An Unsupervised Approach for Treatment Effectiveness Monitoring Using Curvature Learning
"> Figure 1
<p>Three-dimensional dynamic contrast-enhanced ultrasound (DCE-US) imaging protocol for both treatment-sensitive (LS174T) and treatment-resistant (CT26) tumors. Ten days after tumor cell injection, 3D DCE-US scans (arrows) were performed prior to treatment (baseline scan at day 0) and at subsequent days 1, 3, 7, and 10 after treatment using either bevacizumab (treated mice) or saline (control mice). All mice were sacrificed on day 10, and tumors were excised for histologic analysis.</p> "> Figure 2
<p>(<b>A</b>) Data processing block diagram to calculate curvature learning (CLS) score, a treatment effectiveness measure. (<b>B</b>) The results generated by the proposed curvature learning algorithm, including the fused heat map (or “embedded image”), the scattergram in multiple color-coded clusters, the three-class scattergram, and finally the percentage of pixels in each of the three classes (blue, yellow, and red). (<b>C</b>) The chart on the left demonstrates a characteristic example of variation in the yellow class on different days (pre-treatment day 0 and post-treatment days 1, 3, 7, and 10). Statistical features from different days were used to calculate intra-day curvature learning scores and the inter-day curvature learning score, resulting in a final curvature learning score representing an overall measure of treatment effectiveness.</p> "> Figure 3
<p>Curvature learning algorithm results for a typical treatment-sensitive mouse treated with the chemotherapeutic agent bevacizumab (LSBolusAV) on days 0 (baseline), 3, and 10. This mouse has a cell line that is expected to respond to treatment. In the fused heat map, dark blue represents normal tissue, and the progressive color change from dark blue to cyan, green, yellow, orange, and red represents increasing suspicion for tumor. There is a progressive decrease in color classes more suspicious for tumor (yellow, orange, and red) with time. The scattergrams in the middle two columns demonstrate quantization into three color classes: blue, yellow, and red. In the percentage bar plots on the right, there is a decrease in the more suspicious yellow and red color classes with time.</p> "> Figure 4
<p>Curvature learning algorithm results for a typical treatment-resistant, untreated (CTBolusCTRL) mouse on days 0 (baseline), 3, and 10. This mouse is not expected to respond to treatment. Pixels representing normal tissue are dark blue. There is a progressive increase in color classes more suspicious for tumor (yellow and red) with time both in the fused heat map on the left and the percentage bar plots on the right.</p> "> Figure 5
<p>Box-and-whisker plot comparing the distribution of curvature learning scores (CLSs) between the four groups of ten mice: treatment-resistant, untreated (CTBolusCTRL); treatment-resistant, treated (CTBolusAV); treatment-sensitive, untreated (LSBolusCTRL); treatment-sensitive, treated (LSBolusAV). The horizontal red lines represent the median, the blue lines indicate the upper and lower quartiles, and the black lines at the ends denote the minimum and maximum values. This figure compares mice pre-treatment and three days after treatment. Only treatment-sensitive mice treated with bevacizumab were expected to respond to treatment, and this group shows a different distribution compared to the other groups.</p> "> Figure 6
<p>Performance and capability of the proposed method for early diagnosis using only the first day after treatment: Difference in intra-day curvature learning scores pre-treatment and one day after treatment for the following groups: treatment-resistant, untreated (CTBolusCTRL); treatment-resistant, treated (CTBolusAV); treatment-sensitive, untreated (LSBolusCTRL); treatment-sensitive, treated (LSBolusAV). The horizontal red lines represent the median, the blue lines indicate the upper and lower quartiles, and the black lines at the ends denote the minimum and maximum values. There was a statistically significant difference in the final curvature learning score, encompassing differences in intra-day curvature learning scores pre-treatment and one day after treatment, between the treated, treatment-sensitive group and all other groups (<span class="html-italic">p</span> = 0.0051).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mouse Experimental Protocol
2.2. Dimensionality Reduction
2.3. Diffusion Maps
2.4. Generation of the Embedded Image and Scattergram
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, H.; Wang, H.; Lutz, A.M.; El Kaffas, A.; Tian, L.; Hristov, D.; Willmann, J.K. Early prediction of tumor response to bevacizumab treatment in murine colon cancer models using three-dimensional dynamic contrast-enhanced ultrasound imaging. Angiogenesis 2017, 20, 547–555. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, H.; Zhang, H.; Lutz, A.M.; Tian, L.; Hristov, D.; Willmann, J.K. VEGFR2-Targeted Three-Dimensional Ultrasound Imaging Can Predict Responses to Antiangiogenic Therapy in Preclinical Models of Colon Cancer. Cancer Res. 2016, 76, 4081–4089. [Google Scholar] [CrossRef] [PubMed]
- Durot, I.; Wilson, S.R.; Willmann, J.K. Contrast-enhanced ultrasound of malignant liver lesions. Abdom. Radiol. 2018, 43, 819–847. [Google Scholar] [CrossRef]
- El Kaffas, A.; Sigrist, R.M.S.; Fisher, G.; Bachawal, S.; Liau, J.; Wang, H.; Karanany, A.; Durot, I.; Rosenberg, J.; Hristov, D.; et al. Quantitative Three-Dimensional Dynamic Contrast-Enhanced Ultrasound Imaging: First-In-Human Pilot Study in Patients with Liver Metastases. Theranostics 2017, 7, 3745–3758. [Google Scholar] [CrossRef]
- Hudson, J.M.; Williams, R.; Tremblay-Darveau, C.; Sheeran, P.S.; Milot, L.; Bjarnason, G.A.; Burns, P.N. Dynamic contrast enhanced ultrasound for therapy monitoring. Eur. J. Radiol. 2015, 84, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Coelho, F.; Martins, F.; Pereira, S.A.; Serpa, J. Anti-Angiogenic Therapy: Current Challenges and Future Perspectives. Int. J. Mol. Sci. 2021, 22, 3765. [Google Scholar] [CrossRef]
- Hlatky, L.; Hahnfeldt, P.; Folkman, J. Clinical application of antiangiogenic therapy: Microvessel density, what it does and doesn’t tell us. J. Natl. Cancer Inst. 2002, 94, 883–893. [Google Scholar] [CrossRef]
- Madsen, H.H.; Rasmussen, F. Contrast-enhanced ultrasound in oncology. Cancer Imaging 2011, 11, S167–S173. [Google Scholar] [CrossRef]
- Chang, E.H. An Introduction to Contrast-Enhanced Ultrasound for Nephrologists. Nephron 2018, 138, 176–185. [Google Scholar] [CrossRef]
- Malone, C.D.; Fetzer, D.T.; Monsky, W.L.; Itani, M.; Mellnick, V.M.; Velez, P.A.; Middleton, W.D.; Averkiou, M.A.; Ramaswamy, R.S. Contrast-enhanced US for the Interventional Radiologist: Current and Emerging Applications. Radiographics 2020, 40, 562–588. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Chen, Y.; Li, X.; Arlinghaus, L.; Chakravarthy, A.B.; Abramson, V.; Bhave, S.R.; Levy, M.A.; Xu, H.; Yankeelov, T.E. Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy. J. Am. Med. Inform. Assoc. 2013, 20, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2015, 13, 8–17. [Google Scholar] [CrossRef]
- Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine Learning for Medical Imaging. Radiographics 2017, 37, 505–515. [Google Scholar] [CrossRef]
- Bloniarz, A.; Liu, H.; Zhang, C.H.; Sekhon, J.S.; Yu, B. Lasso adjustments of treatment effect estimates in randomized experiments. Proc. Natl. Acad. Sci. USA 2016, 113, 7383–7390. [Google Scholar] [CrossRef]
- Hsu, Y.L.; Huang, P.Y.; Chen, D.T. Sparse principal component analysis in cancer research. Transl. Cancer Res. 2014, 3, 182–190. [Google Scholar] [CrossRef]
- Hoyt, K.; Sorace, A.; Saini, R. Quantitative mapping of tumor vascularity using volumetric contrast-enhanced ultrasound. Invest. Radiol. 2012, 47, 167–174. [Google Scholar] [CrossRef]
- Varoquaux, G.; Cheplygina, V. Machine learning for medical imaging: Methodological failures and recommendations for the future. NPJ Digit. Med. 2022, 5, 48. [Google Scholar] [CrossRef]
- Cruz, J.A.; Wishart, D.S. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2007, 2, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Lampaskis, M.; Averkiou, M. Investigation of the relationship of nonlinear backscattered ultrasound intensity with microbubble concentration at low MI. Ultrasound Med. Biol. 2010, 36, 306–312. [Google Scholar] [CrossRef]
- Akhbardeh, A.; Sagreiya, H.; El Kaffas, A.; Willmann, J.K.; Rubin, D.L. A multi-model framework to estimate perfusion parameters using contrast-enhanced ultrasound imaging. Med. Phys. 2019, 46, 590–600. [Google Scholar] [CrossRef]
- Akhbardeh, A.; Jacobs, M.A. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation. Med. Phys. 2012, 39, 2275–2289. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002; p. 487. [Google Scholar]
- Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Singer, A.; Wu, H.T. Orientability and Diffusion Maps. Appl. Comput. Harmon. Anal. 2011, 31, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Coifman, R.R.; Lafon, S.; Lee, A.B.; Maggioni, M.; Nadler, B.; Warner, F.; Zucker, S.W. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proc. Natl. Acad. Sci. USA 2005, 102, 7426–7431. [Google Scholar] [CrossRef]
- Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef]
- Tenenbaum, J.B.; de Silva, V.; Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290, 2319–2323. [Google Scholar] [CrossRef]
- Seung, H.S.; Lee, D.D. Cognition. The manifold ways of perception. Science 2000, 290, 2268–2269. [Google Scholar] [CrossRef]
- Hu, H.T.; Wang, W.; Chen, L.D.; Ruan, S.M.; Chen, S.L.; Li, X.; Lu, M.D.; Xie, X.Y.; Kuang, M. Artificial intelligence assists identifying malignant versus benign liver lesions using contrast-enhanced ultrasound. J. Gastroenterol. Hepatol. 2021, 36, 2875–2883. [Google Scholar] [CrossRef] [PubMed]
- Turco, S.; Tiyarattanachai, T.; Ebrahimkheil, K.; Eisenbrey, J.; Kamaya, A.; Mischi, M.; Lyshchik, A.; Kaffas, A.E. Interpretable Machine Learning for Characterization of Focal Liver Lesions by Contrast-Enhanced Ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 1670–1681. [Google Scholar] [CrossRef]
- Qin, X.; Zhu, J.; Tu, Z.; Ma, Q.; Tang, J.; Zhang, C. Contrast-Enhanced Ultrasound with Deep Learning with Attention Mechanisms for Predicting Microvascular Invasion in Single Hepatocellular Carcinoma. Acad. Radiol. 2023, 30 (Suppl. S1), S73–S80. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Liu, D.; Wang, K.; Xie, X.; Su, L.; Kuang, M.; Huang, G.; Peng, B.; Wang, Y.; Lin, M.; et al. Deep Learning Radiomics Based on Contrast-Enhanced Ultrasound Might Optimize Curative Treatments for Very-Early or Early-Stage Hepatocellular Carcinoma Patients. Liver Cancer 2020, 9, 397–413. [Google Scholar] [CrossRef]
- Tong, T.; Gu, J.; Xu, D.; Song, L.; Zhao, Q.; Cheng, F.; Yuan, Z.; Tian, S.; Yang, X.; Tian, J.; et al. Deep learning radiomics based on contrast-enhanced ultrasound images for assisted diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis. BMC Med. 2022, 20, 74. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Dang, Y.; Cheng, Y.; Gui, Y.; Chen, X.; Chen, T.; Zeng, Y.; Tan, L.; Zhang, J.; Xiao, M.; et al. Predicting the Efficacy of Neoadjuvant Chemotherapy for Pancreatic Cancer Using Deep Learning of Contrast-Enhanced Ultrasound Videos. Diagnostics 2023, 13, 2183. [Google Scholar] [CrossRef]
- Kondo, S.; Satoh, M.; Nishida, M.; Sakano, R.; Takagi, K. Ceusia-Breast: Computer-aided diagnosis with contrast enhanced ultrasound image analysis for breast lesions. BMC Med. Imaging 2023, 23, 114. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Yang, F.; Zhou, X.; Guo, Y.; Tang, F.; Ren, F.; Guo, J.; Ji, S. A Deep Learning Approach for Targeted Contrast-Enhanced Ultrasound Based Prostate Cancer Detection. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 16, 1794–1801. [Google Scholar] [CrossRef]
- Sun, Y.; Fang, J.; Shi, Y.; Li, H.; Wang, J.; Xu, J.; Zhang, B.; Liang, L. Machine learning based on radiomics features combing B-mode transrectal ultrasound and contrast-enhanced ultrasound to improve peripheral zone prostate cancer detection. Abdom. Radiol. 2024, 49, 141–150. [Google Scholar] [CrossRef]
- Pochon, S.; Tardy, I.; Bussat, P.; Bettinger, T.; Brochot, J.; von Wronski, M.; Passantino, L.; Schneider, M. BR55: A lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest. Radiol. 2010, 45, 89–95. [Google Scholar] [CrossRef]
- Jacobs, M.A.; Akhbardeh, A. Multiparametric Non-Linear Dimension Reduction Methods and Systems Related Thereto. US 9,256,966 B2, 9 February 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagreiya, H.; Durot, I.; Akhbardeh, A. An Unsupervised Approach for Treatment Effectiveness Monitoring Using Curvature Learning. Computers 2024, 13, 227. https://doi.org/10.3390/computers13090227
Sagreiya H, Durot I, Akhbardeh A. An Unsupervised Approach for Treatment Effectiveness Monitoring Using Curvature Learning. Computers. 2024; 13(9):227. https://doi.org/10.3390/computers13090227
Chicago/Turabian StyleSagreiya, Hersh, Isabelle Durot, and Alireza Akhbardeh. 2024. "An Unsupervised Approach for Treatment Effectiveness Monitoring Using Curvature Learning" Computers 13, no. 9: 227. https://doi.org/10.3390/computers13090227
APA StyleSagreiya, H., Durot, I., & Akhbardeh, A. (2024). An Unsupervised Approach for Treatment Effectiveness Monitoring Using Curvature Learning. Computers, 13(9), 227. https://doi.org/10.3390/computers13090227