Highly Efficient Hydrogenation of Guaiacol over Ru/Al2O3-TiO2 Catalyst at Low Temperatures
"> Figure 1
<p>Powder XRD patterns of Ru catalysts on different supports.</p> "> Figure 2
<p>Electron microscopic images of the catalysts. Sample (<b>a</b>) for Ru-Al<sub>2</sub>Ti<sub>1</sub>, sample (<b>b</b>) for Ru-Al<sub>2</sub>Ti<sub>1</sub> used at 100 °C for 5, sample (<b>c</b>) for Ru-Al<sub>2</sub>O<sub>3</sub>, sample (<b>d</b>) for Ru-TiO<sub>2</sub>, sample (<b>e</b>) for Ru-Al<sub>8</sub>Ti<sub>1</sub> and sample (<b>f</b>) for Ru-Al<sub>1</sub>Ti<sub>8</sub>.</p> "> Figure 3
<p>NH<sub>3</sub>-TPD of different oxide supports.</p> "> Figure 4
<p>NH<sub>3</sub>-TPD of Ru catalysts on different supports.</p> "> Figure 5
<p>H<sub>2</sub>-TPR of Ru catalysts on different supports.</p> "> Figure 6
<p>Conversion of guaiacol by Ru supported on oxides.</p> "> Figure 7
<p>Schematic diagram of the catalyst’s surface.</p> "> Figure 8
<p>Guaiacol conversion over Ru/Al<sub>2</sub>Ti<sub>1</sub> at different reaction times. Reaction condition: 0.1 g catalyst, 50 °C and 100 °C, 2 MPa H<sub>2</sub>.</p> "> Figure 9
<p>Conversion of Ru/Al2Ti1 catalyst after 5 reuses (reaction condition: 0.03 g catalyst, 100 °C, 2 MPa H<sub>2</sub>).</p> "> Figure 10
<p>XRD of reused Ru/Al<sub>2</sub>Ti<sub>1</sub> catalyst Catalyst used in catalytic conversion at 100 °C 5 times then washed with ethanol 3 times, labeled as After, compared with catalyst washed in ethanol at 100 °C for 3 h, labeled as Before.</p> "> Figure 11
<p>TG of reused Ru/Al<sub>2</sub>Ti<sub>1</sub> catalyst. (<b>a</b>) shows a catalyst used in catalytic conversion at 100 °C 5 times, then washed with ethanol. (<b>b</b>) shows a catalyst in ethanol at 100 °C for 3 h.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.2. Catalytic Activities
2.3. Catalyst Stability
3. Materials and Methods
3.1. Materials
3.2. Catalysts Preparation
3.3. Catalysts Characterization
3.4. Catalytic Activity Measurement
3.5. Products Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akhtar, J.; Amin, N.A.S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sust. Energy Rev. 2011, 15, 1615–1624. [Google Scholar] [CrossRef]
- Sun, Z.H.; Bottari, G.; Afanasenko, A.; Stuart, M.C.A.; Deuss, P.J.; Fridrich, B.; Barta, K. Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nat. Catal. 2018, 1, 82–92. [Google Scholar] [CrossRef]
- Branca, C.; Giudicianni, P.; Blasi, C.D. GC/MS Characterization of Liquids Generated from Low-Temperature Pyrolysis of Wood. Ind. Eng. Chem. Res. 2003, 42, 3190–3202. [Google Scholar] [CrossRef]
- Bai, X.L.; Kim, W.H.; Brown, R.C.; Dalluge, E.; Hutchinson, C.; Lee, Y.J.; Dalluge, D. Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel 2014, 128, 170–179. [Google Scholar] [CrossRef]
- Czernik, S.; Bridgwater, A.V. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy Fuels 2004, 18, 590–598. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef]
- Wang, Y.X.; He, T.; Liu, K.T.; Wu, J.H.; Fang, Y.M. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: Hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis. Bioresour. Technol. 2012, 108, 280–284. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.H.; Ha, J.M.; Kim, D.H. Effect of Hydrogen Spillover on the Ru/TiO2-Catalyzed Guaiacol Hydrodeoxygenation: Rutile vs Anatase TiO2. Catalysis 2023, 13, 11857–11870. [Google Scholar] [CrossRef]
- Li, C.Z.; Zhao, X.C.; Wang, A.Q.; Huber, G.W.; Zhang, T. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev. 2015, 115, 11559–11624. [Google Scholar] [CrossRef]
- Liang, J.; Li, X.M.; Yu, Z.G.; Zeng, G.M.; Luo, Y.; Jiang, L.B.; Yang, Z.X.; Qian, Y.Y.; Wu, H.P. Amorphous MnO2 Modified Biochar Derived from Aerobically Composted Swine Manure for Adsorption of Pb (II) and Cd (II). ACS Sustain. Chem. Eng. 2017, 5, 8824–8835. [Google Scholar] [CrossRef]
- Ravenelle, R.M.; Copeland, J.R.; Van Pelt, A.H.; Crittenden, J.C.; Sievers, C. Stability of Pt/γ-Al2O3 Catalysts in Model Biomass Solutions. Top. Catal. 2012, 55, 162–174. [Google Scholar] [CrossRef]
- Ravenelle, R.M.; Copeland, J.R.; Kim, W.G.; Crittenden, J.C.; Sievers, C. Structural Changes of γ-Al2O3-Supported Catalysts in Hot Liquid Water. ACS Catal. 2011, 1, 552–561. [Google Scholar] [CrossRef]
- Duana, J.; Kima, Y.T.; Lou, H.; Huber, G.W. Hydrothermally stable regenerable catalytic supports for aqueous-phase conversion of biomass. Catal. Today 2014, 234, 66–74. [Google Scholar] [CrossRef]
- Shah, M.; Bordoloi, A.; Nayak, A.K.; Mondal, P. Effect of Ti/Al ratio on the performance of Ni/TiO2-Al2O3 catalyst for methane reforming with CO2. Fuel Process. Technol. 2019, 192, 21–35. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, L.J.; Xin, H.U.; Yuan, S.L.; Jiang, Y. Effect of Mg modification on the catalytic performance of Co/γ-Al2O3-TiO2 in the combustion of propane. J. Fuel Chem. Technol. 2020, 48, 867–874. [Google Scholar] [CrossRef]
- Herbert, J.; Santes, V.; Cortez, M.T.; Zárate, R.; Díaz, L. Catalytic hydrotreating of heavy gasoil FCC feed over a NiMo/γ-Al2O3-TiO2 catalyst: Effect of hydrogen sulfide on the activity. Catal. Today 2005, 107–108, 559–563. [Google Scholar] [CrossRef]
- Wang, R.; Chen, L.; Zhang, X.; Zhang, Q.; Li, Y.; Wang, C.; Ma, L. Conversion of levulinic acid to γ-valerolactone over Ru/Al2O3–TiO2 catalyst under mild conditions. RSC Adv. 2018, 8, 40989–40995. [Google Scholar] [CrossRef]
- Ge, F.; Xia, H.H.; Li, J.; Yang, X.H.; Zhou, M.H.; Jiang, J.C. Selective hydrodeoxygenation of guaiacol to cyclohexanol over core-shell Cox@C@Ni catalysts under mild condition. Fuel Process. Technol. 2023, 245, 107729. [Google Scholar] [CrossRef]
- Lu, J.Q.; Liu, X.; Yu, G.Q.; Lv, J.K.; Rong, Z.M.; Wang, M.; Wang, Y. Selective Hydrodeoxygenation of Guaiacol to Cyclohexanol Catalyzed by Nanoporous Nickel. Catal. Lett. 2020, 150, 837–848. [Google Scholar] [CrossRef]
- Rong, Z.M.; Lu, J.Q.; Yu, G.Q.; Li, J.J.; Wang, M.; Zhang, S.F. Promoting selective hydrodeoxygenation of guaiacol over amorphous nanoporous NiMnO2. Catal. Commun. 2020, 140, 105987. [Google Scholar] [CrossRef]
- Wu, L.Z.; Wie, J.H.; Zhang, Y.; He, Y.S.; Wang, X.F.; Guo, H.Q.; Tang, Y.; Tan, L. The selective hydrodeoxygenation of guaiacol to cyclohexanol over cobalt-modified TS-1 catalysts. Micropor. Mesopor. Mat. 2023, 348, 112347. [Google Scholar] [CrossRef]
- Duan, H.H.; Dong, J.C.; Gu, X.R.; Peng, Y.K.; Chen, W.X.; Issariyakul, T.; Myers, W.K.; Li, M.J.; Yi, N.; Kilpatrick, A.F.R.; et al. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd–Mo catalyst. Nat. Commun. 2017, 8, 591. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; You, W.Q.; Sun, W.; Yang, W.S.; Korde, A.; Gong, Y.T.; Deng, Y.L. Ambient-pressure and low-temperature upgrading of lignin bio-oil to hydrocarbons using a hydrogen buffer catalytic system. Nat. Energy 2020, 5, 759–767. [Google Scholar] [CrossRef]
- Ahorsu, R.; Constanti, M.; Medina, F. Recent Impacts of Heterogeneous Catalysis in Biorefineries. Ind. Eng. Chem. Res. 2021, 60, 18612–18626. [Google Scholar] [CrossRef]
- Gao, D.N.; Schweitzer, C.; Hwang, H.T.; Varma, A. Conversion of Guaiacol on Noble Metal Catalysts: Reaction Performance and Deactivation Studies. Ind. Eng. Chem. Res. 2014, 53, 18658–18667. [Google Scholar] [CrossRef]
- Roldugina, E.A.; Naranov, E.R.; Maximov, A.L.; Karakhanov, E.A. Hydrodeoxygenation of guaiacol as a model compound of bio-oil in methanol over mesoporous noble metal catalysts. Appl. Catal. A Gen. 2018, 553, 24–35. [Google Scholar] [CrossRef]
- Chen, M.T.; Zhong, Q.F.; Zhang, M.H.; Huang, H.; Liu, Y.X.; Wei, Z.J. Aqueous phase partial hydrodeoxygenation of lignin-derived phenols over Al2O3-SiO2 microspheres supported RuMn multifunctional catalyst: Synergic effect among Ru, Mn and Al2O3-SiO2 support. Catal. Commun. 2022, 172, 106550. [Google Scholar] [CrossRef]
- Hu, L.; Wei, X.Y.; Zong, Z.M. Ru/Hβ catalyst prepared by the deposition-precipitation method for enhancing hydrodeoxygenation ability of guaiacol and lignin-derived bio-oil to produce hydrocarbons. J. Energy Inst. 2021, 97, 48–57. [Google Scholar] [CrossRef]
- Kim, H.; Yang, S.; Lim, Y.H.; Park, J.H.; Ha, J.-M.; Kim, D.H. Enhanced oxygen removal ability of sulfur-doped Ru/TiO2 catalyst in low-temperature hydrodeoxygenation of guaiacol. Appl. Catal. A Gen. 2023, 661, 119237. [Google Scholar] [CrossRef]
- Stas, M.; Chudoba, J.; Kubicka, D.; Blazek, J.; Pospísil, M. Petroleomic Characterization of Pyrolysis Bio-oils: A Review. Energy Fuels 2017, 31, 10283–10299. [Google Scholar] [CrossRef]
- Prabhudesai, V.S.; Gurrala, L.; Vinu, R. Catalytic Hydrodeoxygenation of Lignin-Derived Oxygenates: Catalysis, Mechanism, and Effect of Process Conditions. Energy Fuels 2022, 36, 1155–1188. [Google Scholar] [CrossRef]
- Blanco, E.; Aguirre, A.D.A.; de León, J.N.D.; Escalona, N. Relevant aspects of the conversion of guaiacol as a model compound for bio-oil over supported molybdenum oxycarbide catalysts. New J. Chem. 2020, 44, 12027–12035. [Google Scholar] [CrossRef]
- Li, T.; Li, H.; Huang, G.M.; Shen, X.R.; Wang, S.Q.; Li, C.L. Transforming biomass tar into a highly active Ni-based carbon-supported catalyst for selective hydrogenation-transalkylation of guaiacol. J. Anal. Appl. Pyrol. 2020, 153, 104976–104983. [Google Scholar] [CrossRef]
- Parrilla-Lahoz, S.; Jin, W.; Pastor-Pérez, L.; Alvarado, D.C.; Odriozola, J.A.; Dongil, A.B.; Reina, T.R. Guaiacol hydrodeoxygenation in hydrothermal conditions using N-doped reduced graphene oxide (RGO) supported Pt and Ni catalysts: Seeking for economically viable biomass upgrading alternatives. Appl. Catal. A Gen. 2021, 611, 117977–117986. [Google Scholar] [CrossRef]
- Lu, M.H.; Jiang, Y.J.; Sun, Y.; Zhang, P.; Zhu, J.; Li, M.S.; Shan, Y.H.; Shen, J.Y.; Song, C.S. Hydrodeoxygenation of Guaiacol Catalyzed by ZrO2–CeO2-Supported Nickel Catalysts with High Loading. Energy Fuels 2020, 34, 4685–4692. [Google Scholar] [CrossRef]
- Moreira, R.; Ochoa, E.; Pinilla, J.L.; Portugal, A.; Suelves, I. Liquid-Phase Hydrodeoxygenation of Guaiacol over Mo2C Supported on Commercial CNF. Effects of Operating Conditions on Conversion and Product Selectivity. Catalysts 2018, 8, 127. [Google Scholar] [CrossRef]
- Ochoa, E.; Torres, D.; Moreira, R.; Pinilla, J.L.; Suelves, I. Carbon nanofiber supported Mo2C catalysts for hydrodeoxygenation of guaiacol: The importance of the carburization process. Appl. Catal. B Environ. 2018, 239, 463–474. [Google Scholar] [CrossRef]
- Ansaloni, S.; Russo, N.; Pirone, R. Hydrodeoxygenation of guaiacol over molybdenum-based catalysts: The effect of support and the nature of the active site. Can. J. Chem. Eng. 2017, 95, 1730–1744. [Google Scholar] [CrossRef]
- Kim, M.; Ha, J.; Lee, K.; Jae, J. Catalytic transfer hydrogenation/hydrogenolysis of guaiacol to cyclohexane over bimetallic RuRe/C catalysts. Catal. Commun. 2016, 86, 113–118. [Google Scholar] [CrossRef]
- Lin, B.Q.; Li, R.X.; Shu, R.Y.; Wang, C.; Yuan, Z.Q.; Liu, Y.; Chen, Y. Synergistic effect of highly dispersed Ru and moderate acid site on the hydrodeoxygenation of phenolic compounds and raw bio-oil. J. Energy Inst. 2020, 93, 847–856. [Google Scholar] [CrossRef]
- Maity, S.K.; Ancheyta, J.; Llanos, M.E. Alumina–titania binary mixed oxide used as support of catalysts for hydrotreating of Maya heavy crude. Appl. Catal. A Gen. 2003, 244, 141–153. [Google Scholar] [CrossRef]
- Jung, Y.S.; Kim, D.W.; Kim, Y.S.; Park, E.K.; Baeck, S.H. Synthesis of alumina–titania solid solution by sol–gel method. J. Phys. Chem. Solids 2008, 69, 1464–1467. [Google Scholar] [CrossRef]
- Alejandre, A.; Medina, F.; Salagre, P.; Correig, X.; Sueiras, J.E. Preparation and Study of Cu-Al Mixed Oxides via Hydrotalcite-like Precursors. Chem. Mater. 1999, 11, 939–948. [Google Scholar] [CrossRef]
- Debasis, D.; Panchanan, P. Particle Size Comparison of Soft-Chemically Prepared Transition Metal (Co, Ni, Cu, Zn) Aluminate Spinels. J. Am. Ceram. Soc. 2006, 89, 1014–1021. [Google Scholar] [CrossRef]
- Tran, Q.K.; Han, S.; Ly, H.V.; Kim, S.S.; Kim, J. Hydrodeoxygenation of a bio-oil model compound derived from woody biomass using spray-pyrolysis-derived spherical g-Al2O3-SiO2 catalysts. J. Ind. Eng. Chem. 2020, 92, 243–251. [Google Scholar] [CrossRef]
- Newman, C.; Zhou, X.; Goundiea, B.; Ghampson, I.T.; Pollock, R.A.; Ross, Z.; Wheeler, M.C.; Meulenberg, R.W.; Austina, R.N.; Frederick, B.G. Effects of support identity and metal dispersion in supported ruthenium hydrodeoxygenation catalysts. Appl. Catal. A Gen. 2014, 477, 64–74. [Google Scholar] [CrossRef]
- Wachs, I.E. Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal. Today 2005, 100, 79–94. [Google Scholar] [CrossRef]
- Wawrzetz, A.; Peng, B.; Hrabar, A.; Jentys, A.; Lemonidou, A.A.; Lercher, J.A. Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol. J. Catal. 2010, 269, 411–420. [Google Scholar] [CrossRef]
- Teles, C.A.; Magalhães de Souza, P.; Rabelo-Neto, R.C.; Teran, A.; Jacobs, G.; Resasco, D.E.; Noronha, F.B. Hydrodeoxygenation of Lignin-Derived Compound Mixtures on Pd-Supported on Various Oxides. ACS Sustain. Chem. Eng. 2021, 9, 12870–12884. [Google Scholar] [CrossRef]
- Bjelić, A.; Grilc, M.; Likozar, B. Catalytic hydrogenation and hydrodeoxygenation of lignin-derived model compound eugenol over Ru/C: Intrinsic microkinetics and transport phenomena. Chem. Eng. J. 2018, 333, 240–259. [Google Scholar] [CrossRef]
- Hong, J.M.; Prawer, S.; Murphy, A.B. Plasma Catalysis as an Alternative Route for Ammonia Production: Status, Mechanisms, and Prospects for Progress. ACS Sustain. Chem. Eng. 2018, 6, 15–31. [Google Scholar] [CrossRef]
- Mei, Y.; Chai, M.; Shen, C.; Liu, B.; Liu, R. Effect of methanol addition on properties and aging reaction mechanism of bio-oil during storage. Fuel 2019, 244, 499–507. [Google Scholar] [CrossRef]
- Shivhare, A.; Wang, L.; Scott, R.W.J. solation of Carboxylic Acid-Protected Au25 Clusters Using a Borohydride Purification Strategy. Langmuir 2015, 31, 1835–1841. [Google Scholar] [CrossRef]
Catalyst | Surface Area /(m2 g−1) |
---|---|
Ru/TiO2 | 36 |
Ru/Al1Ti8 | 35 |
Ru/Al1Ti4 | 47 |
Ru/Al1Ti2 | 43 |
Ru/Al1Ti1 | 58 |
Ru/Al2Ti1 | 67 |
Ru/Al4Ti1 | 76 |
Ru/Al8Ti1 | 105 |
Ru/Al2O3 | 168 |
Catalysts | Temperature of Ammonia/°C | Acid Amount/(mmol/g) | Temperature of Ammonia/°C | Acid Amount/(mmol/g) |
---|---|---|---|---|
Ru/Al4Ti1 | 136.3 | 0.194 | 302.6 | 0.143 |
Ru/Al2Ti1 | 125.7 | 0.320 | 325.9 | 0.166 |
Ru/Al1Ti1 | 139.6 | 0.126 | 315.2 | 0.102 |
Ru/Al1Ti2 | 138.4 | 0.089 | 302.6 | 0.067 |
Ru/Al1Ti4 | 125.7 | 0.075 | 304.4 | 0.091 |
Ru/TiO2 | 136.3 | 0.042 | 304.4 | 0.044 |
Catalyst | Temperature of Reduction Peak/°C | Peak Area/g |
---|---|---|
Ru/Al4Ti1 | 129.3 | 12,800 |
Ru/Al2Ti1 | 122.2 | 21,071 |
Ru/Al1Ti1 | 154.4 | 19,615 |
Ru/Al1Ti2 | 158.6 | 11,386 |
Ru/Al1Ti4 | 134.7 | 9830 |
Ru/TiO2 | 189.7 | 4324 |
Catalyst | Conversion/% | Selectivity/% | |
---|---|---|---|
Hydrogenation | Hydrodeoxygenation | ||
Ru/C | 29.2 | 95.5 | 4.5 |
Ru/Al2O3 | 51.4 | 91.0 | 9.0 |
Ru/TiO2 | 5.4 | 100 | 0 |
Ru/Al4Ti1 | 30.7 | 96.2 | 3.8 |
Ru/Al2Ti1 | 72.2 | 96.7 | 3.3 |
Ru/Al1Ti1 | 67.1 | 96.4 | 3.6 |
Ru/Al1Ti2 | 67.0 | 96.2 | 3.8 |
Ru/Al1Ti4 | 16.6 | 33.5 | 6.5 |
T/°C | Conversion/% | Selectivity/% | |
---|---|---|---|
Hydrogenation | Deoxidation | ||
25 | 59.5 | 94.1 | 5.9 |
50 | 97.2 | 88.9 | 11.1 |
100 | 100 | 89.0 | 11.0 |
150 | 100 | 76.5 | 23.5 |
Hydrogen Pressure/MPa | Conversion/% | Selectivity/% | |
---|---|---|---|
Hydrogenation | Deoxidation | ||
0 | 1.8 | 100 | 0 |
0.1 | 68.6 | 63.8 | 36.2 |
0.6 | 81.6 | 70.3 | 29.7 |
1 | 99.1 | 81.1 | 19.9 |
2 | 100 | 89.0 | 11.0 |
4 | 100 | 91.7 | 8.3 |
Reagent | Conversion/% | Selectivity/% | |
---|---|---|---|
Hydrogenation | Deoxidation | ||
Phenol | 100 | 100 | - |
O-methyl-phenol | 100 | 97.4 | 2.6 |
Anisole | 97.5 | 100 | - |
Vanillin | 93.7 | 91.6 | 8.4 |
Catechol | 92.7 | 95.6 | 4.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Chen, P.; Lou, H.; Zheng, X.; Song, X. Highly Efficient Hydrogenation of Guaiacol over Ru/Al2O3-TiO2 Catalyst at Low Temperatures. Catalysts 2024, 14, 827. https://doi.org/10.3390/catal14110827
Song Y, Chen P, Lou H, Zheng X, Song X. Highly Efficient Hydrogenation of Guaiacol over Ru/Al2O3-TiO2 Catalyst at Low Temperatures. Catalysts. 2024; 14(11):827. https://doi.org/10.3390/catal14110827
Chicago/Turabian StyleSong, Yumeng, Ping Chen, Hui Lou, Xiaoming Zheng, and Xiangen Song. 2024. "Highly Efficient Hydrogenation of Guaiacol over Ru/Al2O3-TiO2 Catalyst at Low Temperatures" Catalysts 14, no. 11: 827. https://doi.org/10.3390/catal14110827
APA StyleSong, Y., Chen, P., Lou, H., Zheng, X., & Song, X. (2024). Highly Efficient Hydrogenation of Guaiacol over Ru/Al2O3-TiO2 Catalyst at Low Temperatures. Catalysts, 14(11), 827. https://doi.org/10.3390/catal14110827