes as an Alternative to Copper Wires in Electrical Machines: A Review. Energies 2023, 16, 3665. [Google Scholar] [CrossRef]
- Carneiro, Í.; Monteiro, B.; Ribeiro, B.; Fernandes, J.V.; Simões, S. Production and Characterization of Cu/CNT Nanocomposites. Appl. Sci. 2023, 13, 3378. [Google Scholar] [CrossRef]
- Ya, B.; Xu, Y.; Meng, L.; Zhou, B.; Zhao, J.; Chen, X.; Zhang, X. Fabrication of Copper Matrix Composites Reinforced with Carbon Nanotubes Using an Innovational Self-Reduction Molecular-Level-Mixing Method. Materials 2022, 15, 6488. [Google Scholar] [CrossRef]
- Štefanik, P.; Šebo, P. Thermal Expansion of Copper-Carbon Fiber Composites. Theor. Appl. Fract. Mech. 1994, 20, 41–45. [Google Scholar] [CrossRef]
- Šebo, P.; Štefánik, P. Copper Matrix-Carbon Fibre Composites. Int. J. Mater. Prod. Technol. 2003, 18, 141–159. [Google Scholar] [CrossRef]
- Hidalgo-Manrique, P.; Lei, X.; Xu, R.; Zhou, M.; Kinloch, I.A.; Young, R.J. Copper/Graphene Composites: A Review. J. Mater. Sci. 2019, 54, 12236–12289. [Google Scholar] [CrossRef]
- Ali, S.; Ahmad, F.; Yusoff, P.S.M.M.; Muhamad, N.; Oñate, E.; Raza, M.R.; Malik, K. A Review of Graphene Reinforced Cu Matrix Composites for Thermal Management of Smart Electronics. Compos. Part A Appl. Sci. Manuf. 2021, 144, 106357. [Google Scholar] [CrossRef]
- Yusaf, T.; Mahamude, A.S.F.; Farhana, K.; Harun, W.S.W.; Kadirgama, K.; Ramasamy, D.; Kamarulzaman, M.K.; Subramonian, S.; Hall, S.; Dhahad, H.A. A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications. Sustainability 2022, 14, 12336. [Google Scholar] [CrossRef]
- Mbayachi, V.B.; Ndayiragije, E.; Sammani, T.; Taj, S.; Mbuta, E.R.; ullah khan, A. Graphene Synthesis, Characterization and Its Applications: A Review. Results Chem. 2021, 3, 100163. [Google Scholar] [CrossRef]
- Shi, Z.; Sheng, J.; Liu, Z.; Yang, Z.; Xing, C.; Li, J.; Chen, W.; Wang, M.; Wang, L.; Fei, W. Graphene-like Carbon Nanosheet/Copper Composite with Combined Performance Designed by Pyrolyzing Trimesic Acid@copper Formate. J. Mater. Res. Technol. 2021, 13, 111–120. [Google Scholar] [CrossRef]
- Li, X.; Miu, J.; An, M.; Mei, J.; Zheng, F.; Jiang, J.; Wang, H.; Huang, Y.; Li, Q. Preparation of Graphene/Copper Composites with a Thiophenol Molecular Junction for Thermal Conduction Application. New J. Chem. 2022, 46, 10107–10116. [Google Scholar] [CrossRef]
- Chen, F.; Mei, Q.S.; Li, J.Y.; Li, C.L.; Wan, L.; Zhang, G.D.; Mei, X.M.; Chen, Z.H.; Xu, T.; Wang, Y.C. Fabrication of Graphene/Copper Nanocomposites via in-Situ Delamination of Graphite in Copper by Accumulative Roll-Compositing. Compos. B Eng. 2021, 216, 108850. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Yang, M.; Hou, H.; Wu, S. High Strength and Conductivity Copper/Graphene Composites Prepared by Severe Plastic Deformation of Graphene Coated Copper Powder. Mater. Sci. Eng. A 2021, 826, 141983. [Google Scholar] [CrossRef]
- Avcu, E.; Cao, H.; Zhang, X.; Guo, Y.; Withers, P.J.; Li, X.; Wang, N.; Yan, S.; Xiao, P. The Effect of Reduced Graphene Oxide Content on the Microstructural and Mechanical Properties of Copper Metal Matrix Composites. Mater. Sci. Eng. A 2022, 856, 143921. [Google Scholar] [CrossRef]
- Choi, J.; Okimura, N.; Yamada, T.; Hirata, Y.; Ohtake, N.; Akasaka, H. Deposition of Graphene–Copper Composite Film by Cold Spray from Particles with Graphene Grown on Copper Particles. Diam. Relat. Mater. 2021, 116, 108384. [Google Scholar] [CrossRef]
- Wang, M.; Zuo, T.; Xue, J.; Ru, Y.; Wu, Y.; Xu, Z.; Gao, Z.; Han, L.; Xiao, L. A Novel Approach for In-Situ Preparation of Copper/Graphene Composite with High Hardness and High Electrical Conductivity. Mater. Lett. 2022, 319, 132219. [Google Scholar] [CrossRef]
- Fan, L.; Yao, W.; Wang, Y. Graphene-Reinforced Copper Matrix Composites: Insights into Interfacial Mechanical Properties of the “Bottom-up” Hybrid Configuration. Diam. Relat. Mater. 2021, 118, 108519. [Google Scholar] [CrossRef]
- Dong, Z.; Peng, Y.; Zhang, X.; Xiong, D.B. Plasma Assisted Milling Treatment for Improving Mechanical and Electrical Properties of In-Situ Grown Graphene/Copper Composites. Compos. Commun. 2021, 24, 100619. [Google Scholar] [CrossRef]
- Shi, L.; Liu, M.; Yang, Y.; Liu, R.; Zhang, W.; Zheng, Q.; Ren, Z. Achieving High Strength and Ductility in Copper Matrix Composites with Graphene Network. Mater. Sci. Eng. A 2021, 828, 142107. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, Z.; Luo, Q.; Wu, Z.; Liu, L.; Shen, B.; Hu, W. Microstructure and Nanoindentation Behavior of Cu Composites Reinforced with Graphene Nanoplatelets by Electroless Co-Deposition Technique. Sci. Rep. 2017, 7, 1338. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.; Debata, M. Effect of Composition and Milling Time on Mechanical and Wear Performance of Copper–Graphite Composites Processed by Powder Metallurgy Route. Powder Metall. 2014, 57, 265–273. [Google Scholar] [CrossRef]
- Bata, V.; Pereloma, E.V. An Alternative Physical Explanation of the Hall–Petch Relation. Acta Mater. 2004, 52, 657–665. [Google Scholar] [CrossRef]
- Yoo, S.C.; Lee, J.; Hong, S.H. Synergistic Outstanding Strengthening Behavior of Graphene/Copper Nanocomposites. Compos. B Eng. 2019, 176, 107235. [Google Scholar] [CrossRef]
- Arsenault, R.J.; Shi, N. Dislocation Generation Due to Differences between the Coefficients of Thermal Expansion. Mater. Sci. Eng. 1986, 81, 175–187. [Google Scholar] [CrossRef]
- Yoon, D.; Son, Y.W.; Cheong, H. Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy. Nano Lett. 2011, 11, 3227–3231. [Google Scholar] [CrossRef]
- Yoo, S.J.; Han, S.H.; Kim, W.J. Strength and Strain Hardening of Aluminum Matrix Composites with Randomly Dispersed Nanometer-Length Fragmented Carbon Nanotubes. Scr. Mater. 2013, 68, 711–714. [Google Scholar] [CrossRef]
- Nardone, V.C.; Strife, J.R. Analysis of the Creep Behavior of Silicon Carbide Whisker Reinforced 2124 Al(T4). Metall. Trans. A 1987, 18, 109–114. [Google Scholar] [CrossRef]
Composite | Relative Density (%) | Microhardness (HV) | σYS (MPa) | σUTS (MPa) | Elongation (%) |
---|---|---|---|---|---|
Pure Cu (HEB) | 98.1 ± 1.2 | 55.5 ± 5.4 | 120 ± 9.4 | 168 ± 10.5 | 55 ± 3.1 |
Gr/Cu (HEB) | 97.6 ± 1.4 | 71.9 ± 6.2 | 188 ± 11.2 | 218 ± 12.8 | 11 ± 4.5 |
Pure Cu (ND) | 98.5 ± 1.1 | 61.2 ± 6.8 | 137 ± 7.8 | 187 ± 9.9 | 42 ± 3.4 |
Gr/Cu (ND) | 97.8 ± 1.3 | 85.9 ± 5.7 | 248 ± 8.9 | 311 ± 10.7 | 30 ± 2.8 |
Composite | Measured Y. S. (MPa) | Calculated Enhancement in Y. S. (MPa) | |||
---|---|---|---|---|---|
Grain Boundary Strengthening | Dislocation Strengthening by CTE Mismatch | Orowan Strengthening | Load Transfer | ||
Pure Cu (HEB) | 120 | - | - | - | - |
Gr/Cu (HEB) | 188 | 10.5 | 16.2 | 1.1 | 40.2 |
Pure Cu (ND) | 137 | - | - | - | - |
Gr/Cu/ND) | 248 | 14.9 | 16.2 | 1.1 | 78.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phuong, D.D.; Van Trinh, P.; Minh, P.N.; Shtertser, A.A.; Ulianitsky, V.Y. Effect of Powder Preparation Techniques on Microstructure, Mechanical Properties, and Wear Behaviors of Graphene-Reinforced Copper Matrix Composites. Crystals 2024, 14, 1000. https://doi.org/10.3390/cryst14111000
Phuong DD, Van Trinh P, Minh PN, Shtertser AA, Ulianitsky VY. Effect of Powder Preparation Techniques on Microstructure, Mechanical Properties, and Wear Behaviors of Graphene-Reinforced Copper Matrix Composites. Crystals. 2024; 14(11):1000. https://doi.org/10.3390/cryst14111000
Chicago/Turabian StylePhuong, Doan Dinh, Pham Van Trinh, Phan Ngoc Minh, Alexandr A. Shtertser, and Vladimir Y. Ulianitsky. 2024. "Effect of Powder Preparation Techniques on Microstructure, Mechanical Properties, and Wear Behaviors of Graphene-Reinforced Copper Matrix Composites" Crystals 14, no. 11: 1000. https://doi.org/10.3390/cryst14111000
APA StylePhuong, D. D., Van Trinh, P., Minh, P. N., Shtertser, A. A., & Ulianitsky, V. Y. (2024). Effect of Powder Preparation Techniques on Microstructure, Mechanical Properties, and Wear Behaviors of Graphene-Reinforced Copper Matrix Composites. Crystals, 14(11), 1000. https://doi.org/10.3390/cryst14111000