The Effect of Biomolecular Gradients on Mesenchymal Stem Cell Chondrogenesis under Shear Stress
<p>Microfluidic gradient generating chamber design.</p> "> Figure 2
<p>Gradient generating device MSC culture set-up.</p> "> Figure 3
<p>Effect of shear stress on MSC alignment. Phase contrast images of MSCs cultured within the microfluidic device on (<b>a</b>) day 1 (just after attachment and before the start of flow) and (<b>b</b>) day 4 under a shear stress of 0.1 dynes/cm<sup>2</sup>. Phase contrast images of MSCs cultured in static conditions (0 dynes/cm<sup>2</sup>, polystyrene cell culture treated petri dish) on (<b>c</b>) day 1 and (<b>d</b>) day 4.</p> "> Figure 4
<p>Effect of shear stress on MSC alignment (average cell angle). Average cell angle was plotted at different time points and shear stress values for (<b>a</b>) non-confluent regions and (<b>b</b>) confluent regions. Day 1 angle measurements were taken after MSC attachment and just prior to flow. * indicates a statistical difference between the flow based conditions and the static control. # indicates a statistical difference between the confluent and non-confluent angle measurements for a given shear stress condition and time point (<span class="html-italic">p</span> < 0.001). MSCs were seeded at a non-confluent state, so no confluent regions were present on day 1. Cell angles for the 0.40 and 0 dynes/cm<sup>2</sup> conditions were also plotted as box plots for (<b>c</b>) day 1 and (<b>d</b>) day 8. The lower and upper boundaries of the box represent the first and third quartiles respectively, while the line within the box represents the median of the data. The whiskers represent the minimum and maximum data points not including outliers. The solid circle indicates the mean value and * indicates the minimum and maximum data points including outliers. (<b>e</b>) Representative non-confluent region of the 0.40 dynes/cm<sup>2</sup> device on day 3. (<b>f</b>) Representative confluent region of the 0.40 dyes/cm<sup>2</sup> device on day 3. <span class="html-italic">N</span> = 30 cells were measured per shear stress for each time point and cell density. The static controls (0 dynes/cm<sup>2</sup>) were cultured on polystyrene cell culture treated petri dishes. Error bars represent SEM.</p> "> Figure 5
<p>Effect of shear stress on cell alignment (Cell angle distribution). The number of cells that displayed angles within the designated ranges were plotted for (<b>a</b>) day 1 (after MSC attachment, prior to fluid flow), (<b>b</b>) non-confluent regions on day 3, (<b>c</b>) confluent regions on day 3, (<b>d</b>) non-confluent regions on day 8, and (<b>e</b>) confluent regions on day 8. MSCs were seeded at a non-confluent state, so no confluent regions were present on day 1. The static controls (0 dynes/cm<sup>2</sup>) were cultured on polystyrene cell culture treated petri dishes. <span class="html-italic">N</span> = 30 cells were measured per shear stress condition for each time point and cell density.</p> "> Figure 6
<p>Effect of TGF-β1 gradient on MSC chondrogenesis. Phase contrast images of a region within the gradient device on (<b>a</b>) day 1 (just prior to TGF-β1 gradient exposure), (<b>b</b>) day 6, (<b>c</b>) day 8, (<b>d</b>) day 14, and (<b>e</b>) day 21.</p> "> Figure 7
<p>Effect of constant TGF-β1 concentration on MSC chondrogenesis. Phase contrast images of a region within the control device on (<b>a</b>) day 1(just prior to TGF-β1 exposure), (<b>b</b>) day 6, (<b>c</b>) day 8, (<b>d</b>) day 14, and (<b>e</b>) day 21.</p> "> Figure 8
<p>Effect of TGF-β1 gradients on MSC aggregate properties. Box plots of (<b>a</b>) aggregate area (<span class="html-italic">p</span> = 0.24), (<b>b</b>) aggregate aspect ratio (<span class="html-italic">p</span> = 0.07), and (<b>c</b>) aggregate alignment angle (<span class="html-italic">p</span> = 0.04). The alignment angle measurements for the gradient and control devices displayed a statistical difference with a <span class="html-italic">p</span> value less than 0.05 using the Mann-Whitney test. The box plot attributes are the same as that in <a href="#micromachines-06-00330-f004" class="html-fig">Figure 4</a>. <span class="html-italic">N</span> = 14 and <span class="html-italic">N</span> = 8 aggregates were used for the gradient and control devices respectively.</p> "> Figure 9
<p>Effect of TGF-β1 gradients on MSC type II collagen deposition (type II collagen IHC). (<b>a</b>) Phase contrast image and (<b>b</b>) Fluorescent image showing type II collagen deposition within an MSC aggregate after 21 days in TGF-β1 gradient culture. (<b>c</b>) Phase contrast image and (<b>d</b>) Fluorescent image showing type II collagen deposition within an MSC aggregate after 21 days in constant TGF-β1 concentration culture. Green is type II collagen.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of Microfluidic Gradient Generating Device
2.3. PDMS Soft Lithography
2.4. MSC Isolation and Expansion
2.5. Microfluidic Device MSC Seeding and Culture
2.6. Alignment and Shear Stress Characterization
2.7. MSC Chondrogenic Differentiation
2.8. MSC Aggregate Analysis
2.9. Type II Collagen Immunohistochemistry
2.10. Statistical Analysis
3. Results
3.1. Effect of Shear Stress on MSC Alignment
3.2. Effect of TGF-β1 Gradients on MSC Chondrogenesis
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kotlarz, H.; Gunnarsson, C.L.; Fang, H.; Rizzo, J.A. Insurer and out-of-pocket costs of osteoarthritis in the us: Evidence from national survey data. Arthritis Rheum. 2009, 60, 3546–3553. [Google Scholar] [CrossRef] [PubMed]
- Castro, N.J.; Hacking, S.A.; Zhang, L.G. Recent progress in interfacial tissue engineering approaches for osteochondral defects. Ann. Biomed. Eng. 2012, 40, 1628–1640. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, A.M.; Richardson, J.B. Articular cartilage: Structure, injuries and review of management. Br. Med. Bull. 2008, 87, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.A.E.; Hincke, M.T. Strategies for articular cartilage lesion repair and functional restoration. Tissue Eng. Part B Rev. 2010, 16, 305–329. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.G.; Kim, T.K.; Taboas, A.; Malik, A.; Manson, P.; Elisseeff, J. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng. 2003, 9, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Meinel, L.; Hofmann, S.; Karageorgiou, V.; Zichner, L.; Langer, R.; Kaplan, D.; Vunjak-Novakovic, G. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol. Bioeng. 2004, 88, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Uematsu, K.; Hattori, K.; Ishimoto, Y.; Yamauchi, J.; Habata, T.; Takakura, Y.; Ohgushi, H.; Fukuchi, T.; Sato, M. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (plga) scaffold. Biomaterials 2005, 26, 4273–4279. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Temenoff, J.S.; Tabata, Y.; Caplan, A.I.; Mikos, A.G. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 2007, 28, 3217–3227. [Google Scholar] [CrossRef] [PubMed]
- Liao, E.; Yaszemski, M.; Krebsbach, P.; Hollister, S. Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds. Tissue Eng. 2007, 13, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.; Zhai, D.Y.; Tous, E.; Rai, R.; Mauck, R.L.; Burdick, J.A. Enhanced msc chondrogenesis following delivery of TGF-beta3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 2011, 32, 6425–6434. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; Burdick, J.A. Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng. Pt A 2009, 15, 243–254. [Google Scholar] [CrossRef]
- Li, W.J.; Tuli, R.; Okafor, C.; Derfoul, A.; Danielson, K.G.; Hall, D.J.; Tuan, R.S. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 2005, 26, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Hunziker, E.B.; Michel, M.; Studer, D. Ultrastructure of adult human articular cartilage matrix after cryotechnical processing. Microsc. Res. Tech. 1997, 37, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.; Huyghe, J.M.; van Donkelaar, C.C. Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech. Model. Mechanobiol. 2007, 6, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, R.; Shirazi-Adl, A.; Hurtig, M. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J. Biomech. 2008, 41, 3340–3348. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, H.J.; Jeon, N.L. Biological applications of microfluidic gradient devices. Integr. Biol. Quant. Biosci. Nano Macro 2010, 2, 584–603. [Google Scholar]
- Li Jeon, N.; Baskaran, H.; Dertinger, S.K.; Whitesides, G.M.; Van de Water, L.; Toner, M. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nature Biotechnol. 2002, 20, 826–830. [Google Scholar] [CrossRef]
- Chung, B.G.; Flanagan, L.A.; Rhee, S.W.; Schwartz, P.H.; Lee, A.P.; Monuki, E.S.; Jeon, N.L. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 2005, 5, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.L.; Rivera, A.L.; Sakai, T.; Caplan, A.I.; Goldberg, V.M.; Welter, J.F.; Baskaran, H. Micrometer scale guidance of mesenchymal stem cells to form structurally oriented cartilage extracellular matrix. Tissue Eng. Part A 2013, 19, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Dewey, C.F.; Bussolari, S.R.; Gimbrone, M.A.; Davies, P.F. The dynamic-response of vascular endothelial-cells to fluid shear-stress. J. Biomech. Eng. 1981, 103, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Levesque, M.J.; Nerem, R.M. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 1985, 107, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Heo, S.J.; Kim, S.H.; Shin, J.; Park, S.; Shin, J.W. Shear stress magnitude is critical in regulating the differentiation of mesenchymal stem cells even with endothelial growth medium. Biotechnol. Lett. 2011, 33, 2351–2359. [Google Scholar] [CrossRef] [PubMed]
- Gurdon, J.B.; Bourillot, P.Y. Morphogen gradient interpretation. Nature 2001, 413, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.J.; Scott, M.P. Incredible journey: How do developmental signals travel through tissue? Gene Dev. 2004, 18, 2985–2997. [Google Scholar] [CrossRef] [PubMed]
- Dertinger, S.K.W.; Chiu, D.T.; Jeon, N.L.; Whitesides, G.M. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 2001, 73, 1240–1246. [Google Scholar] [CrossRef]
- Lorenz, H.; Despont, M.; Fahrni, N.; LaBianca, N.; Renaud, P.; Vettiger, P. SU-8: A low-cost negative resist for mems. J. Micromech. Microeng. 1997, 7, 121–124. [Google Scholar] [CrossRef]
- Xia, Y.N.; Whitesides, G.M. Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Ostuni, E.; Takayama, S.; Jiang, X.Y.; Ingber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 2001, 3, 335–373. [Google Scholar] [CrossRef] [PubMed]
- Lennon, D.P.; Haynesworth, S.E.; Bruder, S.P.; Jaiswal, N.; Caplan, A.I. Human and animal mesenchymal progenitor cells from bone marrow: Identification of serum for optimal selection and proliferation. In Vitro Cell. Dev. Anim. 1996, 32, 602–611. [Google Scholar] [CrossRef]
- Tsutsumi, S.; Shimazu, A.; Miyazaki, K.; Pan, H.; Koike, C.; Yoshida, E.; Takagishi, K.; Kato, Y. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem. Biophys. Res. Commun. 2001, 288, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Solchaga, L.A.; Penick, K.; Porter, J.D.; Goldberg, V.M.; Caplan, A.I.; Welter, J.F. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J. Cell. Phys. 2005, 203, 398–409. [Google Scholar] [CrossRef]
- Yoo, J.U.; Barthel, T.S.; Nishimura, K.; Solchaga, L.; Caplan, A.I.; Goldberg, V.M.; Johnstone, B. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J. Bone Jt. Surg. Am. 1998, 80, 1745–1757. [Google Scholar]
- Yourek, G.; McCormick, S.M.; Mao, J.J.; Reilly, G.C. Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen. Med. 2010, 5, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Penick, K.J.; Solchaga, L.A.; Welter, J.F. High-throughput aggregate culture system to assess the chondrogenic potential of mesenchymal stem cells. BioTechniques 2005, 39, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Fitzsimmons, J.S.; Commisso, C.N.; Gallay, S.H.; Odriscoll, S.W. Enhancement of periosteal chondrogenesis in vitro. Dose-response for transforming growth-factor-beta-1 (TGF-beta-1). Clin. Orthop. Relat. Res. 1994, 301, 271–280. [Google Scholar] [PubMed]
- Worster, A.A.; Nixon, A.J.; Brower-Toland, B.D.; Williams, J. Effect of transforming growth factor beta 1 on chondrogenic differentiation of cultured equine mesenchymal stem cells. Am. J. Vet. Res. 2000, 61, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wenk, E.; Zhang, X.; Meinel, L.; Vunjak-Novakovic, G.; Kaplan, D.L. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J. Control. Release 2009, 134, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Mohan, N.; Dormer, N.H.; Caldwell, K.L.; Key, V.H.; Berkland, C.J.; Detamore, M.S. Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng. Part A 2011, 17, 2845–2855. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.Y.; Shao, L.; Li, B.; Zong, C.; Li, J.H.; Zheng, Q.; Tong, X.M.; Gao, C.Y.; Wang, J.F. Extracellular signal-regulated kinase1/2 activated by fluid shear stress promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells through novel signaling pathways. Int. J. Biochem. Cell Biol. 2011, 43, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.Y.; Yu, B.; Chen, J.R.; Tang, Z.H.; Zong, C.; Shen, D.; Zheng, Q.; Tong, X.M.; Gao, C.Y.; Wang, J.F. Different effects of intermittent and continuous fluid shear stresses on osteogenic differentiation of human mesenchymal stem cells. Biomech. Model. Mechanobiol. 2012, 11, 391–401. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera, A.L.; Baskaran, H. The Effect of Biomolecular Gradients on Mesenchymal Stem Cell Chondrogenesis under Shear Stress. Micromachines 2015, 6, 330-346. https://doi.org/10.3390/mi6030330
Rivera AL, Baskaran H. The Effect of Biomolecular Gradients on Mesenchymal Stem Cell Chondrogenesis under Shear Stress. Micromachines. 2015; 6(3):330-346. https://doi.org/10.3390/mi6030330
Chicago/Turabian StyleRivera, Alexander L., and Harihara Baskaran. 2015. "The Effect of Biomolecular Gradients on Mesenchymal Stem Cell Chondrogenesis under Shear Stress" Micromachines 6, no. 3: 330-346. https://doi.org/10.3390/mi6030330
APA StyleRivera, A. L., & Baskaran, H. (2015). The Effect of Biomolecular Gradients on Mesenchymal Stem Cell Chondrogenesis under Shear Stress. Micromachines, 6(3), 330-346. https://doi.org/10.3390/mi6030330