PM2.5 Time Series Imputation with Moving Averages, Smoothing, and Linear Interpolation
<p>Location of the environmental monitoring stations in Ilo City, Peru.</p> "> Figure 2
<p>The 24−day correlation of Pacocha station.</p> "> Figure 3
<p>The 24−day correlation of Pardo station.</p> "> Figure 4
<p>Two days were considered to impute missing values.</p> "> Figure 5
<p>The 72 estimated hours with the moving average equation for gaps of 24 h.</p> "> Figure 6
<p>The 72 estimated hours with the moving average and linear interpolation smoothing for gaps of 24 h.</p> "> Figure 7
<p>The 72 estimated hours for gaps of 24 h using LANN.</p> "> Figure 8
<p>The 72 estimated hours for gaps of 24 h with the proposed model.</p> "> Figure 9
<p>Imputations of 144 h for 24 h gaps using GRU, ARIMA, and the proposed model for Pacocha Station.</p> "> Figure 10
<p>Imputations of 144 h for 24 h gaps using GRU, ARIMA, and the proposed model for Pardo Station.</p> "> Figure 11
<p>How the benchmark models work in this study. (<b>a</b>) Statistical models and (<b>b</b>) deep learning models. NA is the not available or missing value.</p> ">
Abstract
:1. Introduction
- -
- A comparative study of statistical and deep learning techniques for the estimation of missing values.
- -
- A novel ensemble model based on moving averages, smoothing, and linear interpolation for time series imputation.
2. Related Works
2.1. Overview of Imputation Techniques
2.2. Related Works on PM2.5 Time Series Imputation
3. Materials and Methods
3.1. Data Collection
3.2. Selection of Days
3.3. Insertion of Missing Values (NA)
3.4. Implementation of Moving Averages (MA)
3.5. Smoothing with Linear Interpolation (MA + LI)
Algorithm 1 Moving averages and linear interpolation smoothing (MA + LI) | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | n = len(m) − 1 i = 1 soli = [] while (i < n) begin j = 0 rs = [] while j < 24: begin prr = i − 1 nxt = i + 1 ma = (m[prr][j] + m[nxt][j])/2 rs.append(ma) j+ = 1 end steps = 5 lrr = [] c = 0 fin = 24-steps while (c < fin) begin prr = rs[c] nxt = rs[c + steps] rr = iLinear(1,2,prr,nxt,steps-1) nrr = len(rr) idx = c + 1 for (a = 1 → nrr) begin rs[idx] = rr[a] idx = idx + 1 end c = c + steps end soli.append(rs) i = i + 2 end |
3.6. Implementation of Local Average of Nearest Neighbors (LANN)
3.7. Ensembling MA + LI and LANN with Weighted Averages
3.8. Evaluation
4. Results and Discussion
4.1. Results
4.2. Discussions
4.2.1. Benchmark Models
Statistical Test
Moving Averages Limitations
5. Conclusions and Future Work
5.1. Conclusions
5.2. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mahalakshmi; MAbdul Haq, N. Foretelling of space-time PM2.5Air pollutant using Machine Learning. In Proceedings of the 2022 4th International Conference on Advances in Computing, Communication Control and Networking, ICAC3N 2022, Greater Noida, India, 16–17 December 2022. [Google Scholar] [CrossRef]
- Deng, J.; Jiang, L.; Miao, W.; Zhang, J.; Dong, G.; Liu, K.; Chen, J.; Peng, T.; Fu, Y.; Zhou, Y.; et al. Characteristics of fine particulate matter (PM2.5) at Jinsha Site Museum, Chengdu, China. Environ. Sci. Pollut. Res. 2022, 29, 1173–1183. [Google Scholar] [CrossRef]
- Oh, J.; Choi, S.; Han, C.; Lee, D.W.; Ha, E.; Kim, S.; Bae, H.J.; Pyun, W.B.; Hong, Y.C.; Lim, Y.H. Association of long-term exposure to PM2.5 and survival following ischemic heart disease. Environ. Res. 2023, 216, 114440. [Google Scholar] [CrossRef]
- Ni, Y.; Shi, G.; Qu, J. Indoor PM2.5, tobacco smoking and chronic lung diseases: A narrative review. Environ. Res. 2020, 181, 108910. [Google Scholar] [CrossRef]
- IQAir. Interactive Global Map of 2023 PM2.5 Concentrations by City. 2023. Available online: https://www.iqair.com/world-air-quality-report (accessed on 30 August 2024).
- Wen, H.; Pinson, P.; Gu, J.; Jin, Z. Wind energy forecasting with missing values within a fully conditional specification framework. Int. J. Forecast. 2024, 40, 77–95. [Google Scholar] [CrossRef]
- Han, J.; Kang, S. Optimization of missing value imputation for neural networks. Inf. Sci. 2023, 649, 119668. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G. Time Series Analysis, Forecasting and Control, 4th ed.; Wiley: Hoboken, NJ, USA; Prentice-Hall: Englewood Cliffs, NJ, USA, 2008. [Google Scholar]
- Moritz, S. Package imputeTS. 2022. Available online: https://cran.r-project.org/web/packages/imputeTS/imputeTS.pdf (accessed on 11 September 2024).
- Moritz, S.; Bartz-Beielstein, T. imputeTS: Time series missing value imputation in R. R J. 2017, 9, 207–218. [Google Scholar] [CrossRef]
- Belachsen, I.; Broday, D.M. Imputation of Missing PM2.5 Observations in a Network of Air Quality Monitoring Stations by a New kNN Method. Atmosphere 2022, 13, 1934. [Google Scholar] [CrossRef]
- Dahmani, S.; Latif, S.D. Streamflow Data Infilling Using Machine Learning Techniques with Gamma Test. Water Resour. Manag. 2024, 38, 701–716. [Google Scholar] [CrossRef]
- Qiu, C. A Method Using LSTM Networks to Impute Missing Temperatures in Temperature Datasets and to Predict Future Temperatures. Highlights Sci. Eng. Technol. 2023, 46, 116–124. [Google Scholar] [CrossRef]
- Saini, H.; Raicar, G.; Dehzangi, A.; Lal, S.; Sharma, A. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model. J. Theor. Biol. 2015, 386, 25–33. [Google Scholar] [CrossRef]
- Flores, A.; Tito-Chura, H.; Yana-Mamani, V.; Rosado-Chavez, C.; Ecos-Espino, A. Weighted Averages and Polynomial Interpolation for PM2.5 Time Series Forecasting. Computers 2024, 13, 238. [Google Scholar] [CrossRef]
- Flores, A.; Tito, H.; Silva, C. Local average of nearest neighbors: Univariate time series imputation. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 45–50. [Google Scholar] [CrossRef]
- Wongoutong, C. Imputation Methods in Time Series with a Trend and a Consecutive Missing Value Pattern. Thail. Stat. 2021, 19, 866–879. [Google Scholar]
- Shin, Y.; Kim, D.-H.; Kim, H.-J.; Lim, C.; Woo, S.-B. Imputation of Missing SST Observation Data Using Multivariate Bidirectional RNN. J. Korean Soc. Coast. Ocean Eng. 2022, 34, 109–118. [Google Scholar] [CrossRef]
- Dwivedi, D.; Mital, U.; Faybishenko, B.; Dafflon, B.; Varadharajan, C.; Agarwal, D.; Williams, K.H.; Steefel, C.I.; Hubbard, S.S. Imputation of Contiguous Gaps and Extremes of Subhourly Groundwater Time Series Using Random Forests. J. Mach. Learn. Model. Comput. 2022, 3, 22. [Google Scholar] [CrossRef]
- Kim, G.B.; Choi, M.R.; Hwang, C.I. Comparison of missing value imputations for groundwater levels using multivariate ARIMA, MLP, and LSTM. J. Geol. Soc. Korea 2020, 56, 561–569. [Google Scholar] [CrossRef]
- Walkowiak, T. Feature Transformations for Outlier Detection in Classification of Text Documents. In Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2022; Volume 484 LNNS. [Google Scholar] [CrossRef]
- Xu, L.; Xu, L.; Yu, J. Time series imputation with GAN inversion and decay connection. Inf. Sci. 2023, 643, 119234. [Google Scholar] [CrossRef]
- Yldz, A.Y.; Koc, E.; Koc, A. Multivariate Time Series Imputation With Transformers. IEEE Signal Process. Lett. 2022, 29, 2517–2521. [Google Scholar] [CrossRef]
- Xiao, Q.; Chang, H.H.; Geng, G.; Liu, Y. An Ensemble Machine-Learning Model to Predict Historical PM2.5 Concentrations in China from Satellite Data. Environ. Sci. Technol. 2018, 52, 13260–13269. [Google Scholar] [CrossRef]
- Yuan, H.; Xu, G.; Yao, Z.; Jia, J.; Zhang, Y. Imputation of missing data in time series for air pollutants using long short-term memory recurrent neural networks. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Singapore, 8–12 October 2018. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Zou, L.; Xia, J.; Pang, W. Spatial imputation for air pollutants data sets via low rank matrix completion algorithm. Environ. Int. 2020, 139, 105719. [Google Scholar] [CrossRef]
- Hadeed, S.J.; O’Rourke, M.K.; Burgess, J.L.; Harris, R.B.; Canales, R.A. Imputation methods for addressing missing data in short-term monitoring of air pollutants. Sci. Total Environ. 2020, 730, 139140. [Google Scholar] [CrossRef] [PubMed]
- Saif-ul-Allah, M.W.; Qyyum, M.A.; Ul-Haq, N.; Salman, C.A.; Ahmed, F. Gated Recurrent Unit Coupled with Projection to Model Plane Imputation for the PM2.5 Prediction for Guangzhou City, China. Front. Environ. Sci. 2022, 9, 819616. [Google Scholar] [CrossRef]
- Lee, Y.S.; Choi, E.; Park, M.; Jo, H.; Park, M.; Nam, E.; Kim, D.G.; Yi, S.M.; Kim, J.Y. Feature extraction and prediction of fine particulate matter (PM2.5) chemical constituents using four machine learning models. Expert Syst. Appl. 2023, 221, 119696. [Google Scholar] [CrossRef]
- Flores, A.; Tito-Chura, H.; Centty-Villafuerte, D.; Ecos-Espino, A. Pm2.5 Time Series Imputation with Deep Learning and Interpolation. Computers 2023, 12, 165. [Google Scholar] [CrossRef]
- Flores, A.; Tito-Chura, H.; Ecos-Espino, A.; Flores-Quispe, E. Comparative Study of Imputation Techniques for Missing Value Estimation in Particulate Matter 2.5 µm Time Series. Pollution 2024, 10, 1117–1127. [Google Scholar] [CrossRef]
- SciPy. scipy.stats.ksTest. 2024. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html (accessed on 21 October 2024).
- Montaño Moreno, J.J.; Palmer Pol, A.; Sesé Abad, A.; Cajal Blasco, B. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema 2013, 25, 500–506. [Google Scholar] [CrossRef]
Work | Technique | Country | Frequency | Gap Size | Metric | Value |
---|---|---|---|---|---|---|
[24] | RF + XGB + GAM | China | Hourly | 1 | R2 | 0.85 |
[25] | LSTM | China | Hourly | Random | RMSE | 13.43 |
[26] | LRMC | China | Hourly | Random | R2 | 0.926 |
[27] | Kalman | USA | Minute | Random | R2 | 0.65 |
[28] | GRU | China | Daily | 1 | MAPE | 11.01 |
[11] | KNN | China | Half-hourly | 0.5 h, 2 y | R2 | [0.82–0.57] |
[29] | GAIN | Korea | Hourly | Random | R2 | 0.89 |
[30] | Deep Learning + Polynomial Interpolation | Peru | Hourly | 1 | MAPE | 21.43 |
[31] | ARIMA | Peru | Hourly | 1 | MAPE R2 | 10.0192 0.8247 |
Related Works | Proposed Model |
---|---|
Most of them are based on machine and deep learning techniques. | It is based on statistical techniques. |
Some of them work with random gap sizes. | It works with different gap sizes. |
Some of them work with just one gap size. | It works with 1, 3, 6, 12, and 24 gap sizes. |
Most of the models proposed in the literature rely on extensive training data. | The model proposed in this work requires very little data. |
Station | Total Hours | * Train (70%) | * Validation (10%) | Test (20%) |
---|---|---|---|---|
Pacocha | 16,344 | 11,772 | 1308 | 3265 |
Pardo | 21,960 | 16,260 | 1756 | 4392 |
Day | Pacocha | Pardo | Avg |
---|---|---|---|
1 | 0.2637 | 0.1450 | 0.2044 ± 0.08 |
2 | 0.1903 | 0.1378 | 0.1641 ± 0.04 |
3 | 0.3079 | 0.2632 | 0.2856 ± 0.03 |
4 | 0.2539 | 0.2411 | 0.2475 ± 0.01 |
5 | 0.2413 | 0.1729 | 0.2071 ± 0.05 |
6 | 0.2404 | 0.2595 | 0.2500 ± 0.01 |
7 | 0.3393 | 0.2604 | 0.2999 ± 0.06 |
8 | 0.3589 | 0.2152 | 0.2871 ± 0.10 |
9 | 0.1939 | 0.2572 | 0.2256 ± 0.04 |
10 | 0.2409 | 0.1451 | 0.1930 ± 0.07 |
11 | 0.1685 | 0.1410 | 0.1548 ± 0.02 |
12 | 0.2378 | 0.1965 | 0.2172 ± 0.03 |
13 | 0.2683 | 0.1785 | 0.2234 ±0.06 |
14 | 0.1554 | 0.2514 | 0.2034 ± 0.07 |
15 | 0.2515 | 0.2888 | 0.2702 ± 0.03 |
16 | 0.2057 | 0.1607 | 0.1832 ± 0.03 |
17 | 0.0924 | 0.0662 | 0.0793 ± 0.02 |
18 | 0.1612 | 0.2781 | 0.2197 ± 0.08 |
19 | 0.0845 | 0.0313 | 0.0579 ± 0.04 |
20 | 0.1950 | 0.2017 | 0.1984 ± 0.00 |
21 | 0.1806 | 0.1579 | 0.1693 ± 0.02 |
22 | 0.2255 | 0.3517 | −0.2886 ± 0.09 |
23 | −0.2536 | 0.1823 | −0.0357 ± 0.31 |
Gap Size | Insertion of Missing Values (NA) |
---|---|
1 | 9.28, 9.6, 17.62, 18.62, 15.94, 15.51, 31.26, 20.76, 12.3, 12.54, 10.41, 7.75, 7.82, 7.55, 6.92, 6.62, 7.3, 9.39, 9.94, 12.72, 8.26, 10.58, 12.49, 7.72, NA, 15.78, NA, 38.94, NA, 28.45, NA, 25.78, NA, 20.71, NA, 16.98, NA, 9.06, NA, 8.93, NA, 11.1, NA, 24.34, NA, 23.9, NA, 58, 52.48, 38.17, 22.3, 23.6, 30.85, 33.38, 38.77, 19.4, 21.04, 18.77, 13.98, 9.78, 8.38, 8.71, 11.03, 10.36, 9.64, 8.4, 8.7, 14.13, 13.55, 15.12, 15.18, 63.83, … |
3 | 9.28, 9.6, 17.62, 18.62, 15.94, 15.51, 31.26, 20.76, 12.3, 12.54, 10.41, 7.75, 7.82, 7.55, 6.92, 6.62, 7.3, 9.39, 9.94, 12.72, 8.26, 10.58, 12.49, 7.72, NA, NA, NA, 38.94, 40.98, 28.45, NA, NA, NA, 20.71, 22.59, 16.98, NA, NA, NA, 8.93, 8.45, 11.1, NA, NA, NA, 23.9, 21.75, 58, 52.48, 38.17, 22.3, 23.6, 30.85, 33.38, 38.77, 19.4, 21.04, 18.77, 13.98, 9.78, 8.38, 8.71, 11.03, 10.36, 9.64, 8.4, 8.7, 14.13, 13.55, 15.12, 15.18, 63.83, … |
6 | 9.28, 9.6, 17.62, 18.62, 15.94, 15.51, 31.26, 20.76, 12.3, 12.54, 10.41, 7.75, 7.82, 7.55, 6.92, 6.62, 7.3, 9.39, 9.94, 12.72, 8.26, 10.58, 12.49, 7.72, NA, NA, NA, NA, NA, NA, 28.66, 25.78, 24.2, 20.71, 22.59, 16.98,NA, NA, NA, NA, NA, NA, 14.07, 24.34, 29.41, 23.9, 21.75, 58, 38.77, 19.4, 21.04, 18.77, 13.98, 9.78, 8.38, 8.71, 11.03, 10.36, 9.64, 8.4, 8.7, 14.13, 13.55, 15.12, 15.18, 63.83, … |
12 | 9.28, 9.6, 17.62, 18.62, 15.94, 15.51, 31.26, 20.76, 12.3, 12.54, 10.41, 7.75, 7.82, 7.55, 6.92, 6.62, 7.3, 9.39, 9.94, 12.72, 8.26, 10.58, 12.49, 7.72, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 10.83, 9.06, 11, 8.93, 8.45, 11.1, 14.07, 24.34, 29.41, 23.9, 21.75, 58, 52.48, 38.17, 22.3, 23.6, 30.85, 33.38, 38.77, 19.4, 21.04, 18.77, 13.98, 9.78, 8.38, 8.71, 11.03, 10.36, 9.64, 8.4, 8.7, 14.13, 13.55, 15.12, 15.18, 63.83, … |
24 | 9.28, 9.6, 17.62, 18.62, 15.94, 15.51, 31.26, 20.76, 12.3, 12.54, 10.41, 7.75, 7.82, 7.55, 6.92, 6.62, 7.3, 9.39, 9.94, 12.72, 8.26, 10.58, 12.49, 7.72, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 52.48, 38.17, 22.3, 23.6, 30.85, 33.38, 38.77, 19.4, 21.04, 18.77, 13.98, 9.78, 8.38, 8.71, 11.03, 10.36, 9.64, 8.4, 8.7, 14.13, 13.55, 15.12, 15.18, 63.83, … |
Gap Size | Weights | |
---|---|---|
w1 (MA + LI) | w2 (LANN) | |
1 | 0.05 | 0.95 |
3 | 0.15 | 0.85 |
6 | 0.25 | 0.75 |
12 | 0.45 | 0.55 |
24 | 0.65 | 0.35 |
Model | Gap Size of Missing Values | ||||
---|---|---|---|---|---|
1 | 3 | 6 | 12 | 24 | |
RMSE | |||||
MA + LI | 7.6903 | 8.0136 | 7.7564 | 8.8304 | 7.5483 |
LANN | 4.0533 | 5.0798 | 6.0958 | 8.5701 | 8.7844 |
Proposed Model | 4.0506 | 5.0736 | 5.8703 | 8.0593 | 6.9101 |
MAPE | |||||
MA + LI | 58.2851 | 56.1228 | 58.6521 | 67.4559 | 57.8580 |
LANN | 20.2896 | 26.1345 | 39.5012 | 44.9316 | 69.8399 |
Proposed Model | 20.4655 | 26.2066 | 41.2707 | 49.9204 | 57.1673 |
R2 | |||||
MA + LI | 0.1091 | 0.0999 | 0.1237 | 0.0745 | 0.1120 |
LANN | 0.7330 | 0.6148 | 0.4742 | 0.1924 | 0.1700 |
RRMSE | |||||
MA + LI | 2.5177 | 2.6120 | 2.5416 | 2.7138 | 2.4697 |
LANN | 1.3088 | 1.6478 | 1.8982 | 2.8595 | 2.6367 |
Proposed Model | 1.3083 | 1.6463 | 1.8505 | 2.5871 | 2.1901 |
Model | Gap Size of Missing Values | ||||
---|---|---|---|---|---|
1 | 3 | 6 | 12 | 24 | |
RMSE | |||||
MA + LI | 2.1850 | 2.0381 | 2.2226 | 2.2861 | 2.1833 |
LANN | 1.1519 | 1.5624 | 1.7841 | 2.1459 | 2.1435 |
Proposed Model | 1.1497 | 1.5231 | 1.6329 | 2.0605 | 2.0651 |
MAPE | |||||
MA + LI | 25.5014 | 25.0964 | 26.1030 | 28.6020 | 25.6556 |
LANN | 12.1816 | 16.1074 | 25.5250 | 25.7095 | 25.7792 |
Proposed Model | 12.1715 | 15.9611 | 23.3307 | 24.4941 | 23.5613 |
R2 | |||||
MA + LI | 0.2262 | 0.2620 | 0.2483 | 0.2214 | 0.2221 |
LANN | 0.7735 | 0.5914 | 0.5529 | 0.3411 | 0.2745 |
Proposed Model | 0.7742 | 0.5990 | 0.5912 | 0.3731 | 0.2983 |
RRMSE | |||||
MA + LI | 0.9907 | 0.9251 | 1.0229 | 1.0155 | 0.9922 |
LANN | 0.5067 | 0.6898 | 0.7624 | 0.9653 | 0.9988 |
Proposed Model | 0.5060 | 0.6334 | 0.7101 | 0.9216 | 0.9466 |
Technique | Window (k) | Method |
---|---|---|
EWMA | 4 | weighting = ‘exponential’ |
ARIMA | 4 | model = ‘auto.arima’ |
Model | Hyperparameters |
---|---|
LSTM | [24, 48, 24, n *], lr = 0.001, drop_rate = [‘’, 0.1, 0.1] |
GRU | [24, 48, 24, n *], lr = 0.001, drop_rate = [‘’, 0.1,0.1] |
BiGRU | [24, 48, 24, n *], lr = 0.001, drop_rate = [‘’, 0.1, 0.1] |
Model | Gap Size | ||||
---|---|---|---|---|---|
1 | 3 | 6 | 12 | 24 | |
RMSE | |||||
EWMA | 4.1962 | 5.1643 | 6.6006 | 9.0685 | 9.3926 |
ARIMA | 4.1006 | 5.3194 | 6.4243 | 8.5234 | 7.0857 |
LSTM | 11.9599 | 11.8396 | 12.0099 | 11.1642 | 11.8206 |
GRU | 9.3581 | 9.7258 | 9.4652 | 10.6280 | 9.2072 |
BiGRU | 8.7196 | 9.0307 | 8.8677 | 9.6332 | 8.6770 |
Proposed Model | 4.0506 | 5.0736 | 5.8703 | 8.0593 | 6.9101 |
MAPE | |||||
EWMA | 22.6348 | 27.0066 | 39.9906 | 46.1174 | 73.7888 |
ARIMA | 21.1681 | 30.9679 | 48.8931 | 45.5445 | 60.0977 |
LSTM | 191.6827 | 180.9878 | 194.7890 | 154.3476 | 189.6667 |
GRU | 65.5836 | 65.2992 | 66.9026 | 65.1567 | 65.1322 |
BiGRU | 89.6948 | 92.8636 | 92.1008 | 86.5079 | 93.6101 |
Proposed Model | 20.4655 | 26.2066 | 41.2707 | 49.9204 | 57.1673 |
R2 | |||||
EWMA | 0.7144 | 0.6033 | 0.3892 | 0.1485 | 0.1529 |
ARIMA | 0.7262 | 0.5822 | 0.3548 | 0.1570 | 0.1480 |
LSTM | 0.0007 | 0.0110 | 0.0030 | 0.0196 | 0.0002 |
GRU | 0.0012 | 0.0018 | 0.0009 | 0.0017 | 0.0011 |
BiGRU | 0.0007 | 0.0010 | 0.0014 | 0.0059 | 0.0006 |
Proposed Model | 0.7330 | 0.6148 | 0.4694 | 0.2039 | 0.2150 |
RRMSE | |||||
EWMA | 1.3549 | 1.6863 | 2.0806 | 3.0823 | 2.8221 |
ARIMA | 1.3251 | 1.7224 | 2.0367 | 2.8844 | 2.2704 |
LSTM | 2.7730 | 2.7463 | 2.7929 | 2.6052 | 2.7459 |
GRU | 3.2697 | 3.4114 | 3.3119 | 3.7124 | 3.2238 |
BiGRU | 2.6228 | 2.6294 | 2.6799 | 2.7997 | 2.8780 |
Proposed Model | 1.3083 | 1.6463 | 1.8505 | 2.5871 | 2.1901 |
Model | Gap Size | ||||
---|---|---|---|---|---|
1 | 3 | 6 | 12 | 24 | |
RMSE | |||||
EWMA | 2.3433 | 2.2220 | 2.3704 | 2.3933 | 2.3250 |
ARIMA | 2.0489 | 1.9030 | 2.0588 | 2.1779 | 2.0332 |
LSTM | 5.5238 | 5.3756 | 5.6967 | 5.4118 | 5.5557 |
GRU | 5.4047 | 5.3075 | 5.5605 | 5.2980 | 5.4114 |
BiGRU | 5.5003 | 5.3793 | 5.6604 | 5.3818 | 5.4957 |
Proposed model | 1.1497 | 1.5231 | 1.6329 | 2.0605 | 2.0651 |
MAPE | |||||
EWMA | 29.1740 | 28.1282 | 28.2679 | 32.4197 | 29.0337 |
ARIMA | 26.2820 | 25.1973 | 27.2105 | 28.0468 | 26.1228 |
LSTM | 112.7153 | 111.2804 | 124.5182 | 114.2086 | 115.6403 |
GRU | 109.4710 | 105.9471 | 120.5843 | 106.8928 | 110.0650 |
BiGRU | 114.7408 | 112.2894 | 126.1085 | 112.9798 | 114.9861 |
Proposed model | 12.1715 | 15.9611 | 23.3307 | 24.4941 | 23.5613 |
R2 | |||||
EWMA | 0.1809 | 0.2042 | 0.1909 | 0.2144 | 0.1847 |
ARIMA | 0.3002 | 0.3392 | 0.3402 | 0.3064 | 0.3048 |
LSTM | 0.0199 | 0.0138 | 0.0161 | 0.0095 | 0.0178 |
GRU | 0.0231 | 0.0198 | 0.0192 | 0.0136 | 0.0220 |
BiGRU | 0.0256 | 0.0206 | 0.0214 | 0.0146 | 0.0236 |
Proposed model | 0.7742 | 0.5990 | 0.5912 | 0.3731 | 0.2983 |
RRMSE | |||||
EWMA | 1.0783 | 1.0228 | 1.0911 | 1.0915 | 1.0700 |
ARIMA | 0.9266 | 0.8602 | 0.9301 | 0.9822 | 0.9201 |
LSTM | 1.8626 | 1.7956 | 1.9191 | 1.8045 | 1.8609 |
GRU | 1.8401 | 1.8049 | 1.8930 | 1.8074 | 1.8433 |
BiGRU | 1.8452 | 1.8036 | 1.9010 | 1.8047 | 1.8463 |
Proposed Model | 0.5060 | 0.6334 | 0.7101 | 0.9216 | 0.9466 |
Model | Gap Size | ||||
---|---|---|---|---|---|
1 | 3 | 6 | 12 | 24 | |
EWMA | 0.9032 | 0.9945 | 0.0941 | 0.0000 | 0.0000 |
ARIMA | 0.9890 | 0.0004 | 0.0000 | 0.0000 | 0.0000 |
LSTM | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
GRU | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
BiGRU | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Model | p-Value According to Gap Size | ||||
---|---|---|---|---|---|
1 | 3 | 6 | 12 | 24 | |
EWMA | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
ARIMA | 0.0004 | 0.0017 | 0.0000 | 0.0000 | 0.0014 |
LSTM | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
GRU | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
BiGRU | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores, A.; Tito-Chura, H.; Cuentas-Toledo, O.; Yana-Mamani, V.; Centty-Villafuerte, D. PM2.5 Time Series Imputation with Moving Averages, Smoothing, and Linear Interpolation. Computers 2024, 13, 312. https://doi.org/10.3390/computers13120312
Flores A, Tito-Chura H, Cuentas-Toledo O, Yana-Mamani V, Centty-Villafuerte D. PM2.5 Time Series Imputation with Moving Averages, Smoothing, and Linear Interpolation. Computers. 2024; 13(12):312. https://doi.org/10.3390/computers13120312
Chicago/Turabian StyleFlores, Anibal, Hugo Tito-Chura, Osmar Cuentas-Toledo, Victor Yana-Mamani, and Deymor Centty-Villafuerte. 2024. "PM2.5 Time Series Imputation with Moving Averages, Smoothing, and Linear Interpolation" Computers 13, no. 12: 312. https://doi.org/10.3390/computers13120312
APA StyleFlores, A., Tito-Chura, H., Cuentas-Toledo, O., Yana-Mamani, V., & Centty-Villafuerte, D. (2024). PM2.5 Time Series Imputation with Moving Averages, Smoothing, and Linear Interpolation. Computers, 13(12), 312. https://doi.org/10.3390/computers13120312