Unraveling the Dynamics of Mental and Visuospatial Workload in Virtual Reality Environments
<p><b>Left</b>: Plot of live physiological data stream from Galea headset (left screen), TETRIS VR environment (right screen), User wearing VR headset. <b>Right</b>: Outline of experiment procedure. For each of the two sessions, participants completed two pre-experiment questionnaires. Then, a headset fitting session was conducted. Once the headset was fitted, calibration data was collected (regular and eyes-closed). After a brief tutorial session, participants played either the intervention or control version of TETRIS. After completion of the game, the participant filled out two post-experiment questionnaires, and was debriefed on the session.</p> "> Figure 2
<p>Figures show the significant deviations from baseline for EEG and PPG signals before and after the helper event. (<b>a</b>) Frontal Theta power collapsed for electrodes Fp1, Fp2, Fz. (<b>b</b>) Parietal Theta power collapsed for electrodes POz, PO3, PO4. (<b>c</b>) Frontal Beta power collapsed for electrodes Fp1, Fp2, Fz. (<b>d</b>) Parietal Beta power collapsed for electrodes POz, PO3, PO4 (<b>e</b>) Frontal alpha power collapsed for electrodes Fp1, Fp2, Fz. (<b>f</b>) Parietal alpha power collapsed for electrodes POz, PO3, PO4. (<b>g</b>) Heart rate, in beats per minute, deviation from baseline. (<b>h</b>) RMSSD, a measure of HRV, deviation from baseline.</p> "> Figure 2 Cont.
<p>Figures show the significant deviations from baseline for EEG and PPG signals before and after the helper event. (<b>a</b>) Frontal Theta power collapsed for electrodes Fp1, Fp2, Fz. (<b>b</b>) Parietal Theta power collapsed for electrodes POz, PO3, PO4. (<b>c</b>) Frontal Beta power collapsed for electrodes Fp1, Fp2, Fz. (<b>d</b>) Parietal Beta power collapsed for electrodes POz, PO3, PO4 (<b>e</b>) Frontal alpha power collapsed for electrodes Fp1, Fp2, Fz. (<b>f</b>) Parietal alpha power collapsed for electrodes POz, PO3, PO4. (<b>g</b>) Heart rate, in beats per minute, deviation from baseline. (<b>h</b>) RMSSD, a measure of HRV, deviation from baseline.</p> "> Figure 3
<p>Estimated vs observed performance improvement—Estimated performance improvement is shown on the x-axis and observed performance improvement on the y-axis. Performance improvement is estimated as a linear combination of selected physiological signals that significantly deviate from baseline activity following the appearance of a helper during gameplay.</p> "> Figure 4
<p>Estimated vs observed questionnaire responses - For each of the four questionnaire responses regarding the helper, estimated vs observed questionnaire responses are displayed. Questions 1, 2 and 4 showed statistically significant (<span class="html-italic">p</span> > 0.05) models.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Procedure
2.4. Apparatus
3. Data Preprocessing
3.1. EEG
3.2. PPG
4. Measurements
4.1. EEG
4.2. PPG
4.3. Baseline
5. Analysis
5.1. Normalization
5.2. Standardization
5.3. Time-Series Analysis
5.4. Linear Regression Models
6. Results
6.1. Performance Improvement
6.2. Time-Series Analysis
6.3. Predicting Performance Improvement
6.3.1. Question 1: Was the Ball Shaped Piece Helpful in the Game? If Yes, How Helpful Was It?
6.3.2. Question 2: “Was the Effect of the Ball Shaped Piece Relieving? If Yes, How Relieving Was It?”
6.3.3. Question 3: Did You Notice That the Game Became Slower Immediately after the Ball Cleared Some Rows? If Not, How Much Longer Did It Take for You to Realize That the Game Was Now Slower?
6.3.4. Question 4: After the Ball Cleared Some Rows and Slowed Down the Game, Did You Feel a Tension Relief in Your Body? If Yes, to What Degree Did You Feel This?
7. Discussion
7.1. Temporal Dynamics of Helper Response
7.2. Limitations
7.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 52, pp. 139–183. [Google Scholar]
- Young, M.S.; Brookhuis, K.A.; Wickens, C.D.; Hancock, P.A. State of science: Mental workload in ergonomics. Ergonomics 2015, 58, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hancock, G.; Longo, L.; Young, M.; Hancock, P. Mental workload. In Handbook of Human Factors and Ergonomics; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 203–226. [Google Scholar]
- Sweller, J. Cognitive load theory: Recent theoretical advances. In Cognitive Load Theory; Cambridge University Press: New York, NY, USA, 2010; pp. 29–47. [Google Scholar] [CrossRef]
- Friedman, N.P.; Robbins, T.W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 2022, 47, 72–89. [Google Scholar] [CrossRef]
- Miller, E.K. The prefontral cortex and cognitive control. Nat. Rev. Neurosci. 2000, 1, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Y.E.; Andersen, R.A. A common reference frame for movement plans in the posterior parietal cortex. Nat. Rev. Neurosci. 2002, 3, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Sack, A.T. Parietal cortex and spatial cognition. Behav. Brain Res. 2009, 202, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Culham, J.C.; Kanwisher, N.G. Neuroimaging of cognitive functions in human parietal cortex. Curr. Opin. Neurobiol. 2001, 11, 157–163. [Google Scholar] [CrossRef]
- Stiles, J.; Reilly, J.S.; Levine, S.C.; Trauner, D.A.; Nass, R. Spatial Attention, Working Memory, and Executive Function. In Neural Plasticity and Cognitive Development: Insights from Children with Perinatal Brain Injury; Oxford University Press: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 2009, 33, 81–88. [Google Scholar] [CrossRef]
- Tanaka, M.; Mizuno, K.; Tajima, S.; Sasabe, T.; Watanabe, Y. Central nervous system fatigue alters autonomic nerve activity. Life Sci. 2009, 84, 235–239. [Google Scholar] [CrossRef]
- Hockey, G.R.J. Compensatory control in the regulation of human performance under stress and high workload: A cognitive-energetical framework. Biol. Psychol. 1997, 45, 73–93. [Google Scholar] [CrossRef]
- Yerkes, R.M.; Dodson, J.D. The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 1908, 18, 459–482. [Google Scholar] [CrossRef]
- Thayer, J.F.; Hansen, A.L.; Saus-Rose, E.; Johnsen, B.H. Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med. 2009, 37, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Vanneste, P.; Raes, A.; Morton, J.; Bombeke, K.; Van Acker, B.B.; Larmuseau, C.; Depaepe, F.; Van den Noortgate, W. Towards measuring cognitive load through multimodal physiological data. Cogn. Technol. Work. 2021, 23, 567–585. [Google Scholar] [CrossRef]
- Fernandez Rojas, R.; Debie, E.; Fidock, J.; Barlow, M.; Kasmarik, K.; Anavatti, S.; Garratt, M.; Abbass, H. Electroencephalographic workload indicators during teleoperation of an unmanned aerial vehicle shepherding a swarm of unmanned ground vehicles in contested environments. Front. Neurosci. 2020, 14, 40. [Google Scholar] [CrossRef]
- Antonenko, P.; Paas, F.; Grabner, R.; Van Gog, T. Using electroencephalography to measure cognitive load. Educ. Psychol. Rev. 2010, 22, 425–438. [Google Scholar] [CrossRef]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Chikhi, S.; Matton, N.; Blanchet, S. EEG power spectral measures of cognitive workload: A meta-analysis. Psychophysiology 2022, 59, e14009. [Google Scholar] [CrossRef]
- So, W.K.Y.; Wong, S.W.H.; Mak, J.N.; Chan, R.H.M. An evaluation of mental workload with frontal EEG. PLoS ONE 2017, 12, e0174949. [Google Scholar] [CrossRef]
- Spitzer, B.; Haegens, S. Beyond the Status Quo: A Role for Beta Oscillations in Endogenous Content (Re)Activation. eNeuro 2017, 4, ENEURO.0170-17.2017. [Google Scholar] [CrossRef]
- Mapelli, I.; Özkurt, T.E. Brain Oscillatory Correlates of Visual Short-Term Memory Errors. Front. Hum. Neurosci. 2019, 13, 33. [Google Scholar] [CrossRef]
- Natalizio, A.; Sieghartsleitner, S.; Schreiner, L.; Walchshofer, M.; Esposito, A.; Scharinger, J.; Pretl, H.; Arpaia, P.; Parvis, M.; Solé-Casals, J.; et al. Real-time estimation of EEG-based engagement in different tasks. J. Neural Eng. 2024, 21, 016014. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Q.; Zhang, L. Study of EEG characteristics while solving scientific problems with different mental effort. Sci. Rep. 2021, 11, 23783. [Google Scholar] [CrossRef] [PubMed]
- Puma, S.; Matton, N.; Paubel, P.V.; Raufaste, É.; El-Yagoubi, R. Using theta and alpha band power to assess cognitive workload in multitasking environments. Int. J. Psychophysiol. 2018, 123, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Hao, S.; Han, Y.; Fang, Y.; Miao, Y. Exploring the effects of different BCI-based attention training games on the brain: A functional near-infrared spectroscopy study. Neurosci. Lett. 2024, 818, 137567. [Google Scholar] [CrossRef] [PubMed]
- Charles, R.L.; Nixon, J. Measuring mental workload using physiological measures: A systematic review. Appl. Ergon. 2019, 74, 221–232. [Google Scholar] [CrossRef]
- Solhjoo, S.; Haigney, M.C.; McBee, E.; van Merrienboer, J.J.; Schuwirth, L.; Artino, A.R.; Battista, A.; Ratcliffe, T.A.; Lee, H.D.; Durning, S.J. Heart rate and heart rate variability correlate with clinical reasoning performance and self-reported measures of cognitive load. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, J.; Wang, Y.; Yu, K.; Arshad, S.Z.; Khawaji, A.; Conway, D. Robust Multimodal Cognitive Load Measurement; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Kramer, A.F. Physiological metrics of mental workload: A review of recent progress. In Multiple Task Performance; CRC Press: Boca Raton, FL, USA, 2020; pp. 279–328. [Google Scholar]
- Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778. [Google Scholar] [CrossRef]
- Cipresso, P.; Giglioli, I.A.C.; Raya, M.A.; Riva, G. The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Front. Psychol. 2018, 9, 2086. [Google Scholar] [CrossRef]
- Armengol-Urpi, A.; Sarma, S.E. Sublime: A hands-free virtual reality menu navigation system using a high-frequency SSVEP-based brain-computer interface. In Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, Tokyo, Japan, 28 November–1 December 2018; pp. 1–8. [Google Scholar]
- Castelvecchi, D. Low-cost headsets boost virtual reality’s lab appeal. Nature 2016, 533, 153–154. [Google Scholar] [CrossRef]
- Strickland, D. Virtual reality for the treatment of autism. In Virtual Reality in Neuro-Psycho-Physiology; IOS Press: Amsterdam, The Netherlands, 1997; pp. 81–86. [Google Scholar]
- Strickland, D.; Hodges, L.; North, M.; Weghorst, S. Overcoming phobias by virtual exposure. Commun. ACM 1997, 40, 34–39. [Google Scholar] [CrossRef]
- Zheng, W.L.; Lu, B.L. A multimodal approach to estimating vigilance using EEG and forehead EOG. J. Neural Eng. 2017, 14, 026017. [Google Scholar] [CrossRef]
- Jones, C.R.; Pickles, A.; Falcaro, M.; Marsden, A.J.; Happé, F.; Scott, S.K.; Sauter, D.; Tregay, J.; Phillips, R.J.; Baird, G.; et al. A multimodal approach to emotion recognition ability in autism spectrum disorders. J. Child Psychol. Psychiatry 2011, 52, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Bernal, G.; Yang, T.; Jain, A.; Maes, P. PhysioHMD: A conformable, modular toolkit for collecting physiological data from head-mounted displays. In Proceedings of the 2018 ACM International Symposium on Wearable Computers, Singapore, 8–12 October 2018; pp. 160–167. [Google Scholar]
- Gupta, K.; Hajika, R.; Pai, Y.S.; Duenser, A.; Lochner, M.; Billinghurst, M. Measuring human trust in a virtual assistant using physiological sensing in virtual reality. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Atlanta, GA, USA, 22–26 March 2020; pp. 756–765. [Google Scholar]
- Zhang, L.; Wade, J.; Bian, D.; Fan, J.; Swanson, A.; Weitlauf, A.; Warren, Z.; Sarkar, N. Cognitive load measurement in a virtual reality-based driving system for autism intervention. IEEE Trans. Affect. Comput. 2017, 8, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Chatburn, A.; Billinghurst, M. Exploration of an EEG-based cognitively adaptive training system in virtual reality. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; pp. 220–226. [Google Scholar]
- Hadjiaros, M.; Neokleous, K.; Shimi, A.; Avraamides, M.N.; Pattichis, C.S. Virtual Reality Cognitive Gaming Based on Brain Computer Interfacing: A Narrative Review. IEEE Access 2023, 11, 18399–18416. [Google Scholar] [CrossRef]
- Bernal, G.; Hidalgo, N.; Russomanno, C.; Maes, P. Galea: A physiological sensing system for behavioral research in Virtual Environments. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Christchurch, New Zealand, 12–16 March 2022; pp. 66–76. [Google Scholar]
- Lab Streaming Layer (LSL). 2020. Available online: https://github.com/sccn/labstreaminglayer (accessed on 1 January 2024).
- Markello, R.; DuPre, E. Physiopy/Peakdet: A Toolbox for Physiological Peak Detection Analyses. 2020. Available online: https://zenodo.org/records/7244954 (accessed on 1 January 2024).
- Munoz, M.L.; van Roon, A.; Riese, H.; Thio, C.; Oostenbroek, E.; Westrik, I.; de Geus, E.J.C.; Gansevoort, R.; Lefrandt, J.; Nolte, I.M.; et al. Validity of (Ultra-)Short Recordings for Heart Rate Variability Measurements. PLoS ONE 2015, 10, e0138921. [Google Scholar] [CrossRef]
- Di Dona, G.; Ronconi, L. Beta oscillations in vision: A (preconscious) neural mechanism for the dorsal visual stream? Front. Psychol. 2023, 14, 1296483. [Google Scholar] [CrossRef]
- Pisella, L. Visual perception is dependent on visuospatial working memory and thus on the posterior parietal cortex. Ann. Phys. Rehabil. Med. 2017, 60, 141–147. [Google Scholar] [CrossRef]
- Agren, T.; Hoppe, J.M.; Singh, L.; Holmes, E.A.; Rosén, J. The neural basis of Tetris gameplay: Implicating the role of visuospatial processing. Curr. Psychol. 2023, 42, 8156–8163. [Google Scholar] [CrossRef]
- Lau-Zhu, A.; Holmes, E.A.; Butterfield, S.; Holmes, J. Selective Association Between Tetris Game Play and Visuospatial Working Memory: A Preliminary Investigation. Appl. Cogn. Psychol. 2017, 31, 438–445. [Google Scholar] [CrossRef]
- Hamann, A.; Carstengerdes, N. Assessing the development of mental fatigue during simulated flights with concurrent EEG-fNIRS measurement. Sci. Rep. 2023, 13, 4738. [Google Scholar] [CrossRef]
- Xie, W.; Richards, J. Cortical Source Localization in EEG Frequency Analysis 2022. In The Oxford Handbook of EEG Frequency; Oxford Academic: Oxford, UK, 2022. [Google Scholar] [CrossRef]
- Avola, D.; Cinque, L.; Mambro, A.D.; Fagioli, A.; Marini, M.R.; Pannone, D.; Fanini, B.; Foresti, G.L. Spatio-Temporal Image-Based Encoded Atlases for EEG Emotion Recognition. Int. J. Neural Syst. 2024, 34, 2450024. [Google Scholar] [CrossRef]
FTP-CAE | FAP-CAE | FBP-CAE | ||||||||||||||
Time of event | −7 | 2 | 3 | 4 | 16 | 35 | 50 | −4 | 4 | 51 | 52 | −4 | −3 | 0 | ||
Estimated Mean | −0.2277 | −0.3511 | −0.5505 | −0.4547 | −0.3108 | −0.246 | −0.3552 | 0.4499 | −0.2924 | −0.2932 | −0.3696 | 0.517 | 0.4408 | 0.3164 | ||
p-value | 0.029 | 0.0108 | 1.4708 × 10−6 | 1.8957 × 10−4 | 0.0379 | 0.0375 | 0.0424 | 0.0332 | 0.0314 | 0.0422 | 0.0031 | 0.0181 | 0.0065 | 0.044 | ||
PTP-CAE | PAP-CAE | |||||||||||||||
Time of event | −7 | 1 | 5 | 6 | 9 | 14 | 16 | 38 | 0 | 1 | 36 | 46 | ||||
Estimated Mean | −0.3068 | −0.3854 | −0.594 | −0.5093 | −0.4159 | −0.3427 | −0.3812 | −0.2841 | −0.3995 | −0.3977 | 0.3977 | 0.4674 | ||||
p-value | 0.0447 | 0.0056 | 3.8388 × 10−4 | 0.0061 | 0.0076 | 0.0465 | 0.0402 | 0.0325 | 0.0157 | 0.0162 | 0.0198 | 0.0496 | ||||
PBP-CAE | PPG-BPM | PPG-RMSSD | ||||||||||||||
Time of event | −3 | −2 | 1 | 2 | 3 | −5 | −1 | 0 | 7 | −2 | 12 | 13 | 14 | 20 | ||
Estimated Mean | 0.4917 | 0.4533 | 0.2963 | 0.4025 | 0.4699 | −0.3912 | −0.5192 | −0.5427 | −0.4698 | 0.5353 | 0.4936 | 0.5047 | 0.5202 | 0.5547 | ||
p-value | 0.0146 | 0.0487 | 0.0203 | 0.0317 | 0.0191 | 0.0221 | 0.0276 | 0.0235 | 0.0232 | 0.025 | 0.0411 | 0.0402 | 0.0476 | 0.0447 |
Coefficient Estimate | p Value | |
---|---|---|
158.12 | 1.7066 × 10−8 | |
−49.843 | 0.0029947 | |
58.048 | 0.0045931 |
Coeff. est. | SE | tstat | p Value | Coeff. est. | SE | tstat | p Value | |
---|---|---|---|---|---|---|---|---|
Q1 | Q 2 | |||||||
1.6765 | 0.25031 | 6.6977 | 9.8599 × 10−7 | 2.5109 | 0.20266 | 12.389 | 2.1483 × 10−11 | |
0.62915 | 0.28374 | 2.2173 | 0.037241 | −0.48211 | 0.22578 | −2.1353 | 0.044115 | |
0.43876 | 0.22425 | 1.9566 | 0.063211 | 0.40724 | 0.20894 | 1.9491 | 0.06415 | |
Q 3 | Q 4 | |||||||
1.6421 | 0.3560 | 4.6124 | 0.000012 | 1.6765 | 0.2503 | 6.6977 | 9.86 × 10−7 | |
−0.7636 | 0.43776 | −1.7461 | 0.0941 | 0.62915 | 0.28374 | 2.2173 | 0.0372 | |
- | - | - | - | 0.43876 | 0.2243 | 1.9566 | 0.0632 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernal, G.; Jung, H.; Yassı, İ.E.; Hidalgo, N.; Alemu, Y.; Barnes-Diana, T.; Maes, P. Unraveling the Dynamics of Mental and Visuospatial Workload in Virtual Reality Environments. Computers 2024, 13, 246. https://doi.org/10.3390/computers13100246
Bernal G, Jung H, Yassı İE, Hidalgo N, Alemu Y, Barnes-Diana T, Maes P. Unraveling the Dynamics of Mental and Visuospatial Workload in Virtual Reality Environments. Computers. 2024; 13(10):246. https://doi.org/10.3390/computers13100246
Chicago/Turabian StyleBernal, Guillermo, Hahrin Jung, İsmail Emir Yassı, Nelson Hidalgo, Yodahe Alemu, Tyler Barnes-Diana, and Pattie Maes. 2024. "Unraveling the Dynamics of Mental and Visuospatial Workload in Virtual Reality Environments" Computers 13, no. 10: 246. https://doi.org/10.3390/computers13100246
APA StyleBernal, G., Jung, H., Yassı, İ. E., Hidalgo, N., Alemu, Y., Barnes-Diana, T., & Maes, P. (2024). Unraveling the Dynamics of Mental and Visuospatial Workload in Virtual Reality Environments. Computers, 13(10), 246. https://doi.org/10.3390/computers13100246