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Abstract: In recent years, the combination of wireless body sensor networks (WBSNs) and the Internet
ofc Medical Things (IoMT) marked a transformative era in healthcare technology. This combina-
tion allowed for the smooth communication between medical devices that enabled the real-time
monitoring of patient’s vital signs and health parameters. However, the increased connectivity also
introduced security challenges, particularly as they related to the presence of attack nodes. This
paper proposed a unique solution, an enhanced random forest classifier with a K-means clustering
(ERF-KMC) algorithm, in response to these challenges. The proposed ERF-KMC algorithm combined
the accuracy of the enhanced random forest classifier for achieving the best execution time (ERF-ABE)
with the clustering capabilities of K-means. This model played a dual role. Initially, the security in
IoMT networks was enhanced through the detection of attack messages using ERF-ABE, followed by
the classification of attack types, specifically distinguishing between man-in-the-middle (MITM) and
distributed denial of service (DDoS) using K-means. This approach facilitated the precise categoriza-
tion of attacks, enabling the ERF-KMC algorithm to employ appropriate methods for blocking these
attack messages effectively. Subsequently, this approach contributed to the improvement of network
performance metrics that significantly deteriorated during the attack, including the packet loss rate
(PLR), end-to-end delay (E2ED), and throughput. This was achieved through the detection of attack
nodes and the subsequent prevention of their entry into the IoMT networks, thereby mitigating poten-
tial disruptions and enhancing the overall network efficiency. This study conducted simulations using
the Python programming language to assess the performance of the ERF-KMC algorithm in the realm
of IoMT, specifically focusing on network performance metrics. In comparison with other algorithms,
the ERF-KMC algorithm demonstrated superior efficacy, showcasing its heightened capability in
terms of optimizing IoMT network performance as compared to other common algorithms in network
security, such as AdaBoost, CatBoost, and random forest. The importance of the ERF-KMC algorithm
lies in its security for IoMT networks, as it provides a high-security approach for identifying and
preventing MITM and DDoS attacks. Furthermore, improving the network performance metrics to
ensure transmitted medical data are accurate and efficient is vital for real-time patient monitoring.
This study takes the next step towards enhancing the reliability and security of IoMT systems and
advancing the future of connected healthcare technologies.

Keywords: Internet of Medical Things; DDoS attacks; MITM attacks; machine learning; prevention;
simulation
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1. Introduction

WBSNs are made up of several small physiological sensor nodes (PSNs) in order to
monitor vital health indicators, including blood pressure, blood-sugar levels, and chronic
diseases; therefore, WBSNs have become a key advancement in the field of healthcare
technology. These PSNs use wearable sensors to gather private information in real-time
that is then painstakingly processed and sent to a central base station (BS) in an open
area. The importance of WBSNs in healthcare applications is the capacity to identify
medical problems at early stages, offering the invaluable opportunity for remote diagnosis.
However, the deployment of a WBSN exposes it to internal and external dangers, leaving
it vulnerable to different types of attacks. The security of the transmitted data is crucial
due to the sensitive nature of the patient information handled by WBSNs. Protecting
the privacy, usability, and integrity of the sensed data in the field of healthcare data
management is a crucial requirement [1]. These types of services have effortlessly adapted
to modern society, as characterized by the eradication of temporal and spatial limitations
as a result of technological improvements. The healthcare industry is a leader in utilizing
these technologies to provide all-around in-the-moment services. Entities such as people,
machines, and various devices are intricately connected inside an information environment.
They transcend geographical boundaries and time restrictions and are encompassed under
the large umbrella of the Internet of Things (IoT).

The IoMT was created as a result of the growth and development of the IoT, which have
transformed the healthcare sector. The IoMT comprise the global interconnection of medical
equipment that enables accessibility at any time and anywhere for everyone. Within this
environment, IoMT-based e-health apps have assumed a leading position in promoting
a global push toward better living. As a result, healthcare services have undergone a
paradigm shift and are now user-centric, accurate, widespread, and personalized, much
like having a private healthcare provider on-call at all times. However, impending problems
loom large and require prompt attention if the full potential of healthcare applications
employing IoMT is to be realized. Particularly, IoMT devices that make up the core of the
IoMT edge networks, including implantable sensors and medical wearables, have been
susceptible to a variety of security risks. Patient privacy and safety have been seriously
threatened by these vulnerabilities, which has necessitated strict mitigation and resolution
techniques [2].

In the realm of security for IoMT networks, various techniques have been explored to
enhance the detection and prevention of attacks. One approach, as outlined by Sami et al. [3],
focused on identifying DDoS assaults by monitoring server usage patterns and setting
specific thresholds based on metrics such as incoming requests, data-transfer velocity,
and CPU utilization. By incorporating the time-to-live (TTL) component, this method
scrutinized incoming requests, considering abnormal TTL values as potential indicators of
malicious entities, particularly botnets. Countermeasures, such as blocking IP addresses
and rate limiting, were activated upon detecting a probable DDoS attack. Another study by
Hady et al. [4] introduced an intrusion detection system (IDS) for e-healthcare, integrating
machine-learning algorithms, like random forest, K-nearest neighbors, support vector
machines, and artificial neural networks, to improve the network security. Addressing false
alarms, Iwendi et al. [5] employed a hybrid approach, combining a genetic algorithm with
random forest in order to minimize false positives in intrusion detection systems. The re-
search by Kamble and Gawade [6] emphasized the use of IoT and cryptographic encryption
to safeguard healthcare automation against denial-of-service (DoS) and MITM attacks. Ad-
ditional studies investigated issues such as adversarial attacks on machine-learning-based
healthcare systems [7,8], the detection of multiple-initiators–multiple-attractors (MIMA)
attacks in wireless sensor networks (WSNs) [9], and the application of deep learning for
DDoS attack detection [10,11]. Additionally, research has explored the development of traf-
fic generation tools [11,12] and secure machine-learning-based disease detection in medical
wireless body sensor networks [13]. The integration of IoT and wireless body sensor net-
works was explored for continuous healthcare monitoring [13], and autonomous security
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systems using edge computing and CNNs were proposed for DDoS detection in IoT [14].
A machine-learning technique combining clustering and graphing structural properties
was introduced in order to anticipate DDoS attacks with industrial IoT devices [15]. These
diverse approaches have collectively contributed to the advancement of cyber-security
in IoMT networks. Allouzi and Khan [16] defined an attack vector for IoMT networks,
employing a mix of a common vulnerability scoring system (CVSS) and Markov chain
analysis to compute the probability distribution of security threats. Aljumaie et al. [17]
conducted a comprehensive analysis of modern IoMT security approaches, emphasizing
privacy, confidentiality, authentication, and detection methods. Si-Ahmed, Al-Garadi,
and Boustia [18] focused on machine-learning-based intrusion-detection systems tailored
to IoMT by analyzing the architecture layers and evaluating solutions. Kumar, Gupta,
and Tripathi [19] proposed an ensemble-learning and fog-cloud-architecture-driven frame-
work, demonstrating high accuracy and detection rates. Binbusayyis et al. [20] investigated
machine-learning approaches for intrusion detection in IoMT networks, using the Bot-IoT
benchmark dataset. Hernandez-Jaimes et al. [21] provided a comprehensive review of
IoMT security, addressing ethical and legal considerations. Faruqui et al. [22] introduced
SafetyMed, a CNN-LSTM-based intrusion-detection system for IoMT devices, showcasing
robust defense. Salem et al. [23] proposed a framework to mitigate man-in-the-middle
attacks in IoMT, ensuring the correct operation of health-monitoring systems. Collectively,
these studies contributed to advancing security in IoMT networks, covering threat detection,
vulnerability analysis, and security solutions.

This study included the following topics. In Section 2, some machine learning algo-
rithms are explained, and Section 3 describes the work of ERF-ABE. In Section 4, the K-
means algorithm is detailed, and in Section 5, the ERF-KMC algorithm is explained. In
Section 6, the overall simulation is described, and in Section 7, the results are shown and
discussed. In Section 8, our conclusion is presented.

2. Machine Learning

Machine-learning algorithms are a set of mathematical ideas and techniques that let
computers learn from their experiences and grow without the need for explicit program-
ming. These algorithms serve as the cornerstone of artificial intelligence (AI) and are
used in a wide range of activities, such as in IoMT network security [24]. For example,
the following are machine-learning algorithms:

• Logistic regression: a statistical method for assessing the associations between several
predictor variables (either continuous or categorical) and a binary result.

• Decision tree (DT): a supervised learning approach for regression and classification
problems. The internal nodes, leaf nodes, branches, and root nodes make up its
hierarchical tree structure.

• Naïve Bayes (NB): a classification method with an independent assumption among
predictors that is based on Bayes’ theorem.

• Stochastic gradient descent (SGD): an iterative technique for maximizing an objective
function with appropriate smoothness qualities.

• K-nearest neighbors (KNN): a non-parametric supervised-learning classifier that em-
ploys closeness to classify or anticipate how a single datum point will be grouped.

• Random forest (RF): a popular machine learning approach that aggregates the output
of several decision trees to produce a single outcome.

• AdaBoost and CatBoost: boosting algorithms that create the final result by combining
many simple models.

3. ERF-ABE for Detecting Attack Nodes

In our previous study [25], we focused on the network security needs for detecting DDoS
and delay attacks, as well as enhancing the efficiency of network integrity and performance.
The study employed various machine-learning algorithms, including logistic regression,
DT, NB, SGD, KNN, and RF. These algorithms utilized data from attack simulations [25].
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The setting parameters were a seed value of 42 and a learning rate of 0.009 at 100 iterations.
The data were divided into 80% training and 20% testing sets. The performance of these
models was evaluated based on accuracy, sensitivity, and execution time. Accuracy measured
the model’s ability to recognize the target class, sensitivity assessed its ability to identify
positive data points, and the execution time was calculated in the testing phase. The research
showed that despite the long execution time of random forest, as compared to other methods
shown in Table 1, the random forest approach outperformed the others in terms of accuracy
and sensitivity, as shown in Tables 2 and 3, respectively. To address the time issue, an ERF-
ABE was proposed in [25]. This improved method utilized a principal component analysis
(PCA) and parameter adjustments to maintain accuracy while speeding up performance.
By fine-tuning settings and implementing PCA, the execution time was reduced by 3.116 s,
as compared to the default random forest classifier while retaining accuracy and sensitivity
at 99%, as shown in Table 4. The study emphasized the significance of parameter selection
and dimensionality-reduction techniques, such as PCA, for enhancing the effectiveness of
machine-learning models for detecting network-node attacks.

Table 1. Comparison of six algorithms in terms of execution time.

Logistic
Regression Decision Tree Naïve Bayes

Stochastic
Gradient
Descent

K-Nearest
Neighbors Random Forest

Execution
time (s) 0.047 0.071 0.088 0.042 28.255 3.795

Table 2. Comparison of six algorithms in terms of accuracy.

Logistic
Regression Decision Tree Naïve Bayes

Stochastic
Gradient
Descent

K-Nearest
Neighbors Random Forest

Accuracy (%) 89.73 98.41 79.98 88.66 99.05 99.13

Table 3. Comparison of six algorithms in terms of sensitivity.

Logistic
Regression Decision Tree Naïve Bayes

Stochastic
Gradient
Descent

K-Nearest
Neighbors Random Forest

Sensitivity (%) 99.70 94.24 98.95 46.41 92.15 99.77

Table 4. Comparison between ERF-ABE and random forest.

Random Forest ERF-ABE

Execution time (s) 3.795 0.679
Accuracy (%) 99.126 99.053
Sensitivity (%) 99.772 99.701

The behavior of a random forest model can be significantly influenced by four impor-
tant hyper-parameters, namely n_estimators, max_features, max_samples, and max_depth.
The number of decision trees in the ensemble is determined by the parameter n_estimators.
The default value of 100 produces a diverse and potent ensemble but can also result in
lengthy training times and longer computational execution times, particularly for large
datasets. ERF-ABE used a more restrained ensemble of the 20 decision trees. This tactical
move greatly lessened the computational load during the training phase, which resulted in
a faster procedure that would be especially helpful with tight deadlines. The number of
features considered at each split was controlled by the parameter max_features. The square-
root of the total number of features was set by max_features by default. This extensive
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search could increase the computational load during the tree-building process and lengthen
the execution time when the feature space was large.

ERF-ABE had been methodically set to a sensible value of 10, which effectively reduced
the training times without sacrificing the detection power by quickly navigating the feature
space and reducing the feature selection at each split. This more efficient feature exploration
increased the speed of tree formation and the entire training process. The number of
samples in the dataset was determined by the parameter max_samples. The default setting
of the parameter max_samples was to use the entire dataset. Using the entire dataset
could increase the computational difficulties and increase the execution time. Therefore,
the max_samples value in ERF-ABE was calibrated to use a representative subset of the
dataset at 80% (max_samples = 0.8). The effectiveness of the training phase was further
increased by this strategy, which ensured that each decision tree would be trained on a
more manageable subset of the data. The depth in each decision tree was controlled by
the parameter max_depth. Trees would grow until the specific termination requirements
were satisfied by default. Unrestrained growth could lead to the development of deep and
intricate trees, which could result in lengthy calculation execution times, slow training,
and slow data detection. The max_depth was set to 25 in ERF-ABE. The deliberate pruning
increased the speed of training and the detection process because shallower trees were
typically easier to navigate.

The ERF-ABE form of the random forest algorithm had been painstakingly honed
in [25] to produce quick model training and short detection execution times. ERF-ABE is a
valuable tool in applications where computational effectiveness and quick execution are
crucial because it frequently fulfills time-sensitive requirements. Figure 1 shows one of the
decision trees for the ERF-ABE model.

Figure 1. The decision tree of ERF−ABE.

In addition to the ERF-ABE evaluation in [25], this study validated the advantages of
ERF-ABE in the field of IoMT network security by comparing ERF-ABE with AdaBoost
and CatBoost, which are boosting algorithms that have proven their ability in the field of
network security. Accuracy and execution time were measured as part of the evaluation
process, as shown in Table 5. After the performance measures had been examined, it was
found that ERF-ABE outperformed the two algorithms with an accuracy rate of 99.053%.
By comparison, the accuracy rates of AdaBoost and CatBoost were marginally lower,
at 92.654% and 98.855%, respectively. The execution time of ERF-ABE was 0.679 s, which
was superior to AdaBoost and CatBoost at 1.533 and 0.851 s, respectively. This indicated
that ERF-ABE was better than AdaBoost and CatBoost in terms of security. ERF-ABE was
adopted in this study for detecting attack nodes.

Table 5. Comparison between ERF-ABE, AdaBoost, and CatBoost.

ERF-ABE AdaBoost CatBoost

Accuracy (%) 99.053 92.654 98.855
Execution time (s) 0.679 1.533 0.851
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ERF-ABE showed an advantage in terms of execution time with a remarkably low
processing time of 0.679 s. Even though AdaBoost and CatBoost had greater execution
times, they nevertheless performed competitively at 1.533 s and 0.851 s, respectively. These
results show that, in this particular analysis, ERF-ABE stood out as a good option because
of its remarkable accuracy and quick execution.

To further evaluate its performance, the ERF-ABE algorithm was evaluated by training
it on another dataset, BoTNeTIoT-L01. The BoTNeTIoT-L01 dataset encompassed data
from IoT devices involved in the detection of DDoS. The dataset was created based on
four extracted features: packet count, jitter, size of outbound packets, and the combined
size of outbound and inbound packets. Statistical measures such as mean, variance, count,
magnitude, radius, covariance, and correlation coefficient were computed for each feature,
generating a total of 23 features. The dataset contained 2,426,574 rows and 25 columns.
The target column was called label and contains two categories: 1 (DDoS) and 0 (normal).
The dataset was pre-processed, and then PCA was applied to reduce the number of features
to 12 before they were divided into two sets: 80% for training and 20% for testing. ERF-ABE
and the previously mentioned algorithms were trained on training data in order to evaluate
all of the algorithms on the testing data. Table 6 shows the comparison of the algorithms
according to accuracy, sensitivity, execution time, and precision.

Table 6. Comparison of the algorithms based on the BoTNeTIoT-L01 dataset.

Logistic
Regression

Decision
Tree

Naïve
Bayes

Stochastic
Gradient
Descent

K-Nearest
Neighbors

Random
Forest AdaBoost CatBoost ERF-ABE

Accuracy (%) 91.357 99.178 88.57 93.142 99.568 99.894 95.891 99.304 99.845
Execution

time (s) 0.105 0.108 0.12 0.09 25.78 2.458 1.547 0.754 0.551
Sensitivity (%) 99.265 95.784 97.87 66.48 93.54 99.359 97.152 99.125 99.282
Precision (%) 99.325 69.45 98.154 88.51 98.48 99.651 98.654 99.452 99.564

4. K-Means Clustering Algorithm for Classifying Attack Type

The K-means algorithm is a widely used, unsupervised, machine-learning clustering
algorithm that is known for its effectiveness and simplicity. It divides a dataset into K-
clusters, with “K” being a user-defined or random value. The process involves iteratively
assigning data points to the closest centroid, then initializing and updating the centroids
until convergence has occurred or a specified number of iterations had been reached.
The algorithm’s efficiency, especially for large datasets, is a notable advantage. K-means is
suitable for situations with roughly spherical clusters of comparable sizes, and it is favored
in exploratory data analysis for its simplicity.

K-means can identify and discover hidden patterns in a dataset. The algorithm
recognizes the structure and organization of data by default because of its centroid update
mechanism and iterative assignment. K-means efficiently identifies inherent patterns by
clustering data points according to how close they are to the centroids. This allows for
the visualization of differences and similarities in the dataset. K-means is a useful tool for
exploratory data analysis because of its capacity for pattern recognition. It may be used
to group together similar data points and enable a more thorough comprehension of the
underlying structure of the available data.

5. ERF-KMC Algorithm

Designing an algorithm to achieve high security in IoMT networks is a major challenge.
The ERF-KMC algorithm combined the ERF-ABE algorithm to detect attacking nodes and
the K-means algorithm to classify the attacking nodes as MITM or DDoS attacks. Moreover,
the ERF-KMC algorithm effectively provided high security in IoMT networks by detecting,
classifying, and preventing node attacks. Figure 2 shows the workflow of the ERF-KMC
algorithm. Firstly, the server received messages from the nodes and performed specific
operations, as follows:
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1. The server collects the message’s crucial features, like duration, FlowBytesSent, FlowSen-
tRate, FlowBytesReceived, FlowReceivedRate, etc., with a total of 27 features.

2. PCA is performed to reduce 27 features to 12.
3. The ERF-ABE algorithm determines whether the message represents an attack.
4. If the ERF-ABE detection indicates that the message is normal, the message is permit-

ted into the server processes.
5. If ERF-ABE detects an attack, the message information and the node’s IP are stored in

the ERF-KMC memory.
6. K-means then identifies the attack type, distinguishing between DDoS and MITM attacks.
7. Based on the attack type, the ERF-KMC algorithm prevents messages by blocking the

node’s IP, in the case of MITM attacks, or limits the broadcasting for DDoS attacks by
sending the node’s IP to the cloud.

8. The ERF-KMC algorithm prevents future messages from attack nodes by comparing
the node’s IP to the IP addresses of attacking nodes stored by the ERF-KMC algorithm,
thereby effectively preventing any more intrusion attempts.

Figure 2. The workflow of the ERF−KMC algorithm.

The ERF-ABE algorithm was trained and evaluated for use in ERF-KMC and was able
to accurately detect the attack. ERF-ABE constituted a key component of the ERF-KMC
algorithm because attack detection is the basis for achieving IoMT network security. K-
means clustering assumed a central role in the functioning of the ERF-KMC algorithm,
especially considering its specialized training on the same dataset employed by ERF-ABE.
During this training, K-means exclusively processed samples associated with confirmed
attacks, sharpening its capacity to differentiate between the intricate patterns characterizing
DDoS and MITM attacks. Focused on this selective dataset, K-means refined its ability
to group incoming messages into distinct clusters based on the learned attack patterns.
Its prowess in identifying similarities and anomalies in the data effectively aided ERF-
KMC by categorizing network traffic into clusters that indicated malicious behavior linked
to either a DDoS or MITM attack. The resulting clustering information became critical
input for the ERF-KMC algorithm, enabling it to make well-informed decisions in order
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to prevent potentially harmful messages from compromising the server. The synergistic
interplay of K-means clustering and ERF-ABE within the ERF-KMC algorithm significantly
heightened the accuracy and the efficiency of attack detection and prevention in IoMT
networks, thereby enhancing the overall security of the system.

Detecting the attack using ERF-ABE and then determining the type of attack using
the K-means algorithm constituted the working approach of the ERF-KMC algorithm.
The ERF-KMC algorithm was able to prevent attacks through the combination of ERF-ABE
for attack detection and K-means for identifying the attack type.

6. Simulation Approach

A thorough and complex technique was developed to improve the security and
functionality of IoMT. Three key network performance characteristics comprised the com-
plex interplay that supported this methodology, which were throughput, PLR, and E2ED.
Each parameter became of paramount significance when assessing the resilience and the
effectiveness of IoMT in the presence of disruptive factors. The experimental basis of
this methodology was based on the introduction of attack nodes into the IoMT network,
where a dynamic and changing environment was reproduced that could mimic real-world
conditions, enabling a thorough assessment of how attacks would affect the network per-
formance. This research expanded its scope to address the vulnerabilities introduced by
DDoS and MITM attacks in IoMT. The next sections of this paper provide significant details
concerning how traffic was generated, how the experiments were designed, and how the
machine-learning models were combined. The ERF-KMC algorithm provided a better
understanding of the crucial role that machine-learning techniques play in protecting IoMT
networks from external threats. The real-time simulation using Python version 3.11.4
enabled us to evaluate the practical effects of the ERF-KMC algorithm on throughput, PLR,
and E2ED.

Nodes, routers, servers, cloud components, and IoMT components were used in the
simulated IoMT network. The study investigated three different scenarios with 25, 50,
and 100 nodes. Each scenario was a mixture of normal and attack nodes in order to evaluate
the ERF-KMC algorithm.

6.1. Simulation Components

In our previous study [26], we used OMNET++ 4.3 as the simulation software and
the Neta 1.1 framework, in addition to the INET 3.3 framework. This simulation was
carried out to evaluate the effectiveness of DDoS and delay attacks on WBSNs. The system
received 100 nodes, and those nodes shared the message among themselves during a
300-second simulation. Then, two, four, six, and then eight attack nodes were introduced
to the system to investigate the impact of attacker tactics. As a strategy, attackers either
dropped or delayed the data that were being transmitted. A transmission control protocol
(TCP) was selected to broadcast the packets using several sources (Nodes [1...99]), where
only Node [0] could receive data. The results in [26] confirmed that increasing the number
of attack nodes led to an increase in throughput, PLR, and E2ED, and this harmed the
operation of WBSNs. It was a challenging, yet crucial, undertaking to create a simulation
for an IoMT network that could simulate the dynamics of actual healthcare systems in their
complexity and variety while paying close attention to every detail.

The foundation for frictionless communication between the nodes and the server in-
volved the use of a TCP, which is a robust and widely used protocol. Interconnected devices
on a network can transmit information reliably and systematically via TCP. The experimental
network was organized around nodes that were divided into two primary types: attack nodes
and normal nodes. These nodes were thoughtfully dispersed across five different geographic
regions to reflect the regional diversity frequently found in healthcare environments. Each
region had a specific base station that acted as a key communication hub. The data and
messages produced by the nodes within each region were collected by these base stations.
The geographical distribution of the base stations reproduced the decentralization observed
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in many IoMT networks, thereby ensuring the effective collection of information and trans-
mission while catering to the unique needs of every region. Two central routers received the
data gathered by the base stations. These routers were essential for receiving and transferring
data, as well as for maintaining the network’s redundancy and dependability.

In IoMT networks, this redundancy was essential to provide ongoing connectivity
despite network outages and attacks. In the proposed network simulation, as shown in
Figure 3, the data were transmitted to a cloud server by the routers once they had received it
from the base stations. The cloud replicated the cloud-based technology that was frequently
employed in IoMT networks. The real-time access and analysis of the gathered data were
made feasible by the centralized data storage and management. The data were then sent
from the cloud server to a separate analytical server. The incoming data could be processed
in the server using the ERF-KMC algorithm to detect attack nodes in order to assist in
healthcare decision making, diagnosis, and patient care.

Figure 3. Network simulation.

This thorough and accurate simulation offered a useful platform for researchers, prac-
titioners, and developers to evaluate and improve the performance, security, and scalability
of IoMT networks. In addition, it improved the dependability and safety of healthcare
services while assisting stakeholders in understanding and addressing the opportunities
and difficulties prevalent in real-world IoMT situations. In Table 7, the network parameters
are presented.

Table 7. Network parameters.

Parameter Value

Network simulator Python version 3.11.4
Network area 2000 m × 2000 m

Network components Five base stations, two routers, cloud, server
Simulation time 300 s

Number of nodes 25, 50, 100 nodes
Number of attacks 20% of total nodes

Packet size 512 B
Node mobility Random

Transmission protocol TCP protocol
Attack types DDoS and MITM

Machine learning ERF-KMC
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6.2. Simulation Experiments

A comprehensive analysis of an IoMT network using ERF-KMC in its server was
conducted. The analysis included three scenarios based on the number of nodes in the
network: 25, 50, and 100. A balanced distributed approach was followed to simulate a
real IoMT network environment. In particular, 20% of the nodes were designated as attack
nodes while the remaining 80% performed as normal nodes. These nodes were evenly
dispersed across several regions to maintain geographic variety. Each region consisted
of a mixture of normal and attack nodes to imitate the diverse character of real-world
IoMT networks. Normal nodes were simulated to send messages by standard patterns that
reflected typical data-transfer properties in medical environments.

The attack nodes were more assertive and persistent, simulating the increased activity
signaling prospective security risks. The network became more complicated due to this
dichotomy in node behavior, enabling the evaluation of how these various behaviors could
affect network performance. The server was at the center of the scenario and acted as
the main hub for message reception and analysis. The server received messages from
both normal and attack nodes, without identifying the source. Every message in the
simulation contained all the necessary data, including metadata and its IP address. A deeper
comprehension of the communication origins and content was made possible by this
extensive data in order to assess security and performance indicators. The server carried out
specific operations once the message had arrived. The operations involved the calculation
of critical features, including (duration, FlowBytesSent, FlowSentRate, FlowBytesReceived,
FlowReceivedRate, etc.).

These features were fundamental to identifying the intent of the messages and whether
they were sent by attack or normal nodes. The server had a predetermined amount of
storage, and incoming messages were regarded as lost if this limit was reached, thereby
simulating the typical limitations on servers in the real world. This restriction emphasized
how important effective data management is in IoMT networks. The network performance
metrics were carefully tracked after each simulation, including E2ED, PLR, and throughput.

The distinctive features of the server, augmented with the ERF-KMC algorithm, were
related to its unique strategy that enhanced network security and streamlined the execution
time. Figure 4 shows the work of the ERF-KMC algorithm by flowchart diagram. The server
configuration combined the ERF-ABE and K-means algorithms to strengthen the defenses
against attack nodes. Firstly, the server received the messages and then extracted 27 features.
After that, PCA was performed to reduce the 27 features to 12. Then, the ERF-ABE algorithm
employed its accurate detection capability to determine whether the message represented
an attack. The message was only permitted into the server for processing if ERF-ABE’s
detection matched the message’s actual content.

If ERF-ABE detected an attack, the message information and the node’s IP were
stored in the ERF-KMC memory. K-means then identified the attack type, distinguishing
between DDoS and MITM. Then, the ERF-KMC algorithm would prevent future messages
by blocking the node’s IP, in case of an MITM attack, or limiting broadcasting, in the case
of a DDoS attack, by sending the node’s IP to the cloud.

The ERF-KMC algorithm could prevent messages from MITM attack nodes from
entering the server by comparing the IP address against those that had already been stored
in memory by the ERF-KMC algorithm.

DDoS attack nodes send a high volume of messages over a short period of time,
overwhelming servers, which could cause errors in ERF-KMC’s attack detection. By sending
the IP address of the DDoS attack nodes to the cloud, it prevented messages from entering
the server, and one could compare the IP address coming from ERF-KMC with messages
coming from the DDoS attack nodes. Therefore, the ERF-KMC algorithm could effectively
prevent additional intrusion attempts.
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Figure 4. Flowchart of ERF−KMC.

7. Results and Discussion

In the IoMT network, the evaluation of the network performance was crucial for
ensuring the efficient and reliable transfer of data. This study focused on the end-to-
end delay, packet loss rate, and throughput, and the number of attacking nodes greatly
affected these metrics, which had been confirmed in [26]. Therefore, these metrics were
important for evaluating the ERF-KMC algorithm. The results in this section were based
on comparisons of the ERF-KMC algorithm with other algorithms, such as AdaBoost,
CatBoost, and random forest algorithms, which are commonly used in network security.

7.1. Performance Evaluation and Security Analysis of Wireless Body

The evaluation of network performance is crucial in the dynamic environment of com-
puter networks. Both end-users and network administrators must have access to network
performance indicators because they offer important information about the effectiveness
and dependability of the data transfer. Three important network performance metrics stand
out among the rest: throughput, PLR, and E2ED.

• Throughput: The amount of data that can be sent from one node to another within
a given period. Data packets per time slot, data packets per second, and bits per
second are the most common units of measurement. Several variables have an im-
pact on the throughput of a network, such as a network’s node count, traffic load,
and communication-channel bandwidth.

• Packet loss rate (PLR): A measurement of the proportion of data packets that are
missed or lost during transmission. It is frequently stated as a percentage. The effec-
tiveness of the communication channel, the volume of traffic on the network, and the
routing algorithm all have an impact on the PLR.

• End-to-end delay (E2ED): The total amount of time a packet takes to travel from the
time it is created by a source node to the time it is received by a destination node.
Usually, it is expressed in seconds (s). The distance between the source and destination
nodes, the number of hops in the path, and the amount of network traffic all have an
impact on the E2ED.
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7.2. Comparative Analysis of End-to-End Delay

The investigation into end-to-end delay within diverse network configurations yielded sig-
nificant insights, particularly when considering the results presented in Figure 5. The ERF-KMC
algorithm consistently exhibited superior performance in all evaluations, with remarkably
low delays of 0.753, 0.753, and 0.774 s for 25, 50, and 100 nodes, respectively. This pattern
underscored the algorithm’s robustness, as it could maintain minimal delays regardless of
the network scale.

Conversely, AdaBoost revealed a notable increase in the end-to-end delay, as com-
pared to the ERF-KMC algorithm, with values of 2.041, 1.624, and 1.459 s for 25, 50, and
100 nodes, respectively. This trend suggested the potential sensitivity of AdaBoost to
network size variations.

In contrast, the rest of the algorithms were stable despite network size variations,
but ERF-KMC’s results were superior when compared to CatBoost, which had delays of
1.299, 1.129, and 1.178 s; random forest with delays of 1.34, 1.182, and 1.19; and K-nearest
neighbors with delays of 0.944, 1.154, and 1.354 s, for 25, 50, and 100 nodes, respectively.

The proposed model continuously outperformed the other algorithms across all the
simulations of varied node densities. ERF-KMC’s ability to detect and prevent the attack
nodes resulted in faster and more efficient data transmission and processing.

Figure 5. End-to-end delay in scenarios with 25, 50, and 100 nodes.

7.3. Comparative Analysis of Packet Loss Rate

The investigation into the packet loss rate across varying network scales, as shown
by the results presented in Figure 6, offered insightful perspectives on the performance
of the machine-learning algorithms. The ERF-KMC algorithm emerged as particularly
robust, exhibiting consistently low packet loss rates of 0.046, 0.023, and 0.138 for 25, 50,
and 100 nodes, respectively. This indicated a robust ability to maintain data integrity
across diverse network configurations. Conversely, AdaBoost demonstrated a significant
variability in packet loss rates, with values of 0.394, 0.135, and 0.151 for 25, 50, and 100 nodes,
respectively, suggesting its potential sensitivity to the network scale.

The ERF-KMC algorithm outperformed the other algorithms, as CatBoost had a PLR
of 0.527, 0.459, and 0.504 for 25, 50, and 100 nodes, respectively, while random forest had a
PLR of 0.526, 0.509, and 0.515 for 25, 50, and 100 nodes, respectively. K-nearest neighbors
had a PLR of 0.389, 0.548, and 0.356 for 25, 50, and 100 nodes, respectively.

The consistent reduction in PLRs across all the simulations with various node densities
was based on the significant enhancements introduced by the ERF-KMC algorithm for the
detection and prevention of attack node messaging.
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Figure 6. Packet loss rate in the case of 25, 50, and 100 nodes.

7.4. Comparative Analysis of Throughput

The examination of throughput, as shown in Figure 7, offered valuable insights into
the efficacy of machine-learning algorithms across diverse network scales. The ERF-KMC
algorithm demonstrated consistent and competitive throughput values, with rates of 4.536,
9.041, and 15.96 for 25, 50, and 100 nodes, respectively.

AdaBoost had throughput values of 4.665, 9.562, and 16.054 for 25, 50, and 100 nodes,
respectively. The CatBoost had throughput values of 4.835, 9.832, and 16.152; the random forest
algorithm had throughput values of 4.902, 10.152, and 16.088; and K-nearest neighbors had
throughput values of 4.761, 9.945, and 16.164, for 25, 50, and 100 nodes, respectively.

These results demonstrated that the ERF-KMC algorithm outperformed the other algo-
rithms, even at different node densities. The ERF-KMC algorithm improved the network
throughput due to the accuracy and efficiency of its attack detection and prevention processes.

Figure 7. Throughput in case of 25, 50, and 100 nodes.

7.5. The Significance of Systematic Data Management and Comprehensive
Documentation Practices

Saving information is necessary for robust analysis and system evaluation. The ERF-
KMC algorithm carefully documented crucial information in an Excel spreadsheet for
further study and reference. This information included a full list of message attributes.
These attributes contained the time of the message arrival to the server (Time), the identifi-
cation of the node that sent the message (Node_ID), the IP address (IP_Address), and the
features (FlowBytesSent, FlowSentRate, etc.). In addition, the ERF-ABE algorithm’s detec-
tion (flag) indicated whether the message was considered an attack (flag = 1) or normal
(flag = 0). When the flag was equal to one, the server added an extra entry that specified
the type of attack, DDoS or MITM, according to the K-means algorithm.

This detailed record permitted a thorough post-analysis and provided a structured
information-keeping system. Security administrators could perform more research and gain
important insights by reviewing the stored data in the Excel spreadsheet, which ensured the
continued improvement of the ERF-KMC algorithm and could advance network security
in IoMT situations. Additionally, this data-storage strategy was a useful resource for
upcoming research projects that require a deeper understanding of online threats in order
to enhance IoMT networks’ robustness to dynamic security threats. Table 8 shows the Excel
spreadsheet and the information it recorded.
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Table 8. Excel spreadsheet information.

Time Node_ID IP_Address Flow- Flow- . . . Flag TypeBytesSent SentRate

2.95939 90 192.168.1.92 9132 356.45742 . . . 1 MITM
2.99429 93 192.168.1.95 1579 85.150962 . . . 1 MITM
1.47790 14 192.168.1.16 110 2.4418721 . . . 0
3.02530 81 192.168.1.83 1153 260.62075 . . . 1 MITM
3.03020 82 192.168.1.84 166736 1382.3347 . . . 1 DDoS
3.03320 97 192.168.1.99 52721 439.27005 . . . 1 DDoS
6.98640 60 192.168.1.62 342 5.7868757 . . . 0

7.6. Discussion

This study investigated the performance of machine-learning algorithms for opti-
mizing network efficiency and security within IoMT networks by examining E2ED, PLR,
and throughput, across diverse network scales. The analysis revealed that the ERF-KMC al-
gorithm consistently outperformed the other algorithms with shorter E2E delays and lower
PLRs while demonstrating competitive throughput values. Notably, ERF-KMC’s ability to
detect and prevent attack nodes contributed to its superior performance. The meticulous
documentation of message attributes in an Excel spreadsheet supported the post-analysis
and system evaluation, providing valuable insights for security administrators. This struc-
tured information-keeping system is crucial for advancing the IoMT network security and
contributes to a deeper understanding of evolving online threats. The presented findings
underscored the efficacy of the ERF-KMC algorithm for enhancing both the network per-
formance and security in IoMT environments, and it is a practical resource for ongoing
research and improving proactive security measures.

8. Conclusions

In conclusion, the ERF-KMC algorithm represents a groundbreaking solution to the
escalating security challenges in IoMT networks, which have ushered in a transforma-
tive era in healthcare technology. The integration of WBSNs and the IoMT has enabled
real-time monitoring and communication among medical devices. By harnessing the
clustering capabilities of K-means and the detection accuracy of ERF-ABE, the ERF-KMC
algorithm uniquely identified and categorized attack nodes to prevent MITM and DDoS
attacks. Future research will explore expanding its applicability for a broader spectrum
of security threats. Additionally, it is recommended to augment the ERF-KMC algorithm
with deep-learning techniques, so it can adapt to complex and dynamic attack patterns,
further fortifying its robustness. This research significantly enhanced the IoMT network
security, ensuring the accurate and swift transmission of medical data for real-time patient
monitoring. The model’s proficiency in detecting and preventing attack nodes averted
unauthorized access attempts, safeguarding patient privacy and maintaining the healthcare
data integrity. The simulation results confirmed ERF-KMC’s effectiveness when compared
with other algorithms. The ERF-KMC algorithm marks a substantial stride toward the
enhanced development of interconnected healthcare technologies and promises heightened
effectiveness in security, precision, and patient safety.
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Abbreviations

ERF-KMC Enhanced Random Forest Classifier with K-Means Clustering
ERF-ABE Enhanced Random Forest classifier for Achieving the Best Execution Time
WBSNs Wireless Body Sensor Networks
IoMT Internet of Medical Things
MITM Man-in-the-Middle
PLR Packet Loss Rate
E2ED End-to-End Delay
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