Battery Modelling and Simulation Using a Programmable Testing Equipment
<p>Summary of the most common cathode and anode materials’ performance.</p> "> Figure 2
<p>CC-CV charging technique.</p> "> Figure 3
<p>Testing layout.</p> "> Figure 4
<p>Producer loop.</p> "> Figure 5
<p>Consumer loop.</p> "> Figure 6
<p>NI LabVIEW Graphical User Interface.</p> "> Figure 7
<p>Equivalent circuit model.</p> "> Figure 8
<p>Parameters’ identification from voltage drops.</p> "> Figure 9
<p><span class="html-italic">V<sub>OC</sub></span> vs. SOC identified relationship by means of the pulsed charge and discharge profiles.</p> "> Figure 10
<p>Dynamic Stress Test (DST) profile voltage output. (<b>a</b>) current; (<b>b</b>) voltage.</p> "> Figure 11
<p>Open Circuit Voltage curve. (<b>a</b>) comparison between the <span class="html-italic">V<sub>OC</sub></span> vs. SOC relationship identified according to the Combined model and to the LUT; (<b>b</b>) comparison between the <span class="html-italic">V<sub>OC</sub></span> curves obtained from the Combined model parameters, respectively, from <a href="#computers-07-00020-t004" class="html-table">Table 4</a> and <a href="#computers-07-00020-t005" class="html-table">Table 5</a>.</p> "> Figure 12
<p>Combined-Rint model.</p> "> Figure 13
<p>Combined-DP model.</p> "> Figure 14
<p>DST output voltage comparison. (<b>a</b>) whole test; (<b>b</b>) zoom.</p> "> Figure 15
<p>Modified version of Hybrid Pulse Power Characterization (HPPC) test.</p> "> Figure 16
<p>Combined-Rint model.</p> "> Figure 17
<p>Combined-DP model.</p> "> Figure 18
<p>HPPC output voltage comparison. (<b>a</b>) whole test. (<b>b</b>) zoom.</p> ">
Abstract
:1. Introduction
2. Testing Equipment
- Constant Current (CC) mode: the applied load is regulated to keep the sunk current equal to the defined value despite the cell voltage is varying.
- Constant Voltage (CV) mode: the load is controlled to keep its terminal voltage equal to the defined set-point.
- Constant Power (CP) mode: the load is regulated to match a defined power set-point; the sunk current is regulated in order to control the product Voltage per Current.
- Constant Resistance (CR) mode: the load is regulated to have a sunk current proportional to the applied voltage.
Software-Hardware Interface Design
- allow for manual or automatic settings;
- import user defined load profile through data tables;
- elaborate data to have useful signals for the power units;
- execute safety protocols;
- assign controls within determined timed intervals;
- read measurements and save data on a log file.
- upload a predefined load history;
- define how many times the cycle must be repeated;
- define the number of cycles to be executed;
- have the main feedback measurements always available;
- stop the running tests whenever needed.
3. Battery Modelling
Open Circuit Voltage Modelling
4. Model Parameters’ Identification Procedure
4.1. Voltage Drop Based Parameters’ Identification
4.2. Least Squares Procedure Parameters’ Identification
5. State of Charge Estimation
Extended Kalman Filter Algorithm
- Initialization (to be executed only once)
- Prediction step:A priori state estimationA priori error covariance matrix
- Correction step:Kalman gainEstimated outputPrediction errorA posteriori state estimationA posteriori error covariance matrixInnovation covariance matrixProcess noise covariance matrix update
6. Model Performance
7. Results
8. Discussion
9. Conclusions
Author Contributions
Conflicts of Interest
References
- Chan, C.C. The State of the Art of Electric and Hybrid Vehicles. Proc. IEEE 2002, 90, 247–275. [Google Scholar] [CrossRef]
- Somà, A.; Bruzzese, F.; Mocera, F.; Viglietti, E. Hybridization factor and performance of hybrid electric telehandler vehicle. IEEE Trans. Ind. Appl. 2016, 52, 5130–5138. [Google Scholar] [CrossRef]
- Mocera, F.; Somà, A. Study of a Hardware-In-the-Loop bench for hybrid electric working vehicles simulation. Ecol. Veh. Renew. Energies (EVER) 2017, 1–8. [Google Scholar] [CrossRef]
- Barreras, J.V.; Fleischer, C.; Christensen, A.E.; Swierczynski, M.; Schaltz, E.; Andreasen, S.J.; Sauer, D.U. An Advanced HIL Simulation Battery Model for Battery Management System Testing. IEEE Trans. Ind. Appl. 2016, 52, 5086–5099. [Google Scholar] [CrossRef]
- Polleta, B.G.; Staffellband, I.; Shang, J.L. Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects. Electrochim. Acta 2012, 84, 235–249. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Opitza, A.; Badamia, P.; Shena, L.; Vignaroobana, K.; Kannana, A.M. Can Li-Ion batteries be the panacea for automotive applications? Renew. Sustain. Energy Rev. 2017, 68, 685–692. [Google Scholar] [CrossRef]
- Mulder, G.; Omar, N.; Pauwels, S.; Meeus, M.; Leemans, F.; Verbrugge, B.; De Nijs, W.; Van den Bosschec, P.; Sixa, D.; Van Mierlo, J. Comparison of commercial battery cells in relation to material properties. Electrochim. Acta 2013, 87, 473–488. [Google Scholar] [CrossRef]
- Passerini, S.; Scrosati, B. Lithium and Lithium-Ion Batteries: Challenges and Prospects. Electrochem. Soc. Interface 2016, 25, 85–87. [Google Scholar] [CrossRef]
- Wang, Q.S.; Ping, P.; Zhao, X.J.; Chu, G.Q.; Sun, J.H.; Chen, C.H. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Lopez, C.; Jeevarajan, J.; Mukherjee, P.P. Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules. J. Electrochem. Soc. 2015, 162, A1905–A1915. [Google Scholar] [CrossRef]
- Collet, A.; Crébier, J.-C.; Chureau, A. Multi-Cell Battery Emulator for Advanced Battery Management System Benchmarking. IEEE Int. Symp. Ind. Electron. 2011, 1093–1099. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Chang, W.-Y. The State of Charge Estimating Methods for Battery: A Review. ISRN Appl. Math. 2013, 1–7. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Zheng, Y.; Ouyang, M.; Han, X.; Lu, L.; Li, J. Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles. J. Power Sources 2018, 377, 161–188. [Google Scholar] [CrossRef]
- Wei, J.; Dong, G.; Chen, Z.; Kang, Y. System state estimation and optimal energy control framework for multicell lithium-ion battery system. Appl. Energy 2017, 187, 37–49. [Google Scholar] [CrossRef]
- Bruen, T.; Marco, J. Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system. J. Power Sources 2016, 310, 91–101. [Google Scholar] [CrossRef]
- Plett, G. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2. Modeling and identification. J. Power Sources 2004, 134, 252–261. [Google Scholar] [CrossRef]
- Plett, G. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 3. State and parameter estimation. J. Power Sources 2004, 134, 277–292. [Google Scholar] [CrossRef]
- Hunt, G. USABC Electric Vehicle Battery Test Procedures Manual; United States Department of Energy: Washington, DC, USA, 1996.
- FreedomCAR Battery Test Manual for Power-Assist Hybrid Electric Vehicles; DOE/ID-11069; National Engineering and Environmental Laboratory: Idaho Falls, ID, USA, 2013.
- Chaoui, H.; Mandalapu, S. Comparative Study of Online Open Circuit Voltage Estimation Techniques for State of Charge Estimation of Lithium-Ion Batteries. Batteries 2017, 3, 12. [Google Scholar] [CrossRef]
- Abdel-Monem, M.; Trad, K.; Omar, N.; Hegazy, O.; Van den Bossche, P.; Van Mierlo, J. Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries. Energy 2017, 120, 179–191. [Google Scholar] [CrossRef]
- Keil, P.; Jossen, A. Charging protocols for lithium-ion batteries and their impact on cycle life—An experimental study with different 18650 high-power cells. J. Energy Storage 2016, 6, 125–141. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, J.; Gao, Y.; Zhang, W.; Liu, Q.; Huc, X. Charging optimization in lithium-ion batteries based on temperature rise and charge time. Appl. Energy 2017, 194, 569–577. [Google Scholar] [CrossRef]
- Zheng, F.; Xing, Y.; Jiang, J.; Sun, B.; Kim, J.; Pecht, M. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries. Appl. Energy 2016, 183, 513–525. [Google Scholar] [CrossRef]
- Nedjalkov, A.; Meyer, J.; Köhring, M.; Doering, A.; Angelmahr, M.; Dahle, S.; Sander, A.; Fischer, A.; Schade, W. Toxic Gas Emissions from Damaged Lithium Ion Batteries—Analysis and Safety Enhancement Solution. Batteries 2016, 2, 5. [Google Scholar] [CrossRef]
- Larsson, F.; Andersson, P.; Mellander, B.-E. Lithium-Ion Battery Aspects on Fires in Electrified Vehicles on the Basis of Experimental Abuse Tests. Batteries 2016, 2, 9. [Google Scholar] [CrossRef]
- Ruiz, V.; Pfrang, A.; Kriston, A.; Omar, N.; Van den Bossche, P.; Boon-Brett, L. A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renew. Sustain. Energy Rev. 2018, 81, 1427–1452. [Google Scholar] [CrossRef]
- Waldmann, T.; Quinn, J.B.; Richter, K.; Kasper, M.; Tost, A.; Klein, A.; Wohlfahrt-Mehrens, M. Electrochemical, Post-Mortem, and ARC Analysis of Li-Ion Cell Safety in Second-Life Applications. J. Electrochem. Soc. 2017, 164, A3154–A3162. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, X.; Dongn, Z. Powertrain architectures of electrified vehicles: Review, classification and comparison. J. Frankl. Inst. 2015, 352, 425–448. [Google Scholar] [CrossRef]
- Bayindir, K.C.; Gözüküçük, M.A.; Teke, A. A comprehensive overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques and electronic control units. Energy Convers. Manag. 2011, 52, 1305–1313. [Google Scholar] [CrossRef]
- Karden, E.; Ploumen, S.; Fricke, B.; Miller, T.; Snyder, K. Energy storage devices for future hybrid electric vehicles. J. Power Sources 2007, 168, 2–11. [Google Scholar] [CrossRef]
- Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Mohamed, A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renew. Sustain. Energy Rev. 2017, 78, 834–854. [Google Scholar] [CrossRef]
- Orcioni, S.; Buccolini, L.; Ricci, A.; Conti, M. Lithium-ion Battery Electrothermal Model, Parameter Estimation, and Simulation Environment. Energies 2017, 10, 375. [Google Scholar] [CrossRef]
- Narayanaswamy, S.; Kauer, M.; Steinhorst, S.; Lukasiewycz, M.; Chakraborty, S. Modular Active Charge Balancing for Scalable Battery Packs. IEEE Trans.Very Large Scale Integr. (VLSI) Syst. 2017, 25, 974–987. [Google Scholar] [CrossRef]
- McCurlie, L.; Preindl, M.; Emadi, A. Fast Model Predictive Control for Redistributive Lithium-Ion Battery Balancing. IEEE Trans. Ind. Electron. 2017, 64, 1350–1357. [Google Scholar] [CrossRef]
- Li, Z.; Huang, J.; Yann Liaw, B.; Zhang, J. On state-of-charge determination for lithium-ion batteries. J. Power Sources 2017, 348, 281–301. [Google Scholar] [CrossRef]
- Yang, R.; Xiong, R.; He, H.; Mu, H.; Wang, C. A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles. Appl. Energy 2017, 207, 336–345. [Google Scholar] [CrossRef]
- Stroe, D.-I.; Swierczynski, M.; Stroe, A.-I.; Knudsen Kær, S. Generalized Characterization Methodology for Performance Modelling of Lithium-Ion Batteries. Batteries 2016, 2, 37. [Google Scholar] [CrossRef]
- Berecibar, M.; Gandiaga, I.; Villarreal, I.; Omar, N.; Van Mierlo, J.; Van den Bossche, P. Critical review of state of health estimation methods of Li-ion batteries for real applications. Renew. Sustain. Energy Rev. 2016, 56, 572–587. [Google Scholar] [CrossRef]
- Farmann, A.; Waag, W.; Marongiu, A.; Uwe Sauer, D. Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles. J. Power Sources 2015, 281, 114–130. [Google Scholar] [CrossRef]
- Farmann, A.; Uwe Sauer, D. A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles. J. Power Sources 2016, 329, 123–137. [Google Scholar] [CrossRef]
- Cabrera-Castillo, E.; Niedermeier, F.; Jossen, A. Calculation of the state of safety (SOS) for lithium ion batteries. J. Power Sources 2016, 324, 509–520. [Google Scholar] [CrossRef]
- Lai, X.; Zheng, Y.; Sun, T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries. Electrochim. Acta 2018, 259, 566–577. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Guo, H.; Li, S. Comparison study on the battery models used for the energy management of batteries in electric vehicles. Energy Convers. Manag. 2012, 64, 113–121. [Google Scholar] [CrossRef]
- Abu-Sharkh, S.; Doerffel, D. Rapid test and nonlinear model characterisation of solid-state lithium-ion batteries. J. Power Sources 2004, 130, 266–274. [Google Scholar] [CrossRef]
- Huria, T.; Ceraolo, M.; Gazzarri, J.; Jackey, R. Simplified Extended Kalman Filter Observer for SOC Estimation of Commercial Power-Oriented LFP Lithium Battery Cells. SAE Tech. Pap. 2013. [Google Scholar] [CrossRef]
- Li, A.; Pelissier, S.; Venet, P.; Gyan, P. Fast Characterization Method for Modeling Battery Relaxation Voltage. Batteries 2016, 2, 7. [Google Scholar] [CrossRef]
- Huria, T.; Ludovici, G.; Lutzemberger, G. State of charge estimation of high power lithium iron phosphate cells. J. Power Sources 2014, 249, 92–102. [Google Scholar] [CrossRef]
- Yang, F.; Xing, Y.; Wang, D.; Tsui, K.L. A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile. Appl. Energy 2016, 164, 387–399. [Google Scholar] [CrossRef]
- Hua, X.; Li, S.; Peng, H.; Sun, F. Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries. J. Power Sources 2012, 217, 209–219. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Chen, Z. On-line battery state-of-charge estimation based on an integrated estimator. Appl. Energy 2017, 185, 2026–2032. [Google Scholar] [CrossRef]
- Xiong, R.; Gong, X.; Mi, C.C.; Sun, F. A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter. J. Power Sources 2013, 243, 805–816. [Google Scholar] [CrossRef]
Specifications | |
---|---|
Chemistry | LFP/C |
Format | Prismatic |
Dimensions | 70 mm × 180 mm × 27 mm |
Nominal Capacity | 25 Ah |
Cut off Voltage | 2.0 V |
End of Charge Voltage | 3.65 V |
End of Charge Current | C/20 |
Max continuous discharging current | 3C |
Rs () | Rp1 () | p1 (s) | Rp2 () | p2 (s) |
---|---|---|---|---|
0.0032 | 0.0013 | 13.82 | 0.0015 | 7155 |
SOC (%) | VOC (V) |
---|---|
90 | 3.32 |
70 | 3.30 |
50 | 3.28 |
30 | 3.24 |
10 | 3.14 |
K0 (V) | K1 (V) | K2 (V) | K3 (V) | K4 (V) | R0 () |
---|---|---|---|---|---|
3.37 | 0.0014 | 0.069 | 0.092 | −0.0087 | 0.0045 |
K0 (V) | K1 (V) | K2 (V) | K3 (V) | K4 (V) |
---|---|---|---|---|
3.43 | −0.0019 | 0.155 | 0.097 | −0.025 |
Model | R2 (−) | MAE (mV) | RMSE (mV) |
---|---|---|---|
Rint-Combined | 0.923 | 15.55 | 0.10 |
DP-Combined | 0.954 | 11.37 | 0.08 |
Model | R2 (−) | MAE (%) | RMSE (%) |
---|---|---|---|
Rint-Combined | 0.939 | 5.694 | 0.028 |
DP-Combined | 0.995 | 1.475 | 0.008 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergori, E.; Mocera, F.; Somà, A. Battery Modelling and Simulation Using a Programmable Testing Equipment. Computers 2018, 7, 20. https://doi.org/10.3390/computers7020020
Vergori E, Mocera F, Somà A. Battery Modelling and Simulation Using a Programmable Testing Equipment. Computers. 2018; 7(2):20. https://doi.org/10.3390/computers7020020
Chicago/Turabian StyleVergori, Elena, Francesco Mocera, and Aurelio Somà. 2018. "Battery Modelling and Simulation Using a Programmable Testing Equipment" Computers 7, no. 2: 20. https://doi.org/10.3390/computers7020020
APA StyleVergori, E., Mocera, F., & Somà, A. (2018). Battery Modelling and Simulation Using a Programmable Testing Equipment. Computers, 7(2), 20. https://doi.org/10.3390/computers7020020