Urokinase-Type Plasminogen Activator Receptor (uPAR) Cooperates with Mutated KRAS in Regulating Cellular Plasticity and Gemcitabine Response in Pancreatic Adenocarcinomas
<p>Prognostic significance of uPAR expression in PDAC patients. (<b>a</b>) Exemplary immunohistochemical staining of PDAC with high vs. low expression of uPAR. (<b>b</b>) Statistically significant difference in OS for <span class="html-italic">n</span> = 67 PDAC patients with high (orange, <span class="html-italic">n</span> = 45) vs. low (black, <span class="html-italic">n</span> = 22) immunohistochemical expression of uPAR. (<b>c</b>) Statistically significant difference in OS for <span class="html-italic">n</span> = 83 PDAC patients with high (black) vs. <span class="html-italic">n</span> = 219 patients with low (orange) expression levels of uPAR mRNA (source: TCGA dataset).</p> "> Figure 2
<p>Decreased cell growth, motility, and response to gemcitabine of AsPC uPAR knockout clones. (<b>a</b>) Cell growth analysis (6 days) of <span class="html-italic">uPAR<sup>−/−</sup></span> clones with a significantly slower proliferation rate than WT controls (<span class="html-italic">n</span> = 3). (<b>b</b>) Reduced migratory capacity of AsPC-1 <span class="html-italic">uPAR<sup>−/−</sup></span> clones compared to <span class="html-italic">uPAR<sup>WT</sup></span> cells (<span class="html-italic">n</span> = 3). (<b>c</b>) Western blot analysis of 9 epithelial and mesenchymal markers in PANC-1, AsPC-1, and <span class="html-italic">uPAR<sup>−/−</sup></span> clones indicated <span class="html-italic">mesenchymal to epithelial transition</span> (MET) in <span class="html-italic">uPAR<sup>−/−</sup></span> cells. Uncropped Western blot images available in <a href="#app1-cancers-15-01587" class="html-app">Supplementary Material File S1</a> (<b>d</b>) Increased resistance of <span class="html-italic">uPAR<sup>−/−</sup></span> clones to gemcitabine treatment (0.1, 0.5 and 1 µM) for 72 h (<span class="html-italic">n</span> = 4 biological replicates). (KO#1 and KO#2, <span class="html-italic">uPAR<sup>−/−</sup></span> clones) (*** <span class="html-italic">p</span> < 0.001).</p> "> Figure 3
<p>uPAR regulates CDC42, p38, LC3B, and ERK activity. (<b>a</b>) Immunoblot showing increased signals for pCDC42, pSrc, p-p38, pERK, and LC3B in KO#1 and KO#2.). Uncropped Western blot images could be found at in <a href="#app1-cancers-15-01587" class="html-app">Supplementary File S1</a>. Restoration of (<b>b</b>) the wild-type signaling phenotype after FAK siRNA knockdown in AsPC-1 <span class="html-italic">uPAR<sup>−/−</sup></span> cells and (<b>c</b>) of the response to gemcitabine (<span class="html-italic">n</span> = 4). Uncropped Western blot images could be found at in <a href="#app1-cancers-15-01587" class="html-app">Supplementary File S1</a> (<b>d</b>) Knockdown of CDC42 by siRNA and (<b>e</b>) response to gemcitabine and (<b>f</b>) siRNA knockdown of p38 and (<b>g</b>) the corresponding gemcitabine response. Uncropped Western blot images available in <a href="#app1-cancers-15-01587" class="html-app">Supplementary File S1</a>. (<b>h</b>) Increased cellular motility after transient uPAR expression in KO#2 (KO#2 rescue) compared to AsPC-1 <span class="html-italic">uPAR<sup>−/−</sup></span> cells (<span class="html-italic">n</span> = 4). (<b>i</b>) Gemcitabine (0.1 µM) and combinational treatment with the p38 inhibitor JX401 for 72 h in AsPC-1 <span class="html-italic">uPAR<sup>−/−</sup></span> and <span class="html-italic">KO#1</span> uPAR rescue cells (<span class="html-italic">n</span> = 3). (<b>j</b>) Gemcitabine (0.1 µM) and combinational treatment with the ERK inhibitor SCH772948 in uPAR WT and AsPC-1 <span class="html-italic">uPAR<sup>−/−</sup></span> cells (KO#1). (<b>k</b>) Treatment of AsPC-1 WT and AsPC-1 <span class="html-italic">uPAR<sup>−/−</sup></span> (KO#1) with either gemcitabine (0.1 µM) or in combination with the autophagy inhibitors 3-MA (5 µM) or CQ (5 µM). Relative viability is shown in response to gemcitabine and in combination with siRNA/inhibitors. (<span class="html-italic">n</span> = 4 biological replicates (** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 4
<p>uPAR and mutated KRAS cooperate in maintaining a mesenchymal phenotype that also regulates gemcitabine sensitivity. (<b>a</b>) Immunoblot showing uPAR, HNF1A, and KRT81 expression in BxPC-3, AsPC-1, and PANC-1. Uncropped Western blot images available in <a href="#app1-cancers-15-01587" class="html-app">Supplementary File S1</a> (<b>b</b>) IC50 of gemcitabine treatment (0–100 µM, 72 h) in BxPC-3 (1.323 µM), AsPC-1 (0.025 µM), and PANC-1 (0.112 µM). (<b>c</b>) uPAR levels after KRAS siRNA knockdown in AsPC-1 (<span class="html-italic">n</span> = 3 biological replicates, ** Student’s <span class="html-italic">t</span>-test, <span class="html-italic">p</span> < 0.01, *** Student’s <span class="html-italic">t</span>-test, <span class="html-italic">p</span> < 0.001). (<b>d</b>) Gemcitabine response (0.125 µM, 72 h) in AsPC-1 WT, AsPC-1 <span class="html-italic">uPAR<sup>−/−</sup></span> (KO#1), BxPC-3 (<span class="html-italic">KRAS</span> WT), BxPC-3 (<span class="html-italic">KRAS</span><sup>mut</sup>), PANC-1 (uPAR<sup>low</sup>), and PANC-1 (uPAR<sup>high</sup>). (<b>e</b>) Immunoblot of protein lysates from the same cell lines for EMT markers and (<b>f</b>) pFAK, pCDC42, p-p38, pMEK, p-ERK, and LC3B. Kaplan–Meier curves using mRNA expression data of PDAC from the TCGA cohort. Uncropped Western blot images available in <a href="#app1-cancers-15-01587" class="html-app">Supplementary File S1</a>. (<b>g</b>) Comparison of PDAC with high expression of <span class="html-italic">HNF1A</span> vs. <span class="html-italic">KRT81</span>. (<b>h</b>) <span class="html-italic">KRT81<sup>high</sup></span> tumors with high vs. low expression of <span class="html-italic">uPAR</span> and (<b>i</b>) HNF1A<span class="html-italic"><sup>high</sup></span> tumors with high vs. low expression of <span class="html-italic">uPAR</span> (log-rank test, <span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Human Tissue Samples
2.2. Immunohistochemistry
2.3. Cell Culture and Transient Expression of uPAR and KRASG12C
2.4. Generation of ASPC-1 uPAR Knockouts by CRISPR/Cas9
2.5. Genomic PCR and Sanger Sequencing
2.6. Cell Viability Assay
2.7. Wound Healing Assay
2.8. siRNA Knockdown Experiments
2.9. Protein Extracts, Western Blot Analyses, and uPAR Quantification by ELISA
2.10. KRAS Activity Measurement
2.11. Statistical Analysis
3. Results
3.1. uPAR Protein and mRNA Expression Levels Have Prognostic Significance in PDAC
3.2. Generation of CRISPR/Cas9 uPAR Knockout Clones in AsPC-1 Cells
3.3. uPAR Influences Cell Growth, Cellular Plasticity, and the Response to Gemcitabine in AsPC-1 (KRASG12D)
3.4. Depletion of uPAR Activates FAK, CDC42, and p38 and Induces Autophagy
3.5. Re-expression of uPAR Restores the Migratory Capability and Gemcitabine Sensitivity of uPAR−/− Cells
3.6. Resistance against Gemcitabine in AsPC-1 uPAR−/− Cells through Autophagy
3.7. uPAR and Mutated KRAS Cooperate in Maintaining a Mesenchymal Phenotype
3.8. uPAR Modulates the Clinical Risk in Different PDAC Subgroups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kindler, H.L. A Glimmer of Hope for Pancreatic Cancer. N. Engl. J. Med. 2018, 379, 2463–2464. [Google Scholar] [CrossRef]
- Nevala-Plagemann, C.; Hidalgo, M.; Garrido-Laguna, I. From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer. Nat. Rev. Clin. Oncol. 2020, 17, 108–123. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; De La Fouchardière, C.; et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [Green Version]
- van Roessel, S.; Kasumova, G.G.; Verheij, J.; Najarian, R.M.; Maggino, L.; de Pastena, M.; Malleo, G.; Marchegiani, G.; Salvia, R.; Ng, S.C.; et al. International Validation of the Eighth Edition of the American Joint Committee on Cancer (AJCC) TNM Staging System in Patients With Resected Pancreatic Cancer. JAMA Surg. 2018, 153, e183617. [Google Scholar] [CrossRef] [Green Version]
- Collisson, E.A.; Sadanandam, A.; Olson, P.; Gibb, W.J.; Truitt, M.; Gu, S.; Cooc, J.; Weinkle, J.; Kim, G.E.; Jakkula, L.; et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 2011, 17, 500–503. [Google Scholar] [CrossRef]
- Patil, S.; Steuber, B.; Kopp, W.; Kari, V.; Urbach, L.; Wang, X.; Küffer, S.; Bohnenberger, H.; Spyropoulou, D.; Zhang, Z.; et al. EZH2 Regulates Pancreatic Cancer Subtype Identity and Tumor Progression via Transcriptional Repression of GATA6. Cancer Res. 2020, 80, 4620–4632. [Google Scholar] [CrossRef] [PubMed]
- Noll, E.M.; Eisen, C.; Stenzinger, A.; Espinet, E.; Muckenhuber, A.; Klein, C.; Vogel, V.; Klaus, B.; Nadler, W.; Rösli, C.; et al. CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. Nat. Med. 2016, 22, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, B.; Ploug, M. The urokinase receptor and its structural homologue C4.4A in human cancer: Expression, prognosis and pharmacological inhibition. Curr. Med. Chem. 2008, 15, 2559–2573. [Google Scholar] [CrossRef]
- Morten, G.R.; Rasch, M.G.; Lund, I.K.; Almasi, C.E.; Hoyer-Hansen, G. Intact and cleaved uPAR forms: Diagnostic and prognostic value in cancer. Front. Biosci. 2008, 13, 6752–6762. [Google Scholar] [CrossRef] [Green Version]
- Béné, M.C.; Castoldi, G.; Knapp, W.; Rigolin, G.M.; Escribano, L.; Lemez, P.; Ludwig, W.-D.; Matutes, E.; Orfao, A.; Lanza, F.; et al. CD87 (urokinase-type plasminogen activator receptor), function and pathology in hematological disorders: A review. Leukemia 2004, 18, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Montuori, N.; Cosimato, V.; Rinaldi, L.; Rea, V.E.; Alfano, D.; Ragno, P. uPAR regulates pericellular proteolysis through a mechanism involving integrins and fMLF-receptors. Thromb. Haemost. 2013, 109, 309–318. [Google Scholar]
- Tang, C.-H.; Wei, Y. The urokinase receptor and integrins in cancer progression. Cell. Mol. Life Sci. 2008, 65, 1916–1932. [Google Scholar] [CrossRef] [PubMed]
- Madsen, D.H.; Engelholm, L.H.; Ingvarsen, S.; Hillig, T.; Wagenaar-Miller, R.A.; Kjøller, L.; Gårdsvoll, H.; Høyer-Hansen, G.; Holmbeck, K.; Bugge, T.H.; et al. Extracellular Collagenases and the Endocytic Receptor, Urokinase Plasminogen Activator Receptor-associated Protein/Endo180, Cooperate in Fibroblast-mediated Collagen Degradation. J. Biol. Chem. 2007, 282, 27037–27045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, H.W.; Marshall, C.J. Regulation of cell signalling by uPAR. Nat. Rev. Mol. Cell Biol. 2010, 11, 23–36. [Google Scholar] [CrossRef]
- Yang, K.; Li, Y.; Lian, G.; Lin, H.; Shang, C.; Zeng, L.; Chen, S.; Li, J.; Huang, C.; Huang, K.; et al. KRAS promotes tumor metastasis and chemoresistance by repressing RKIP via the MAPK-ERK pathway in pancreatic cancer. Int. J. Cancer 2018, 142, 2323–2334. [Google Scholar] [CrossRef] [Green Version]
- Allgayer, H.; Wang, H.; Shirasawa, S.; Sasazuki, T.; Boyd, D. Targeted disruption of the K-Ras oncogene in an invasive colon cancer cell line down-regulates urokinase receptor expression and plasminogen-dependent proteolysis. Br. J. Cancer 1999, 80, 1884–1891. [Google Scholar] [CrossRef] [Green Version]
- Kren, A.; Baeriswyl, V.; Lehembre, F.; Wunderlin, C.; Strittmatter, K.; Antoniadis, H.; Fässler, R.; Cavallaro, U.; Christofori, G. Increased tumor cell dissemination and cellular senescence in the absence of beta1-integrin function. EMBO J. 2007, 26, 2832–2842. [Google Scholar] [CrossRef]
- Liu, D.; Ghiso, J.A.; Estrada, Y.; Ossowski, L. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 2002, 1, 445–457. [Google Scholar] [CrossRef] [Green Version]
- Hildenbrand, R.; Allgayer, H.; Marx, A.; Stroebel, P. Modulators of the urokinase-type plasminogen activation system for cancer. Expert Opin. Investig. Drugs 2010, 19, 641–652. [Google Scholar] [CrossRef]
- Budczies, J.; Klauschen, F.; Sinn, B.V.; Gyorffy, B.; Schmitt, W.D.; Darb-Esfahani, S.; Denkert, C. Cutoff Finder: A Comprehensive and Straightforward Web Application Enabling Rapid Biomarker Cutoff Optimization. PLoS ONE 2012, 7, e51862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Elakad, O.; Yao, S.; von Hammerstein-Equord, A.; Hinterthaner, M.; Danner, B.C.; Ferrai, C.; Ströbel, P.; Küffer, S.; Bohnenberger, H. Regulation and Therapeutic Targeting of MTHFD2 and EZH2 in KRAS-Mutated Human Pulmonary Adenocarcinoma. Metabolites 2022, 12, 652. [Google Scholar] [CrossRef]
- Muller, D.; Mazzeo, P.; Koch, R.; Bosherz, M.S.; Welter, S.; von Hammerstein-Equord, A.; Hinterthaner, M.; Cordes, L.; Belharazem, D.; Marx, A.; et al. Functional apoptosis profiling identifies MCL-1 and BCL-xL as prognostic markers and therapeutic targets in advanced thymomas and thymic carcinomas. BMC Med. 2021, 19, 300. [Google Scholar] [CrossRef]
- Hildenbrand, R.; Niedergethmann, M.; Marx, A.; Belharazem, D.; Allgayer, H.; Schleger, C.; Ströbel, P. Amplification of the Urokinase-Type Plasminogen Activator Receptor (uPAR) Gene in Ductal Pancreatic Carcinomas Identifies a Clinically High-Risk Group. Am. J. Pathol. 2009, 174, 2246–2253. [Google Scholar] [CrossRef] [Green Version]
- de Geus, S.W.; Baart, V.M.; Boonstra, M.C.; Kuppen, P.J.; Prevoo, H.A.; Mazar, A.P.; Bonsing, B.A.; Morreau, H.; van de Velde, C.J.; Vahrmeijer, A.L.; et al. Prognostic Impact of Urokinase Plasminogen Activator Receptor Expression in Pancreatic Cancer: Malignant Versus Stromal Cells. Biomark Insights 2017, 12, 1177271917715443. [Google Scholar] [CrossRef]
- Cao, L.; Huang, C.; Cui Zhou, D.; Hu, Y.; Lih, T.M.; Savage, S.R.; Krug, K.; Clark, D.J.; Schnaubelt, M.; Chen, L.; et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 2021, 184, 5031–5052.e26. [Google Scholar] [CrossRef]
- Hoadley, K.A.; Yau, C.; Hinoue, T.; Wolf, D.M.; Lazar, A.J.; Drill, E.; Shen, R.; Taylor, A.M.; Cherniack, A.D.; Thorsson, V.; et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 2018, 173, 291–304.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguirre-Ghiso, J.A.; Liu, D.; Mignatti, A.; Kovalski, K.; Ossowski, L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell 2001, 12, 863–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, H.W.; Marra, P.; Marshall, C.J. uPAR promotes formation of the p130Cas–Crk complex to activate Rac through DOCK180. J. Cell Biol. 2008, 182, 777–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lester, R.D.; Jo, M.; Montel, V.; Takimoto, S.; Gonias, S.L. uPAR induces epithelial–mesenchymal transition in hypoxic breast cancer cells. J. Cell Biol. 2007, 178, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Jo, M.; Lester, R.D.; Montel, V.; Eastman, B.; Takimoto, S.; Gonias, S.L. Reversibility of Epithelial-Mesenchymal Transition (EMT) Induced in Breast Cancer Cells by Activation of Urokinase Receptor-dependent Cell Signaling. J. Biol. Chem. 2009, 284, 22825–22833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santibanez, J.F. Transforming Growth Factor-Beta and Urokinase-Type Plasminogen Activator: Dangerous Partners in Tumorigenesis—Implications in Skin Cancer. ISRN Dermatol. 2013, 2013, 597927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huanwen, W.; Zhiyong, L.; Xiaohua, S.; Xinyu, R.; Kai, W.; Tonghua, L. Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines. Mol. Cancer 2009, 8, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barkan, D.; Chambers, A.F. Beta1-integrin: A potential therapeutic target in the battle against cancer recurrence. Clin. Cancer Res. 2011, 17, 7219–7223. [Google Scholar] [CrossRef] [Green Version]
- Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 2017, 17, 528–542. [Google Scholar] [CrossRef]
- Bryant, K.L.; Stalnecker, C.A.; Zeitouni, D.; Klomp, J.E.; Peng, S.; Tikunov, A.P.; Gunda, V.; Pierobon, M.; Waters, A.M.; George, S.D.; et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat. Med. 2019, 25, 628–640. [Google Scholar] [CrossRef]
- Ferraris, G.M.S.; Schulte, C.; Buttiglione, V.; De Lorenzi, V.; Piontini, A.; Galluzzi, M.; Podesta, A.; Madsen, C.D.; Sidenius, N. The interaction between uPAR and vitronectin triggers ligand-independent adhesion signalling by integrins. EMBO J. 2014, 33, 2458–2472. [Google Scholar] [CrossRef] [Green Version]
- Blasco, M.T.; Navas, C.; Martín-Serrano, G.; Graña-Castro, O.; Lechuga, C.G.; Martín-Díaz, L.; Djurec, M.; Li, J.; Morales-Cacho, L.; Esteban-Burgos, L.; et al. Complete regression of advanced pancreatic ductal adenocarcinomas upon combined inhibition of EGFR and C-RAF. Cancer Cell 2019, 35, 573–587.e6. [Google Scholar] [CrossRef] [Green Version]
- Gandhari, M.; Arens, N.; Majety, M.; Dorn-Beineke, A.; Hildenbrand, R. Urokinase-type plasminogen activator induces proliferation in breast cancer cells. Int. J. Oncol. 2006, 28, 1463–1470. [Google Scholar] [CrossRef] [Green Version]
- Henke, E.; Nandigama, R.; Ergün, S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front. Mol. Biosci. 2019, 6, 160. [Google Scholar] [CrossRef] [Green Version]
- Javadi, S.; Zhiani, M.; Mousavi, M.A.; Fathi, M. Crosstalk between Epidermal Growth Factor Receptors (EGFR) and integrins in resistance to EGFR tyrosine kinase inhibitors (TKIs) in solid tumors. Eur. J. Cell Biol. 2020, 99, 151083. [Google Scholar] [CrossRef]
- Tai, Y.L.; Chu, P.Y.; Lai, I.R.; Wang, M.Y.; Tseng, H.Y.; Guan, J.L.; Liou, J.Y.; Shen, T.L. An EGFR/Src-dependent beta4 integrin/FAK complex contributes to malignancy of breast cancer. Sci. Rep. 2015, 5, 16408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Lu, Z. Paradoxical roles of FAK in tumor cell migration and metastasis. Cell Cycle 2009, 8, 3474–3479. [Google Scholar] [CrossRef]
- Mitra, S.K.; Hanson, D.A.; Schlaepfer, D.D. Focal adhesion kinase: In command and control of cell motility. Nat. Rev. Mol. Cell Biol. 2005, 6, 56–68. [Google Scholar] [CrossRef] [PubMed]
- llić, D.; Furuta, Y.; Kanazawa, S.; Takeda, N.; Sobue, K.; Nakatsuji, N.; Nomura, S.; Fujimoto, J.; Okada, M.; Yamamoto, T.; et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 1995, 377, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xia, Y.; Hawke, D.; Halle, M.; Tremblay, M.L.; Gao, X.; Zhou, X.Z.; Aldape, K.; Cobb, M.; Xie, K.; et al. FAK Phosphorylation by ERK Primes Ras-Induced Tyrosine Dephosphorylation of FAK Mediated by PIN1 and PTP-PEST. Mol. Cell 2009, 35, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Chude, C.I.; Amaravadi, R.K. Targeting Autophagy in Cancer: Update on Clinical Trials and Novel Inhibitors. Int. J. Mol. Sci. 2017, 18, 1279. [Google Scholar] [CrossRef] [Green Version]
- Rangwala, R.; Chang, Y.C.; Hu, J.; Algazy, K.M.; Evans, T.L.; Fecher, L.A.; Schuchter, L.M.; Torigian, D.A.; Panosian, J.T.; Troxel, A.B.; et al. Combined MTOR and autophagy inhibition: Phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 2014, 10, 1391–1402. [Google Scholar] [CrossRef]
- Karasic, T.B.; O’Hara, M.H.; Loaiza-Bonilla, A.; Reiss, K.A.; Teitelbaum, U.R.; Borazanci, E.; De Jesus-Acosta, A.; Redlinger, C.; Burrell, J.A.; Laheru, D.A.; et al. Effect of Gemcitabine and nab-Paclitaxel With or Without Hydroxychloroquine on Patients With Advanced Pancreatic Cancer: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 993–998. [Google Scholar] [CrossRef]
- Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 2007, 26, 3279–3290. [Google Scholar] [CrossRef] [Green Version]
- Aliabadi, F.; Sohrabi, B.; Mostafavi, E.; Pazoki-Toroudi, H.; Webster, T.J. Ubiquitin–proteasome system and the role of its inhibitors in cancer therapy. Open Biol. 2021, 11, 200390. [Google Scholar] [CrossRef] [PubMed]
- Metrangolo, V.; Ploug, M.; Engelholm, L.H. The Urokinase Receptor (uPAR) as a “Trojan Horse” in Targeted Cancer Therapy: Challenges and Opportunities. Cancers 2021, 13, 5376. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.; Jorgensen, J.T.; Juhl, K.; Kjaer, A. The use of a uPAR-targeted probe for photothermal cancer therapy prolongs survival in a xenograft mouse model of glioblastoma. Oncotarget 2021, 12, 1366–1376. [Google Scholar] [CrossRef] [PubMed]
- Carlsen, E.A.; Loft, M.; Loft, A.; Berthelsen, A.K.; Langer, S.W.; Knigge, U.; Kjaer, A. Prospective Phase II Trial of Prognostication by 68Ga-NOTA-AE105 uPAR PET in Patients with Neuroendocrine Neoplasms: Implications for uPAR-Targeted Therapy. J. Nucl. Med. 2022, 63, 1371–1377. [Google Scholar] [CrossRef]
- Mahmood, N.; Arakelian, A.; Khan, H.A.; Tanvir, I.; Mazar, A.P.; Rabbani, S.A. uPAR antibody (huATN-658) and Zometa reduce breast cancer growth and skeletal lesions. Bone Res. 2020, 8, 18. [Google Scholar] [CrossRef] [Green Version]
Patients | 67 |
Male (%) | 37 (55) |
Female (%) | 30 (45) |
Age median (range) | 68 (44–84) |
Tumor grade (G) | |
1–2 (%) | 6 (9) |
2–3 (%) | 41 (61.1) |
3–4 (%) | 20 (29.9) |
Tumor stage (TNM) | |
T 1 (%) | 1 (1.5) |
T 2 (%) | 3 (4.5) |
T 3 (%) | 58 (86.6) |
T 4 (%) | 5 (7.4) |
N 0 (%) | 14 (20.9) |
N 1–3 (%) | 53 (79.1) |
Median follow-up time (range) [day] | 417 (4–2768) |
Reported deaths (%) | 62 (92.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, L.; Li, Y.; Yao, S.; Gaedcke, J.; Baart, V.M.; Sier, C.F.M.; Neesse, A.; Ellenrieder, V.; Bohnenberger, H.; Fuchs, F.; et al. Urokinase-Type Plasminogen Activator Receptor (uPAR) Cooperates with Mutated KRAS in Regulating Cellular Plasticity and Gemcitabine Response in Pancreatic Adenocarcinomas. Cancers 2023, 15, 1587. https://doi.org/10.3390/cancers15051587
Peng L, Li Y, Yao S, Gaedcke J, Baart VM, Sier CFM, Neesse A, Ellenrieder V, Bohnenberger H, Fuchs F, et al. Urokinase-Type Plasminogen Activator Receptor (uPAR) Cooperates with Mutated KRAS in Regulating Cellular Plasticity and Gemcitabine Response in Pancreatic Adenocarcinomas. Cancers. 2023; 15(5):1587. https://doi.org/10.3390/cancers15051587
Chicago/Turabian StylePeng, Luogen, Yuchan Li, Sha Yao, Jochen Gaedcke, Victor M. Baart, Cornelis F. M. Sier, Albrecht Neesse, Volker Ellenrieder, Hanibal Bohnenberger, Frieder Fuchs, and et al. 2023. "Urokinase-Type Plasminogen Activator Receptor (uPAR) Cooperates with Mutated KRAS in Regulating Cellular Plasticity and Gemcitabine Response in Pancreatic Adenocarcinomas" Cancers 15, no. 5: 1587. https://doi.org/10.3390/cancers15051587
APA StylePeng, L., Li, Y., Yao, S., Gaedcke, J., Baart, V. M., Sier, C. F. M., Neesse, A., Ellenrieder, V., Bohnenberger, H., Fuchs, F., Kitz, J., Ströbel, P., & Küffer, S. (2023). Urokinase-Type Plasminogen Activator Receptor (uPAR) Cooperates with Mutated KRAS in Regulating Cellular Plasticity and Gemcitabine Response in Pancreatic Adenocarcinomas. Cancers, 15(5), 1587. https://doi.org/10.3390/cancers15051587