Non-Oxidative Coupling of Methane Catalyzed by Heterogeneous Catalysts Containing Singly Dispersed Metal Sites
<p>Structural features and reaction performance of 0.5 wt% Fe©SiO<sub>2</sub>. (<b>a</b>) STEM-HAADF image of the catalyst after reaction, with the inset showing the computational model of the single iron atom bonded to two C atoms and one Si atom within the silica matrix. (<b>b</b>) In situ XANES upon activation and (<b>c</b>) Fourier-transformed (FT), <span class="html-italic">k</span><sup>3</sup>-weighted <span class="html-italic">χ</span>(k)-function of the EXAFS spectra. Note: Solid lines denote reference samples of Fe foil, FeSi<sub>2</sub>, and Fe<sub>2</sub>O<sub>3</sub>. Line 1 denotes the fresh 0.5% Fe©SiO<sub>2</sub>. Line 2 stands for 0.5% Fe©SiO<sub>2</sub> and line 3 for 0.5% Fe/SiO<sub>2</sub> upon activation in 10% CH<sub>4</sub>/N<sub>2</sub> at 1173 K for 2 h. R(Å): distance in angstroms. (<b>d</b>) Comparison of different catalysts at 1223 K and 4.84 L gcat<sup>−1</sup> h<sup>−1</sup>. (Note: the blue dots and line mean methane conversion). (<b>e</b>) Long-term stability test of 0.5% Fe©SiO<sub>2</sub> at 1293 K and 14.5 L gcat<sup>−1</sup> h<sup>−1</sup>. Reproduced with permission from ref. [<a href="#B70-catalysts-14-00363" class="html-bibr">70</a>]. Copyright 2014 The American Association for the Advancement of Science.</p> "> Figure 2
<p>Illustration of quasi-Mars–van Krevelen mechanism of methane conversion at the Fe<sub>1</sub>©SiC<sub>2</sub> active center. Reproduced with permission from ref. [<a href="#B87-catalysts-14-00363" class="html-bibr">87</a>]. Copyright 2020 John Wiley and Sons.</p> "> Figure 3
<p>Proposed catalytic cycle of grafted [M]-H catalysts. (<b>a</b>) Detailed mechanism of coupling of methane to ethane, ethylene, and hydrogen using single-site [W]-H catalysts, including SS NMR signals. (<b>b</b>) Initiation reaction in the low-temperature activation of methane with a silica supported [Ta]-hydride. Reproduced with permission from ref. [<a href="#B61-catalysts-14-00363" class="html-bibr">61</a>]. Copyright 2014 American Chemical Society.</p> "> Figure 4
<p>Catalytic cycles a (CCA) for silica-supported single-site tantalum-catalyzed NOCM (<b>a</b>) and relative free energy (723.15 k, 49.3 atm) profile for CCA (<b>b</b>). Catalytic cycles b (CCB) for silica-supported single-site tantalum-catalyzed NOCM (<b>c</b>) and relative free energy (723.15 k, 49.3 atm) profile for CCB (<b>d</b>). Note: Reaction pathways indicated with solid lines are catalytic cycles, and dotted lines are unfavorable pathways competing with these two catalytic cycles. [Ta] is used to represent the silica-supported Ta part for clarity. Reproduced with permission from ref. [<a href="#B100-catalysts-14-00363" class="html-bibr">100</a>]. Copyright 2020: American Chemical Society.</p> "> Scheme 1
<p>Structures of (<b>a</b>) single-atom catalyst (SAC) and (<b>b</b>) surface organometallic catalyst (SOMCat). Note: grey rectangle indicates support materials; Ms is the metal atom in the support; O is the oxygen atom in the support; M is the catalytic active metal; X and Y indicate specifically active moieties; and L indicates the other necessary ligand. Reproduced with permission from ref. [<a href="#B61-catalysts-14-00363" class="html-bibr">61</a>]. Copyright 2014 American Chemical Society.</p> ">
Abstract
:1. Introduction
2. Heterogeneous Catalysts Containing Singly Dispersed Metal Sites Active for Non-Oxidative Methane Coupling
2.1. Catalytic Performance and Structure of Single-Atom Catalysts
2.2. Reaction Pathway of NOCM via Single-Atom Catalysts
2.3. Catalytic Performance and Sites of Surface Organometallic Catalysts
2.4. Mechanisms of NOCM via Surface Organometallic Catalysts
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saha, D.; Grappe, H.A.; Chakraborty, A.; Orkoulas, G. Postextraction Separation, On-Board Storage, and Catalytic Conversion of Methane in Natural Gas: A Review. Chem. Rev. 2016, 116, 11436–11499. [Google Scholar] [CrossRef] [PubMed]
- Chong, Z.R.; Yang, S.H.B.; Babu, P.; Linga, P.; Li, X.-S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 2016, 162, 1633–1652. [Google Scholar] [CrossRef]
- Zendehboudi, S.; Bahadori, A. Chapter One—Shale Gas: Introduction, Basics, and Definitions. In Shale Oil and Gas Handbook; Zendehboudi, S., Bahadori, A., Eds.; Gulf Professional Publishing: Houston, TX, USA, 2017; pp. 1–26. [Google Scholar]
- Crabtree, R.H. Aspects of Methane Chemistry. Chem. Rev. 1995, 95, 987–1007. [Google Scholar] [CrossRef]
- Bao, J.; Yang, G.; Yoneyama, Y.; Tsubaki, N. Significant Advances in C1 Catalysis: Highly Efficient Catalysts and Catalytic Reactions. ACS Catal. 2019, 9, 3026–3053. [Google Scholar] [CrossRef]
- Schwach, P.; Pan, X.L.; Bao, X.H. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chem. Rev. 2017, 117, 8497–8520. [Google Scholar] [CrossRef]
- Usman, M.; Daud, W.; Abbas, H.F. Dry reforming of methane: Influence of process parameters—A review. Renew. Sustain. Energy Rev. 2015, 45, 710–744. [Google Scholar] [CrossRef]
- Gélin, P.; Primet, M. Complete oxidation of methane at low temperature over noble metal based catalysts: A review. Appl. Catal. B Environ. 2002, 39, 1–37. [Google Scholar] [CrossRef]
- Zakaria, Z.; Kamarudin, S.K. Direct conversion technologies of methane to methanol: An overview. Renew. Sustain. Energy Rev. 2016, 65, 250–261. [Google Scholar] [CrossRef]
- Tang, P.; Zhu, Q.J.; Wu, Z.X.; Ma, D. Methane activation: The past and future. Energy Environ. Sci. 2014, 7, 2580–2591. [Google Scholar] [CrossRef]
- Kondratenko, E.V.; Peppel, T.; Seeburg, D.; Kondratenko, V.A.; Kalevaru, N.; Martin, A.; Wohlrab, S. Methane conversion into different hydrocarbons or oxygenates: Current status and future perspectives in catalyst development and reactor operation. Catal. Sci. Technol. 2017, 7, 366–381. [Google Scholar] [CrossRef]
- Gunsalus, N.J.; Koppaka, A.; Park, S.H.; Bischof, S.M.; Hashiguchi, B.G.; Periana, R.A. Homogeneous Functionalization of Methane. Chem. Rev. 2017, 117, 8521–8573. [Google Scholar] [CrossRef]
- Paunović, V.; Pérez-Ramírez, J. Catalytic halogenation of methane: A dream reaction with practical scope? Catal. Sci. Technol. 2019, 9, 4515–4530. [Google Scholar] [CrossRef]
- Kiani, D.; Sourav, S.; Tang, Y.; Baltrusaitis, J.; Wachs, I.E. Methane activation by ZSM-5-supported transition metal centers. Chem. Soc. Rev. 2021, 50, 1251–1268. [Google Scholar] [CrossRef]
- Budiman, A.W.; Nam, J.S.; Park, J.H.; Mukti, R.I.; Chang, T.S.; Bae, J.W.; Choi, M.J. Review of Acetic Acid Synthesis from Various Feedstocks Through Different Catalytic Processes. Catal. Surv. Asia 2016, 20, 173–193. [Google Scholar] [CrossRef]
- Reutemann, W.; Kieczka, H. Formic Acid. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co: Hoboken, NJ, USA, 2000. [Google Scholar]
- Ott, J.; Gronemann, V.; Pontzen, F.; Fiedler, E.; Grossmann, G.; Kersebohm, D.B.; Weiss, G.; Witte, C. Methanol. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Cheung, H.; Tanke, R.S.; Torrence, R.P. Acetic Acid. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co.: Hoboken, NJ, USA, 2012; pp. 1–134. [Google Scholar]
- Liu, J.; Yue, J.; Lv, M.; Wang, F.; Cui, Y.; Zhang, Z.; Xu, G. From fundamentals to chemical engineering on oxidative coupling of methane for ethylene production: A review. Carbon Resour. Convers. 2022, 5, 1–14. [Google Scholar] [CrossRef]
- Ortiz-Bravo, C.A.; Chagas, C.A.; Toniolo, F.S. Oxidative coupling of methane (OCM): An overview of the challenges and opportunities for developing new technologies. J. Nat. Gas Sci. Eng. 2021, 96, 104254. [Google Scholar] [CrossRef]
- Arinaga, A.M.; Ziegelski, M.C.; Marks, T.J. Alternative Oxidants for the Catalytic Oxidative Coupling of Methane. Angew. Chem. Int. Ed. 2021, 60, 10502–10515. [Google Scholar] [CrossRef] [PubMed]
- Galadima, A.; Muraza, O. Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas: A review. J. Ind. Eng. Chem. 2016, 37, 1–13. [Google Scholar] [CrossRef]
- Arndt, S.; Laugel, G.; Levchenko, S.; Horn, R.; Baerns, M.; Scheffler, M.; Schlogl, R.; Schomacker, R. A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane. Catal. Rev.—Sci. Eng. 2011, 53, 424–514. [Google Scholar] [CrossRef]
- Zhang, Z.; Verykios, X.E.; Baerns, M. Effect of Electronic Properties of Catalysts for the Oxidative Coupling of Methane on Their Selectivity and Activity. Catal. Rev. 1994, 36, 507–556. [Google Scholar] [CrossRef]
- Shilov, A.E.; Shul’pin, G.B. Activation of C−H Bonds by Metal Complexes. Chem. Rev. 1997, 97, 2879–2932. [Google Scholar] [CrossRef] [PubMed]
- Belgued, M.; Pareja, P.; Amariglio, A.; Amariglio, H. Conversion of methane into higher hydrocarbons on platinum. Nature 1991, 352, 789–790. [Google Scholar] [CrossRef]
- Kurosaka, T.; Matsuhashi, H.; Arata, K. Dehydrogenative Coupling of Methane Catalyzed by Platinum-Added Sulfated Zirconia and Characterization of the Catalyst Surface. J. Catal. 1998, 179, 28–35. [Google Scholar] [CrossRef]
- Moya, S.F.; Martins, R.L.; Ota, A.; Kunkes, E.L.; Behrens, M.; Schmal, M. Nanostructured supported palladium catalysts—Non-oxidative methane coupling. Appl. Catal. A Gen. 2012, 411–412, 105–113. [Google Scholar] [CrossRef]
- Gerceker, D.; Motagamwala, A.H.; Rivera-Dones, K.R.; Miller, J.B.; Huber, G.W.; Mavrikakis, M.; Dumesic, J.A. Methane Conversion to Ethylene and Aromatics on PtSn Catalysts. ACS Catal. 2017, 7, 2088–2100. [Google Scholar] [CrossRef]
- Xiao, Y.; Varma, A. Highly Selective Nonoxidative Coupling of Methane over Pt-Bi Bimetallic Catalysts. ACS Catal. 2018, 8, 2735–2740. [Google Scholar] [CrossRef]
- Julian, I.; Hueso, J.L.; Lara, N.; Solé-Daurá, A.; Poblet, J.M.; Mitchell, S.G.; Mallada, R.; Santamaría, J. Polyoxometalates as alternative Mo precursors for methane dehydroaromatization on Mo/ZSM-5 and Mo/MCM-22 catalysts. Catal. Sci. Technol. 2019, 9, 5927–5942. [Google Scholar] [CrossRef]
- Agote-Arán, M.; Fletcher, R.E.; Briceno, M.; Kroner, A.B.; Sazanovich, I.V.; Slater, B.; Rivas, M.E.; Smith, A.W.J.; Collier, P.; Lezcano-González, I.; et al. Implications of the Molybdenum Coordination Environment in MFI Zeolites on Methane Dehydroaromatisation Performance. ChemCatChem 2020, 12, 294–304. [Google Scholar] [CrossRef]
- Julian, I.; Roedern, M.B.; Hueso, J.L.; Irusta, S.; Baden, A.K.; Mallada, R.; Davis, Z.; Santamaria, J. Supercritical solvothermal synthesis under reducing conditions to increase stability and durability of Mo/ZSM-5 catalysts in methane dehydroaromatization. Appl. Catal. B Environ. 2020, 263, 118360. [Google Scholar] [CrossRef]
- Wang, D.; Lunsford, J.H.; Rosynek, M.P. Catalytic conversion of methane to benzene over Mo/ZSM-5. Top. Catal. 1996, 3, 289–297. [Google Scholar] [CrossRef]
- Paréja, P.; Mercy, M.; Gachon, J.-C.; Amariglio, A.; Amariglio, H. A Way to Higher Hydrocarbons from Methane with Sizable Yield and Good Selectivity. Ind. Eng. Chem. Res. 1999, 38, 1163–1165. [Google Scholar] [CrossRef]
- Huang, K.; Miller, J.B.; Huber, G.W.; Dumesic, J.A.; Maravelias, C.T. A General Framework for the Evaluation of Direct Nonoxidative Methane Conversion Strategies. Joule 2018, 2, 349–365. [Google Scholar] [CrossRef]
- Yang, X.F.; Wang, A.Q.; Qiao, B.T.; Li, J.; Liu, J.Y.; Zhang, T. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Acc. Chem. Res. 2013, 46, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Coperet, C. C−H Bond Activation and Organometallic Intermediates on Isolated Metal Centers on Oxide Surfaces. Chem. Rev. 2010, 110, 656–680. [Google Scholar] [CrossRef]
- Pelletier, J.D.; Basset, J.M. Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts. Acc. Chem. Res. 2016, 49, 664–677. [Google Scholar] [CrossRef]
- Samantaray, M.K.; Pump, E.; Bendjeriou-Sedjerari, A.; D’Elia, V.; Pelletier, J.D.A.; Guidotti, M.; Psaro, R.; Basset, J.-M. Surface organometallic chemistry in heterogeneous catalysis. Chem. Soc. Rev. 2018, 47, 8403–8437. [Google Scholar] [CrossRef]
- Wang, A.Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81. [Google Scholar] [CrossRef]
- Zhao, G.X.; Liu, H.M.; Ye, J.H. Constructing and controlling of highly dispersed metallic sites for catalysis. Nano Today 2018, 19, 108–125. [Google Scholar] [CrossRef]
- Liu, L.C.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef]
- Su, J.W.; Ge, R.X.; Dong, Y.; Hao, F.; Chen, L. Recent progress in single-atom electrocatalysts: Concept, synthesis, and applications in clean energy conversion. J. Mater. Chem. A 2018, 6, 14025–14042. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, Y.; Liu, W.; Wang, A.; Zhang, T. Single-atom catalyst: A rising star for green synthesis of fine chemicals. Natl. Sci. Rev. 2018, 5, 653–672. [Google Scholar] [CrossRef]
- Yan, H.; Su, C.L.; He, J.; Chen, W. Single-atom catalysts and their applications in organic chemistry. J. Mater. Chem. A 2018, 6, 8793–8814. [Google Scholar] [CrossRef]
- Zhang, H.B.; Liu, G.G.; Shi, L.; Ye, J.H. Single-Atom Catalysts: Emerging Multifunctional Materials in Heterogeneous Catalysis. Adv. Energy Mater. 2018, 8, 24. [Google Scholar] [CrossRef]
- Yamashita, H.; Mori, K.; Kuwahara, Y.; Kamegawa, T.; Wen, M.; Verma, P.; Che, M. Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels. Chem. Soc. Rev. 2018, 47, 8072–8096. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chem. Rev. 2020, 120, 683–733. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, S.K.; Chen, Z.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J. Single-Atom Catalysts across the Periodic Table. Chem. Rev. 2020, 120, 11703–11809. [Google Scholar] [CrossRef]
- Lang, R.; Du, X.; Huang, Y.; Jiang, X.; Zhang, Q.; Guo, Y.; Liu, K.; Qiao, B.; Wang, A.; Zhang, T. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chem. Rev. 2020, 120, 11986–12043. [Google Scholar] [CrossRef] [PubMed]
- Samantaray, M.K.; Mishra, S.K.; Saidi, A.; Basset, J.-M. Surface organometallic chemistry: A sustainable approach in modern catalysis. J. Organomet. Chem. 2021, 945, 121864. [Google Scholar] [CrossRef]
- Copéret, C.; Berkson, Z.J.; Chan, K.W.; de Jesus Silva, J.; Gordon, C.P.; Pucino, M.; Zhizhko, P.A. Olefin metathesis: What have we learned about homogeneous and heterogeneous catalysts from surface organometallic chemistry? Chem. Sci. 2021, 12, 3092–3115. [Google Scholar] [CrossRef]
- Li, Z.S.; Li, B.L.; Hu, Y.F.; Wang, S.Y.; Yu, C.L. Highly-dispersed and high-metal-density electrocatalysts on carbon supports for the oxygen reduction reaction: From nanoparticles to atomic-level architectures. Mater. Adv. 2022, 3, 779–809. [Google Scholar] [CrossRef]
- Liang, X.; Fu, N.; Yao, S.; Li, Z.; Li, Y. The Progress and Outlook of Metal Single-Atom-Site Catalysis. J. Am. Chem. Soc. 2022, 144, 18155–18174. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Peng, M.; Liu, H.; Ma, D. Atomically Dispersed Metals on Nanodiamond-Derived Hybrid Materials for Heterogeneous Catalysis. Acc. Mater. Res. 2023, 4, 223–236. [Google Scholar] [CrossRef]
- Copéret, C.; Chabanas, M.; Petroff Saint-Arroman, R.; Basset, J.-M. Homogeneous and Heterogeneous Catalysis: Bridging the Gap through Surface Organometallic Chemistry. Angew. Chem. Int. Ed. 2003, 42, 156–181. [Google Scholar] [CrossRef] [PubMed]
- Copéret, C.; Basset, J.M. Strategies to Immobilize Well-Defined Olefin Metathesis Catalysts: Supported Homogeneous Catalysis vs. Surface Organometallic Chemistry. Adv. Synth. Catal. 2007, 349, 78–92. [Google Scholar] [CrossRef]
- Copéret, C.; Comas-Vives, A.; Conley, M.P.; Estes, D.P.; Fedorov, A.; Mougel, V.; Nagae, H.; Núñez-Zarur, F.; Zhizhko, P.A. Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities. Chem. Rev. 2016, 116, 323–421. [Google Scholar] [CrossRef] [PubMed]
- Copéret, C.; Fedorov, A.; Zhizhko, P.A. Surface Organometallic Chemistry: Paving the Way Beyond Well-Defined Supported Organometallics and Single-Site Catalysis. Catal. Lett. 2017, 147, 2247–2259. [Google Scholar] [CrossRef]
- Samantaray, M.K.; D’Elia, V.; Pump, E.; Falivene, L.; Harb, M.; Ould Chikh, S.; Cavallo, L.; Basset, J.-M. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chem. Rev. 2020, 120, 734–813. [Google Scholar] [CrossRef] [PubMed]
- Datye, A.; Wang, Y. Atom trapping: A novel approach to generate thermally stable and regenerable single-atom catalysts. Natl. Sci. Rev. 2018, 5, 630–632. [Google Scholar] [CrossRef]
- Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y. Chemical Synthesis of Single Atomic Site Catalysts. Chem. Rev. 2020, 120, 11900–11955. [Google Scholar] [CrossRef]
- Li, J.; Stephanopoulos, M.F.; Xia, Y. Introduction: Heterogeneous Single-Atom Catalysis. Chem. Rev. 2020, 120, 11699–11702. [Google Scholar] [CrossRef]
- Hannagan, R.T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E.C.H. Single-Atom Alloy Catalysis. Chem. Rev. 2020, 120, 12044–12088. [Google Scholar] [CrossRef]
- Zhang, T.; Walsh, A.G.; Yu, J.; Zhang, P. Single-atom alloy catalysts: Structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev. 2021, 50, 569–588. [Google Scholar] [CrossRef] [PubMed]
- Da, Y.; Jiang, R.; Tian, Z.; Han, X.; Chen, W.; Hu, W. The applications of single-atom alloys in electrocatalysis: Progress and challenges. SmartMat 2023, 4, e1136. [Google Scholar] [CrossRef]
- Xu, Z.; Ao, Z.; Yang, M.; Wang, S. Recent progress in single-atom alloys: Synthesis, properties, and applications in environmental catalysis. J. Hazard. Mater. 2022, 424, 127427. [Google Scholar] [CrossRef]
- Serna, P.; Gates, B.C. Molecular Metal Catalysts on Supports: Organometallic Chemistry Meets Surface Science. Acc. Chem. Res. 2014, 47, 2612–2620. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Fang, G.; Li, G.; Ma, H.; Fan, H.; Yu, L.; Ma, C.; Wu, X.; Deng, D.; Wei, M.; et al. Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen. Science 2014, 344, 616–619. [Google Scholar] [CrossRef]
- Sakbodin, M.; Wu, Y.; Oh, S.C.; Wachsman, E.D.; Liu, D. Hydrogen-Permeable Tubular Membrane Reactor: Promoting Conversion and Product Selectivity for Non-Oxidative Activation of Methane over an Fe©SiO2 Catalyst. Angew. Chem. Int. Ed. 2016, 55, 16149–16152. [Google Scholar] [CrossRef]
- Han, S.J.; Lee, S.W.; Kim, H.W.; Kim, S.K.; Kim, Y.T. Nonoxidative Direct Conversion of Methane on Silica-Based Iron Catalysts: Effect of Catalytic Surface. ACS Catal. 2019, 9, 7984–7997. [Google Scholar] [CrossRef]
- Zhang, H.; Bolshakov, A.; Meena, R.; Garcia, G.A.; Dugulan, A.I.; Parastaev, A.; Li, G.; Hensen, E.J.M.; Kosinov, N. Revealing Active Sites and Reaction Pathways in Methane Non-Oxidative Coupling over Iron-Containing Zeolites. Angew. Chem. Int. Ed. 2023, 62, e202306196. [Google Scholar] [CrossRef]
- Xie, P.; Pu, T.; Nie, A.; Hwang, S.; Purdy, S.C.; Yu, W.; Su, D.; Miller, J.T.; Wang, C. Nanoceria-Supported Single-Atom Platinum Catalysts for Direct Methane Conversion. ACS Catal. 2018, 8, 4044–4048. [Google Scholar] [CrossRef]
- Soulivong, D.; Norsic, S.; Taoufik, M.; Coperet, C.; Thivolle-Cazat, J.; Chakka, S.; Basset, J.-M. Non-Oxidative Coupling Reaction of Methane to Ethane and Hydrogen Catalyzed by the Silica-Supported Tantalum Hydride: (≡SiO)2Ta−H. J. Am. Chem. Soc. 2008, 130, 5044–5045. [Google Scholar] [CrossRef] [PubMed]
- Szeto, K.C.; Norsic, S.; Hardou, L.; Le Roux, E.; Chakka, S.; Thivolle-Cazat, J.; Baudouin, A.; Papaioannou, C.; Basset, J.M.; Taoufik, M. Non-oxidative coupling of methane catalysed by supported tungsten hydride onto alumina and silica–alumina in classical and H2 permeable membrane fixed-bed reactors. Chem. Commun. 2010, 46, 3985–3987. [Google Scholar] [CrossRef]
- Schwarz, H. Chemistry with Methane: Concepts Rather than Recipes. Angew. Chem. Int. Ed. 2011, 50, 10096–10115. [Google Scholar] [CrossRef]
- McFarland, E.W.; Metiu, H. Catalysis by Doped Oxides. Chem. Rev. 2013, 113, 4391–4427. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Kim, H.W.; Han, S.J.; Lee, S.W.; Shin, J.; Kim, Y.T. Mechanistic and microkinetic study of non-oxidative methane coupling on a single-atom iron catalyst. Commun. Chem. 2020, 3, 58. [Google Scholar] [CrossRef]
- Gebrekidan Gebreyohannes, T.; Woo Lee, S.; Ju Han, S.; Tae Kim, Y.; Ki Kim, S. Unveiling the complexity of non-oxidative coupling of methane: A simplified kinetics approach. Chem. Eng. J. 2023, 470, 144216. [Google Scholar] [CrossRef]
- Jones, J.; Xiong, H.; DeLaRiva, A.T.; Peterson, E.J.; Pham, H.; Challa, S.R.; Qi, G.; Oh, S.; Wiebenga, M.H.; Pereira Hernández, X.I.; et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150. [Google Scholar] [CrossRef] [PubMed]
- Qiao, B.T.; Wang, A.Q.; Yang, X.F.; Allard, L.F.; Jiang, Z.; Cui, Y.T.; Liu, J.Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt-1/FeOx. Nat. Chem. 2011, 3, 634–641. [Google Scholar] [CrossRef]
- Zhang, H.; Muravev, V.; Liu, L.; Liutkova, A.; Simons, J.F.M.; Detlefs, B.; Yang, H.; Kosinov, N.; Hensen, E.J.M. Pt/CeO2 as Catalyst for Nonoxidative Coupling of Methane: Oxidative Regeneration. J. Phys. Chem. Lett. 2023, 14, 6778–6783. [Google Scholar] [CrossRef]
- Talpade, A.D.; Canning, G.; Zhuchen, J.; Arvay, J.; Watt, J.; Miller, J.T.; Datye, A.; Ribeiro, F.H. Catalytic reactivity of Pt sites for non-oxidative coupling of methane (NOCM). Chem. Eng. J. 2024, 481, 148675. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, H.; Qi, F. Recent developments in synchrotron vacuum ultraviolet photoionization coupled to mass spectrometry. TrAC Trends Anal. Chem. 2011, 30, 1400–1409. [Google Scholar] [CrossRef]
- Luo, L.; Tang, X.; Wang, W.; Wang, Y.; Sun, S.; Qi, F.; Huang, W. Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy. Sci. Rep. 2013, 3, 1625. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J.-C.; Li, T.-H.; Duan, Z.-H.; Zhang, T.-Y.; Yan, M.; Li, W.-L.; Xiao, H.; Wang, Y.-G.; Chang, C.-R.; et al. Unravelling the Enigma of Nonoxidative Conversion of Methane on Iron Single-Atom Catalysts. Angew. Chem. Int. Ed. 2020, 59, 18586–18590. [Google Scholar] [CrossRef]
- Ross, J.R.H. Chapter 7—The Kinetics and Mechanisms of Catalytic Reactions. In Contemporary Catalysis; Elsevier: Amsterdam, The Netherlands, 2019; pp. 161–186. [Google Scholar]
- Ertl, G.; Knözinger, H.; Weitkamp, J. (Eds.) Handbook of Heterogeneous Catalysis; VCH: Weinheim, Germany, 2008. [Google Scholar]
- Kozuch, S.; Shaik, S. How to Conceptualize Catalytic Cycles? The Energetic Span Model. Acc. Chem. Res. 2011, 44, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Schrock, R.R.; Fellmann, J.D. Multiple metal-carbon bonds. 8. Preparation, characterization, and mechanism of formation of the tantalum and niobium neopentylidene complexes, M(CH2CMe3)3(CHCMe3). J. Am. Chem. Soc. 1978, 100, 3359–3370. [Google Scholar] [CrossRef]
- Vidal, V.; Théolier, A.; Thivolle-Cazat, J.; Basset, J.-M.; Corker, J. Synthesis, Characterization, and Reactivity, in the C−H Bond Activation of Cycloalkanes, of a Silica-Supported Tantalum(III) Monohydride Complex: (⋮SiO)2TaIII−H. J. Am. Chem. Soc. 1996, 118, 4595–4602. [Google Scholar] [CrossRef]
- Soignier, S.; Taoufik, M.; Le Roux, E.; Saggio, G.; Dablemont, C.; Baudouin, A.; Lefebvre, F.; de Mallmann, A.; Thivolle-Cazat, J.; Basset, J.-M.; et al. Tantalum Hydrides Supported on MCM-41 Mesoporous Silica: Activation of Methane and Thermal Evolution of the Tantalum-Methyl Species. Organometallics 2006, 25, 1569–1577. [Google Scholar] [CrossRef]
- Le Roux, E.; Taoufik, M.; Copéret, C.; de Mallmann, A.; Thivolle-Cazat, J.; Basset, J.-M.; Maunders, B.M.; Sunley, G.J. Development of Tungsten-Based Heterogeneous Alkane Metathesis Catalysts Through a Structure–Activity Relationship. Angew. Chem. Int. Ed. 2005, 44, 6755–6758. [Google Scholar] [CrossRef]
- Le Roux, E.; Taoufik, M.; Baudouin, A.; Copéret, C.; Thivolle-Cazat, J.; Basset, J.-M.; Maunders, B.M.; Sunley, G.J. Silica-Alumina-Supported, Tungsten-Based Heterogeneous Alkane Metathesis Catalyst: Is it Closer to a Silica- or an Alumina-Supported System? Adv. Synth. Catal. 2007, 349, 231–237. [Google Scholar] [CrossRef]
- Šot, P.; Newton, M.A.; Baabe, D.; Walter, M.D.; van Bavel, A.P.; Horton, A.D.; Copéret, C.; van Bokhoven, J.A. Non-oxidative Methane Coupling over Silica versus Silica-Supported Iron(II) Single Sites. Chem.—Eur. J. 2020, 26, 8012–8016. [Google Scholar] [CrossRef]
- Bailey, B.C.; Fan, H.; Baum, E.W.; Huffman, J.C.; Baik, M.-H.; Mindiola, D.J. Intermolecular C−H Bond Activation Promoted by a Titanium Alkylidyne. J. Am. Chem. Soc. 2005, 127, 16016–16017. [Google Scholar] [CrossRef] [PubMed]
- Merle, N.; Le Quéméner, F.; Bouhoute, Y.; Szeto, K.C.; De Mallmann, A.; Barman, S.; Samantaray, M.K.; Delevoye, L.; Gauvin, R.M.; Taoufik, M.; et al. Well-Defined Molybdenum Oxo Alkyl Complex Supported on Silica by Surface Organometallic Chemistry: A Highly Active Olefin Metathesis Precatalyst. J. Am. Chem. Soc. 2017, 139, 2144–2147. [Google Scholar] [CrossRef] [PubMed]
- Parkin, G.; Bunel, E.; Burger, B.J.; Trimmer, M.S.; Van Asselt, A.; Bercaw, J.E. Alpha- and beta-migratory insertion and elimination processes for alkyl complexes of permethyl-scandocene and permethyltantalocene. J. Mol. Catal. 1987, 41, 21–39. [Google Scholar] [CrossRef]
- Lin, X.; Xi, Y.; Zhang, G.; Phillips, D.L.; Guo, W. A Reaction Mechanism of Methane Coupling on a Silica-Supported Single-Site Tantalum Catalyst. Organometallics 2014, 33, 2172–2181. [Google Scholar] [CrossRef]
- Kozuch, S.; Amatore, C.; Jutand, A.; Shaik, S. What Makes for a Good Catalytic Cycle? A Theoretical Study of the Role of an Anionic Palladium(0) Complex in the Cross-Coupling of an Aryl Halide with an Anionic Nucleophile. Organometallics 2005, 24, 2319–2330. [Google Scholar] [CrossRef]
- Kozuch, S.; Shaik, S. A Combined Kinetic−Quantum Mechanical Model for Assessment of Catalytic Cycles: Application to Cross-Coupling and Heck Reactions. J. Am. Chem. Soc. 2006, 128, 3355–3365. [Google Scholar] [CrossRef]
- Lin, X.; Ma, L.; Zhao, S.; Xi, Y.; Shang, H.; An, G.; Lu, C. Silica-supported Nb(iii)–CH3 species can act as an efficient catalyst for the non-oxidative coupling of methane. New J. Chem. 2021, 45, 12260–12270. [Google Scholar] [CrossRef]
Catalysts 1 | T (°C) | Catalytic Performance | Ref. |
---|---|---|---|
0.5 wt% Fe©SiO2 | 1090 | Conversion of CH4 = 48.1% Selectivity of C2H4 = 48.4% | [70] |
Fe©SiO2 2 | 1030 | Conversion of CH4 = 20–30% Selectivity of C2 hydrocarbons = 65% | [71] |
Fe©CRS | 1080 | Conversion of CH4 = 6.9–5.8% Selectivity of C2 hydrocarbons = 86.2% | [72] |
[Fe]CHA | 700–800 | Conversion of CH4 = ~2% Selectivity of C2 hydrocarbons = >90% | [73] |
Pt1@CeO2 | 975 | Conversion of CH4 = 14.4% Selectivity of C2 hydrocarbons = 74.6% | [74] |
[Ta]-SiO2 | 250–475 | conversion of CH4 = 0.5% Selectivity of C2H6 = 50% (>98% among hydrocarbons) Cumulative TON = 40 | [75] |
[W]-H@γ-Al2O3 1 | 350 | Conversion of CH4 = 0.6% Selectivity of C2H6 = 93% Cumulative TON = 40 | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, J. Non-Oxidative Coupling of Methane Catalyzed by Heterogeneous Catalysts Containing Singly Dispersed Metal Sites. Catalysts 2024, 14, 363. https://doi.org/10.3390/catal14060363
Li Y, Zhang J. Non-Oxidative Coupling of Methane Catalyzed by Heterogeneous Catalysts Containing Singly Dispersed Metal Sites. Catalysts. 2024; 14(6):363. https://doi.org/10.3390/catal14060363
Chicago/Turabian StyleLi, Yuting, and Jie Zhang. 2024. "Non-Oxidative Coupling of Methane Catalyzed by Heterogeneous Catalysts Containing Singly Dispersed Metal Sites" Catalysts 14, no. 6: 363. https://doi.org/10.3390/catal14060363
APA StyleLi, Y., & Zhang, J. (2024). Non-Oxidative Coupling of Methane Catalyzed by Heterogeneous Catalysts Containing Singly Dispersed Metal Sites. Catalysts, 14(6), 363. https://doi.org/10.3390/catal14060363