Polo-like Kinase 1 Inhibitors Demonstrate In Vitro and In Vivo Efficacy in Preclinical Models of Small Cell Lung Cancer
<p>Assessment of in vitro antiproliferative activity of targeted agents in a panel of SCLC cell lines (<b>a</b>); effect of volasertib (<b>b</b>) and onvansertib (<b>c</b>) on proliferation of SCLC cell lines. Cells were treated for 72 h with indicated agents. Cell proliferation was determined using colorimetric or luminescent assays depending on the degree of clustering of SCLC cell lines in culture. Values represent the mean ± S.D. from a minimum of 3 independent experiments. Blue and orange curves define cell lines with non-disruptive and disruptive p53 mutations, respectively. Basal protein expression in SCLC cell lines (<b>d</b>). SCLC subtype based on expression are indicated after each cell line: ASCL1 (A), POU2F3 (P), YAP1 (Y).</p> "> Figure 2
<p>In vivo efficacy of PLK1 inhibitors in SCLC. Mice bearing H526 xenografts were i.p. administered volasertib (20 mg/kg), irinotecan (25 mg/kg), or cisplatin (3 mg/kg) weekly. Tumor volumes represent the mean ± SEM from groups of 6 mice. *** <span class="html-italic">p</span> ≤ 0.001.</p> "> Figure 3
<p>Antitumor efficacy of PLK1 inhibitors in SCLC PDXs. Mice bearing platinum-resistant PDXs TKO-002 and TKO-008 (<b>a</b>,<b>b</b>) and platinum-sensitive PDXs TKO-005 and TKO-010 (<b>c</b>,<b>d</b>) were administered cisplatin (3 mg/kg; i.p. weekly), rigosertib (250 mg/kg; i.p. daily), and onvansertib (60 mg/kg; oral × 10 days, 4 days off). Tumor volumes represent the mean ± S.D. from groups of 6 mice per group. *: significant and ns: not significant versus control group. * <span class="html-italic">p</span> ≤ 0.05, ** <span class="html-italic">p</span> ≤ 0.01.</p> "> Figure 4
<p>Correlative analysis between <span class="html-italic">TP53</span>, <span class="html-italic">PLK1</span>, and <span class="html-italic">MYC</span> expression (NCBI public database Gene Expression Omnibus GSE55830 [<a href="#B30-cancers-17-00446" class="html-bibr">30</a>]) and cell line sensitivity to PLK1 inhibition (<b>a</b>); YAP1 expression in SCLC-Y cell lines versus other subtypes (<b>b</b>); volcano plot of differentially expressed genes between SCLC-Y and not SCLC-Y cell lines (<b>c</b>); analysis of therapeutic vulnerability based on differential sensitivity of YAP1-positive cell lines showing PLK1 inhibitor as a potential candidate (<b>d</b>); Reactome analysis of active cellular function based on DEG between SCLC-Y and not SCLC-Y lines identified major differences in immune regulation and muscle contraction (<b>e</b>); KEGG analysis of differentially activated signaling pathways between the 2 groups (<b>f</b>).</p> "> Figure 5
<p>Effect of <span class="html-italic">TP53</span> mutational status on PLK1 inhibitor sensitivity. Comparison of mean IC<sub>50</sub> to <span class="html-italic">TP53</span> gene mutation status (<b>a</b>). <span class="html-italic">TP53</span> gene status in 166 tumor samples in cbioportal.org (<b>b</b>) and 50 SCLC cell lines from publicly available CCLE data (<b>c</b>). Activity of PLK1 inhibitor onvansertib in parental and resistant H526 cells (IC<sub>50</sub> concentration in the resistant vs. parent: 447 nM vs. 51 nM) (<b>d</b>). Gene expression profiles of matched parental and PLK1 inhibitor resistant H526 cells from 3 separate samples (<b>e</b>). Heatmap shows the top differential gene expression (<span class="html-italic">p</span>-adj < 0.5; logFC > 4 cut-off) with red indicating high and blue indicating low natural log-transformed expression.</p> ">
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Cell Lines and PDX Models
2.3. In Vitro Cytotoxicity
2.4. Western Blot Analysis
2.5. In Vivo Tumor Growth Inhibition
2.6. Whole-Transcriptome Profiling and Pathway Analysis
2.7. Onvansertib-Resistant Cells
2.8. Statistical Analysis
3. Results
3.1. Low-Throughput Screening for Targeted Agents in SCLC
3.2. In Vivo Activity of PLK1 Inhibitor Efficacy
3.3. Transcriptomic Analysis to Predict PLK1 Activity in SCLC
3.4. TP53 Gene Mutation and PLK1 Inhibitor Efficacy
3.5. Differentially Expressed Genes Associated with PLK1 Inhibitor Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Dvorkin, M.; Chen, Y.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M.J.; Ozguroglu, M.; Ji, J.H.; et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): A randomised, controlled, open-label, phase 3 trial. Lancet 2019, 394, 1929–1939. [Google Scholar] [CrossRef] [PubMed]
- Horn, L.; Mansfield, A.S.; Szczesna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.; Nishio, M.; et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Behera, M.; Ragin, C.; Kim, S.; Pillai, R.N.; Chen, Z.; Steuer, C.E.; Saba, N.F.; Belani, C.P.; Khuri, F.R.; Ramalingam, S.S.; et al. Trends, predictors, and impact of systemic chemotherapy in small cell lung cancer patients between 1985 and 2005. Cancer 2015, 122, 50–60. [Google Scholar] [CrossRef]
- Pillai, R.N.; Owonikoko, T.K. Small cell lung cancer: Therapies and targets. Semin. Oncol. 2014, 41, 133–142. [Google Scholar] [CrossRef]
- Schiller, J.H.; Adak, S.; Cella, D.; DeVore, R.F., III; Johnson, D.H. Topotecan versus observation after cisplatin plus etoposide in extensive-stage small-cell lung cancer: E7593—A phase III trial of the Eastern Cooperative Oncology Group. J. Clin. Oncol. 2001, 19, 2114–2122. [Google Scholar] [CrossRef]
- Schiller, J.H.; Kim, K.; Hutson, P.; DeVore, R.; Glick, J.; Stewart, J.; Johnson, D. Phase II study of topotecan in patients with extensive-stage small-cell carcinoma of the lung: An Eastern Cooperative Oncology Group Trial. J. Clin. Oncol. 1996, 14, 2345–2352. [Google Scholar] [CrossRef]
- von Pawel, J.; Jotte, R.; Spigel, D.R.; O’Brien, M.E.; Socinski, M.A.; Mezger, J.; Steins, M.; Bosquee, L.; Bubis, J.; Nackaerts, K.; et al. Randomized phase III trial of amrubicin versus topotecan as second-line treatment for patients with small-cell lung cancer. J. Clin. Oncol. 2014, 32, 4012–4019. [Google Scholar] [CrossRef]
- von Pawel, J.; Schiller, J.H.; Shepherd, F.A.; Fields, S.Z.; Kleisbauer, J.P.; Chrysson, N.G.; Stewart, D.J.; Clark, P.I.; Palmer, M.C.; Depierre, A.; et al. Topotecan versus cyclophosphamide, doxorubicin, and vincristine for the treatment of recurrent small-cell lung cancer. J. Clin. Oncol. 1999, 17, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Evans, T.L.; Cho, B.C.; Udud, K.; Fischer, J.R.; Shepherd, F.A.; Martinez, P.; Ramlau, R.; Syrigos, K.N.; Shen, L.; Chadjaa, M.; et al. Cabazitaxel Versus Topotecan in Patients with Small-Cell Lung Cancer with Progressive Disease During or After First-Line Platinum-Based Chemotherapy. J. Thorac. Oncol. 2015, 10, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.T.; Kim, D.W.; Nakagawa, K.; Seto, T.; Crino, L.; Ahn, M.J.; De Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F.; et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 2013, 368, 2385–2394. [Google Scholar] [CrossRef]
- Shaw, A.T.; Mehra, R.; Kim, D.-W.; Felip, E.; Chow, L.Q.M.; Camidge, D.R.; Tan, D.S.-W.; Vansteenkiste, J.F.; Sharma, S.; de Pas, T.; et al. Clinical activity of the ALK inhibitor LDK378 in advanced, ALK-positive NSCLC. J. Clin. Oncol. 2013, 31 (Suppl. 15), 8010. [Google Scholar] [CrossRef]
- Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009, 361, 947–957. [Google Scholar] [CrossRef]
- Kris, M.G.; Johnson, B.E.; Berry, L.D.; Kwiatkowski, D.J.; Iafrate, A.J.; Wistuba, I.I.; Varella-Garcia, M.; Franklin, W.A.; Aronson, S.L.; Su, P.F.; et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 2014, 311, 1998–2006. [Google Scholar] [CrossRef]
- Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N. Engl. J. Med. 2020, 383, 640–649. [Google Scholar] [CrossRef]
- Rudin, C.M.; Durinck, S.; Stawiski, E.W.; Poirier, J.T.; Modrusan, Z.; Shames, D.S.; Bergbower, E.A.; Guan, Y.; Shin, J.; Guillory, J.; et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat. Genet. 2012, 44, 1111–1116. [Google Scholar] [CrossRef]
- Iwakawa, R.; Takenaka, M.; Kohno, T.; Shimada, Y.; Totoki, Y.; Shibata, T.; Tsuta, K.; Nishikawa, R.; Noguchi, M.; Sato-Otsubo, A.; et al. Genome-wide identification of genes with amplification and/or fusion in small cell lung cancer. Genes Chromosomes Cancer 2013, 52, 802–816. [Google Scholar] [CrossRef]
- George, J.; Lim, J.S.; Jang, S.J.; Cun, Y.; Ozretic, L.; Kong, G.; Leenders, F.; Lu, X.; Fernandez-Cuesta, L.; Bosco, G.; et al. Comprehensive genomic profiles of small cell lung cancer. Nature 2015, 524, 47–53. [Google Scholar] [CrossRef]
- Peifer, M.; Fernandez-Cuesta, L.; Sos, M.L.; George, J.; Seidel, D.; Kasper, L.H.; Plenker, D.; Leenders, F.; Sun, R.; Zander, T.; et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat. Genet. 2012, 44, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Zitouni, S.; Nabais, C.; Jana, S.C.; Guerrero, A.; Bettencourt-Dias, M. Polo-like kinases: Structural variations lead to multiple functions. Nat. Rev. Mol. Cell Biol. 2014, 15, 433–452. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Park, J.E.; Kang, Y.H.; Kim, T.S.; Bang, J.K. Mechanisms underlying Plk1 polo-box domain-mediated biological processes and their physiological significance. Mol. Cells 2014, 37, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Cholewa, B.D.; Liu, X.; Ahmad, N. The role of polo-like kinase 1 in carcinogenesis: Cause or consequence? Cancer Res. 2013, 73, 6848–6855. [Google Scholar] [CrossRef]
- Clay, F.J.; McEwen, S.J.; Bertoncello, I.; Wilks, A.F.; Dunn, A.R. Identification and cloning of a protein kinase-encoding mouse gene, Plk, related to the polo gene of Drosophila. Proc. Natl. Acad. Sci. USA 1993, 90, 4882–4886. [Google Scholar] [CrossRef]
- Lee, K.S.; Grenfell, T.Z.; Yarm, F.R.; Erikson, R.L. Mutation of the polo-box disrupts localization and mitotic functions of the mammalian polo kinase Plk. Proc. Natl. Acad. Sci. USA 1998, 95, 9301–9306. [Google Scholar] [CrossRef]
- Strebhardt, K. Multifaceted polo-like kinases: Drug targets and antitargets for cancer therapy. Nat. Rev. Drug Discov. 2010, 9, 643–660. [Google Scholar] [CrossRef]
- Strebhardt, K.; Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nat. Rev. Cancer 2006, 6, 321–330. [Google Scholar] [CrossRef]
- Schoffski, P. Polo-like kinase (PLK) inhibitors in preclinical and early clinical development in oncology. Oncologist 2009, 14, 559–570. [Google Scholar] [CrossRef]
- Owonikoko, T.K.; Zhang, G.; Deng, X.; Rossi, M.R.; Switchenko, J.M.; Doho, G.H.; Chen, Z.; Kim, S.; Strychor, S.; Christner, S.M.; et al. Poly (ADP) ribose polymerase enzyme inhibitor, veliparib, potentiates chemotherapy and radiation in vitro and in vivo in small cell lung cancer. Cancer Med. 2014, 3, 1579–1594. [Google Scholar] [CrossRef]
- Owonikoko, T.K.; Zhang, G.; Kim, H.S.; Stinson, R.M.; Bechara, R.; Zhang, C.; Chen, Z.; Saba, N.F.; Pakkala, S.; Pillai, R.; et al. Patient-derived xenografts faithfully replicated clinical outcome in a phase II co-clinical trial of arsenic trioxide in relapsed small cell lung cancer. J. Transl. Med. 2016, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, H.; Zhou, Z.; Parise, R.A.; Chu, E.; Schmitz, J.C. Herbal formula Huang Qin Ge Gen Tang enhances 5-fluorouracil antitumor activity through modulation of the E2F1/TS pathway. Cell Commun. Signal 2018, 16, 7. [Google Scholar] [CrossRef] [PubMed]
- Tsherniak, A.; Vazquez, F.; Montgomery, P.G.; Weir, B.A.; Kryukov, G.; Cowley, G.S.; Gill, S.; Harrington, W.F.; Pantel, S.; Krill-Burger, J.M.; et al. Defining a Cancer Dependency Map. Cell 2017, 170, 564–576.E16. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R.; et al. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013, 41, D955–D961. [Google Scholar] [CrossRef]
- Poirier, J.T.; Gardner, E.E.; Connis, N.; Moreira, A.L.; de Stanchina, E.; Hann, C.L.; Rudin, C.M. DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene 2015, 34, 5869–5878. [Google Scholar] [CrossRef]
- Hodgkinson, C.L.; Morrow, C.J.; Li, Y.; Metcalf, R.L.; Rothwell, D.G.; Trapani, F.; Polanski, R.; Burt, D.J.; Simpson, K.L.; Morris, K.; et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat. Med. 2014, 20, 897–903. [Google Scholar] [CrossRef]
- Valsasina, B.; Beria, I.; Alli, C.; Alzani, R.; Avanzi, N.; Ballinari, D.; Cappella, P.; Caruso, M.; Casolaro, A.; Ciavolella, A.; et al. NMS-P937, an orally available, specific small-molecule polo-like kinase 1 inhibitor with antitumor activity in solid and hematologic malignancies. Mol. Cancer Ther. 2012, 11, 1006–1016. [Google Scholar] [CrossRef]
- Beria, I.; Bossi, R.T.; Brasca, M.G.; Caruso, M.; Ceccarelli, W.; Fachin, G.; Fasolini, M.; Forte, B.; Fiorentini, F.; Pesenti, E.; et al. NMS-P937, a 4,5-dihydro-1H-pyrazolo [4,3-h]quinazoline derivative as potent and selective Polo-like kinase 1 inhibitor. Bioorg. Med. Chem. Lett. 2011, 21, 2969–2974. [Google Scholar] [CrossRef]
- Zeidan, A.M.; Ridinger, M.; Lin, T.L.; Becker, P.S.; Schiller, G.J.; Patel, P.A.; Spira, A.I.; Tsai, M.L.; Samuelsz, E.; Silberman, S.L.; et al. A Phase Ib Study of Onvansertib, a Novel Oral PLK1 Inhibitor, in Combination Therapy for Patients with Relapsed or Refractory Acute Myeloid Leukemia. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 6132–6140. [Google Scholar] [CrossRef]
- Horie, M.; Saito, A.; Ohshima, M.; Suzuki, H.I.; Nagase, T. YAP and TAZ modulate cell phenotype in a subset of small cell lung cancer. Cancer Sci. 2016, 107, 1755–1766. [Google Scholar] [CrossRef]
- Rudin, C.M.; Poirier, J.T.; Byers, L.A.; Dive, C.; Dowlati, A.; George, J.; Heymach, J.V.; Johnson, J.E.; Lehman, J.M.; MacPherson, D.; et al. Molecular subtypes of small cell lung cancer: A synthesis of human and mouse model data. Nat. Rev. Cancer 2019, 19, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Baine, M.K.; Hsieh, M.S.; Lai, W.V.; Egger, J.V.; Jungbluth, A.A.; Daneshbod, Y.; Beras, A.; Spencer, R.; Lopardo, J.; Bodd, F.; et al. SCLC Subtypes Defined by ASCL1, NEUROD1, POU2F3, and YAP1: A Comprehensive Immunohistochemical and Histopathologic Characterization. J. Thorac. Oncol. 2020, 15, 1823–1835. [Google Scholar] [CrossRef] [PubMed]
- Calbo, J.; Meuwissen, R.; van Montfort, E.; van Tellingen, O.; Berns, A. Genotype-phenotype relationships in a mouse model for human small-cell lung cancer. Cold Spring Harb. Symp. Quant. Biol. 2005, 70, 225–232. [Google Scholar] [CrossRef]
- Mollaoglu, G.; Guthrie, M.R.; Bohm, S.; Bragelmann, J.; Can, I.; Ballieu, P.M.; Marx, A.; George, J.; Heinen, C.; Chalishazar, M.D.; et al. MYC Drives Progression of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition. Cancer Cell 2017, 31, 270–285. [Google Scholar] [CrossRef]
- Vastrik, I.; D’Eustachio, P.; Schmidt, E.; Gopinath, G.; Croft, D.; de Bono, B.; Gillespie, M.; Jassal, B.; Lewis, S.; Matthews, L.; et al. Reactome: A knowledge base of biologic pathways and processes. Genome Biol. 2007, 8, R39. [Google Scholar] [CrossRef]
- Yim, H.; Erikson, R.L. Plk1-targeted therapies in TP53- or RAS-mutated cancer. Mutat. Res. Rev. Mutat. Res. 2014, 761, 31–39. [Google Scholar] [CrossRef]
- Liu, X.; Erikson, R.L. Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. Proc. Natl. Acad. Sci. USA 2003, 100, 5789–5794. [Google Scholar] [CrossRef]
- Liu, X.; Lei, M.; Erikson, R.L. Normal cells, but not cancer cells, survive severe Plk1 depletion. Mol. Cell. Biol. 2006, 26, 2093–2108. [Google Scholar] [CrossRef]
- Yim, H.; Erikson, R.L. Polo-like kinase 1 depletion induces DNA damage in early S prior to caspase activation. Mol. Cell. Biol. 2009, 29, 2609–2621. [Google Scholar] [CrossRef]
- Degenhardt, Y.; Greshock, J.; Laquerre, S.; Gilmartin, A.G.; Jing, J.; Richter, M.; Zhang, X.; Bleam, M.; Halsey, W.; Hughes, A.; et al. Sensitivity of cancer cells to Plk1 inhibitor GSK461364A is associated with loss of p53 function and chromosome instability. Mol. Cancer Ther. 2010, 9, 2079–2089. [Google Scholar] [CrossRef]
- Sur, S.; Pagliarini, R.; Bunz, F.; Rago, C.; Diaz, L.A., Jr.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N. A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc. Natl. Acad. Sci. USA 2009, 106, 3964–3969. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Erikson, R.L. Plk1 depletion in nontransformed diploid cells activates the DNA-damage checkpoint. Oncogene 2008, 27, 3935–3943. [Google Scholar] [CrossRef] [PubMed]
- Sanhaji, M.; Kreis, N.N.; Zimmer, B.; Berg, T.; Louwen, F.; Yuan, J. p53 is not directly relevant to the response of Polo-like kinase 1 inhibitors. Cell Cycle 2012, 11, 543–553. [Google Scholar] [CrossRef]
- Su, Z.; Dias-Santagata, D.; Duke, M.; Hutchinson, K.; Lin, Y.L.; Borger, D.R.; Chung, C.H.; Massion, P.P.; Vnencak-Jones, C.L.; Iafrate, A.J.; et al. A platform for rapid detection of multiple oncogenic mutations with relevance to targeted therapy in non-small-cell lung cancer. J. Mol. Diagn. 2011, 13, 74–84. [Google Scholar] [CrossRef]
- Liao, Y.; Yin, G.; Wang, X.; Zhong, P.; Fan, X.; Huang, C. Identification of candidate genes associated with the pathogenesis of small cell lung cancer via integrated bioinformatics analysis. Oncol. Lett. 2019, 18, 3723–3733. [Google Scholar] [CrossRef]
- Rausch, V.; Hansen, C.G. The Hippo Pathway, YAP/TAZ, and the Plasma Membrane. Trends Cell Biol. 2020, 30, 32–48. [Google Scholar] [CrossRef]
- Petitjean, A.; Achatz, M.I.; Borresen-Dale, A.L.; Hainaut, P.; Olivier, M. TP53 mutations in human cancers: Functional selection and impact on cancer prognosis and outcomes. Oncogene 2007, 26, 2157–2165. [Google Scholar] [CrossRef]
- Olivier, M.; Hollstein, M.; Hainaut, P. TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2010, 2, a001008. [Google Scholar] [CrossRef]
- Petitjean, A.; Mathe, E.; Kato, S.; Ishioka, C.; Tavtigian, S.V.; Hainaut, P.; Olivier, M. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum. Mutat. 2007, 28, 622–629. [Google Scholar] [CrossRef]
- Leroy, B.; Anderson, M.; Soussi, T. TP53 mutations in human cancer: Database reassessment and prospects for the next decade. Hum. Mutat. 2014, 35, 672–688. [Google Scholar] [CrossRef]
- Meuwissen, R.; Linn, S.C.; Linnoila, R.I.; Zevenhoven, J.; Mooi, W.J.; Berns, A. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 2003, 4, 181–189. [Google Scholar] [CrossRef] [PubMed]
Cell Line | Volasertib (nM) | Onvansertib (nM) | Rigosertib (nM) | TP53 Gene Mutation Status | Hemizygous Deletion |
---|---|---|---|---|---|
DMS53 | 139.9 ± 21.8 | 188.9 ± 36.2 | 153.6 ± 23.7 | c.722C > T | No |
DMS153 | 90.0 ± 15.9 | 181.2 ± 36.8 | 114.8 ± 22.9 | c.463A > C | No |
H146 | 78.1 ± 14.5 | 145.3 ± 62.0 | 93.2 ± 16.9 | Wild type | No |
H209 | 550.7 ± 170.1 | 710.4 ± 260.0 | 385.7 ± 130.9 | c.673-2A > T | No |
H69 * | 64.1 ± 19.9 | 105.1 ± 12.4 | 71.9 ± 19.0 | c.511G > T | Yes |
H187 * | 40.4 ± 8.9 | 55.7 ± 19.3 | 61.8 ± 24.7 | c.722C > G | Yes |
H526 * | 49.6 ± 14.3 | 51.4 ± 15.2 | 123.9 ± 32.6 | c.97-1G > C | Yes |
DMS114 * | 87.1 ± 21.3 | 196.7 ± 58.6 | 52.3 ± 10.3 | c.637C > T | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Pannucci, A.; Ivanov, A.A.; Switchenko, J.; Sun, S.-Y.; Sica, G.L.; Liu, Z.; Huang, Y.; Schmitz, J.C.; Owonikoko, T.K. Polo-like Kinase 1 Inhibitors Demonstrate In Vitro and In Vivo Efficacy in Preclinical Models of Small Cell Lung Cancer. Cancers 2025, 17, 446. https://doi.org/10.3390/cancers17030446
Zhang G, Pannucci A, Ivanov AA, Switchenko J, Sun S-Y, Sica GL, Liu Z, Huang Y, Schmitz JC, Owonikoko TK. Polo-like Kinase 1 Inhibitors Demonstrate In Vitro and In Vivo Efficacy in Preclinical Models of Small Cell Lung Cancer. Cancers. 2025; 17(3):446. https://doi.org/10.3390/cancers17030446
Chicago/Turabian StyleZhang, Guojing, Abbe Pannucci, Andrey A. Ivanov, Jeffrey Switchenko, Shi-Yong Sun, Gabriel L. Sica, Zhentao Liu, Yufei Huang, John C. Schmitz, and Taofeek K. Owonikoko. 2025. "Polo-like Kinase 1 Inhibitors Demonstrate In Vitro and In Vivo Efficacy in Preclinical Models of Small Cell Lung Cancer" Cancers 17, no. 3: 446. https://doi.org/10.3390/cancers17030446
APA StyleZhang, G., Pannucci, A., Ivanov, A. A., Switchenko, J., Sun, S.-Y., Sica, G. L., Liu, Z., Huang, Y., Schmitz, J. C., & Owonikoko, T. K. (2025). Polo-like Kinase 1 Inhibitors Demonstrate In Vitro and In Vivo Efficacy in Preclinical Models of Small Cell Lung Cancer. Cancers, 17(3), 446. https://doi.org/10.3390/cancers17030446