Functional Metallic Microcomponents via Liquid-Phase Multiphoton Direct Laser Writing: A Review
<p>(<b>a</b>) Scheme of direct laser writing (DLW) setup: A femtosecond pulsed laser is power modulated by an acousto-optical modulator (AOM). Galvanometer scanning mirrors introduce a tip and tilt and are imaged onto the entrance pupil of a high numerical aperture objective. The objective focuses the beam into a photosensitive material which—in the vicinity of the focal point—selectively hardens (negative-tone resists). The tip and tilt translates the focal point laterally while a stage moves the focal point axially. (<b>b</b>) Scheme of the voxel size dependence on incident laser power. Due to the fixed intensity threshold, reducing incident laser power leads to a reduction in voxel size. (<b>c</b>) Fabrication process: after direct laser writing, samples are placed in a developer bath for a few minutes to reveal the final structure. (<b>d</b>) Principle of metal direct laser writing: in step I, a photoreducing agent (R) is excited by multiphoton absorption. The excited agent donates an electron to metal ions (M<math display="inline"><semantics> <msup> <mrow/> <mo>+</mo> </msup> </semantics></math>) that are thus reduced (II). The neutral metal atoms nucleate, the seeds grow, and finally aggregate to yield the voxel of a metallic microstructure (III).</p> "> Figure 2
<p>(<b>a</b>) Scanning electron micrograph of a planar silver microstructure fabricated by metal direct laser writing (MDLW) (left) and corresponding atomic force microscopy topography measurement (center). The black line indicates the line along which the height plot on the right is taken. The surface roughness of the structure is determined to be around 25 nm peak to valley. (<b>b</b>) Scanning electron micrograph of silver lines separated by 600 nm. Scale bars in (<b>a</b>) and (<b>b</b>) correspond to 1 µm and structures were fabricated with a speed of 1 µm/s. (<b>c</b>) Energy-dispersive X-ray spectroscopy (EDX) imaging of silver: the pink color indicates positions at which silver is detected. (<b>d</b>) Scanning electron micrograph of a 3D silver monopole with a diameter of 10 µm and a height of 20 µm. The scale bar corresponds to 5 µm.</p> "> Figure 3
<p>(<b>a</b>) Close-up scanning electron micrograph of a helical microswimmer. Scale bar is 10 µm. Below: Schematic of transport capabilities of the swimmer: a rotating magnetic field induces a rotary motion and translation of the swimmer. (<b>b</b>) Time-lapse image of the controlled motion as well as cargo pick-up and drop-off of a microswimmer. The scalebar corresponds to 50 µm. Reproduced with permission [<a href="#B28-micromachines-10-00827" class="html-bibr">28</a>].</p> "> Figure 4
<p>Electric components fabricated by MDLW. (<b>a</b>) Scanning electron microscopy (SEM) image of silver wires fabricated on a flexible sheet (top), measurement setup (bottom left), and results (bottom right): resistance versus bending radius and resistance versus bending times. Modified with permission [<a href="#B46-micromachines-10-00827" class="html-bibr">46</a>]. (<b>b</b>) Microscope image of silver source and drain electrodes fabricated by MDLW (top left), scheme of integration in an OFET (bottom left) and measurement of the resulting on-off values (right). Modified with permission [<a href="#B47-micromachines-10-00827" class="html-bibr">47</a>]. (<b>c</b>) SEM image of a silver heating device fabricated inside a microchannel (left) and temperature versus heating time measurement (right). Modified with permission [<a href="#B48-micromachines-10-00827" class="html-bibr">48</a>]. (<b>d</b>) Transmission microscope image of a silver microwave antenna (left) that couples spin-transitions of nitrogen vacancies in nanodiamonds and optical detection of magnetic resonances (right).</p> "> Figure 5
<p>Sensor components fabricated by MDLW. (<b>a</b>) PVP-functionalized gold structures fabricated inside a microchannel that enable detection of gaseous 4-MBT, ethanol, acetone, and other gaseous species via surface enhanced Raman scattering: scheme of measurement setup (top), SERS detection of 4-MBT (bottom left), and ethanol as well as acetone (bottom right). Reproduced with permission [<a href="#B52-micromachines-10-00827" class="html-bibr">52</a>]. (<b>b</b>) Scheme of setup (top) to demonstrate the functionality of silver wires for the detection of mechanical forces and measurement of the relative resistance change when applying a small force to the wire (bottom). Reproduced with permission [<a href="#B53-micromachines-10-00827" class="html-bibr">53</a>].</p> "> Figure 6
<p>Metamaterials fabricated by MDLW. (<b>a</b>) SEM image of a parallel silver rod-based metamaterial (left). Inclined angle transmittance measurement (right): for increasing angle, the magnetic mode of a TE-polarized field at 18 THz increasingly couples to the structure. Reproduced with permission [<a href="#B54-micromachines-10-00827" class="html-bibr">54</a>]. (<b>b</b>) SEM image of gold u-type split-ring-resonators (left) and their transmittance and reflectance spectra (right). A clear resonance is observed at 63 THz. Modified with permission [<a href="#B55-micromachines-10-00827" class="html-bibr">55</a>]. (<b>c</b>) SEM image of a silver c-type split-ring-resonator array (left) and its transmittance spectrum (right). The electric and magnetic resonances are observed. Reproduced with permission [<a href="#B56-micromachines-10-00827" class="html-bibr">56</a>]. (<b>d</b>) U-type silver split-ring-resonator arrays with different leg lengths (left and right) and their corresponding reflectance (center) showing a shift of the resonance towards lower wavelength with lower leg length.</p> "> Figure 7
<p>3D components fabricated by MDLW. (<b>a</b>) SEM image of two perpendicular gold-composite wires with one of the wires bridging the second one. Reproduced with permission [<a href="#B58-micromachines-10-00827" class="html-bibr">58</a>]. (<b>b</b>) Calculated focal intensity distribution (left) that is obtained by shaping the incident field using a spatial-light-modulator. The shaped focal intensity distribution is used to fabricate the double helix unit cell of a metamaterial in a single shot. An inclined view of the metamaterial is shown in the SEM image in the middle. The chiral metamaterial acts as a polarizer for circularly polarized light with the measured transmittance shown in the right graph. Reproduced with permission [<a href="#B59-micromachines-10-00827" class="html-bibr">59</a>].</p> "> Figure 8
<p>(<b>a</b>) SEM image of a nickel microarchitecture after pyrolysis (top left) and close-up (top center). The scale bars correspond to 2 µm and 500 nm, respectively. Bottom left: SEM images during compression test. Scale bars correspond to 5 µm. Right: Diagram of measured specific strength versus structure beam size. Reproduced with permission [<a href="#B60-micromachines-10-00827" class="html-bibr">60</a>]. (<b>b</b>) Photographs of diverse large-scale 3D silver-composite structures fabricated by projection lithography instead of a laser scanning procedure (left images). Right table: Residues measured via thermogravimetric analysis (TGA), T<math display="inline"><semantics> <msub> <mrow/> <mi>g</mi> </msub> </semantics></math> values from differential scanning calorimetry (DSC) experiments and resistivity for different photoresist compositions. Reproduced with permission [<a href="#B61-micromachines-10-00827" class="html-bibr">61</a>].</p> ">
Abstract
:1. Introduction
2. Short Introduction to Direct Laser Writing of Metallic Structures
3. Challenges of MDLW and Common Structure Properties
4. Functional Planar Metallic Microcomponents Fabricated by Direct Laser Writing
4.1. Electronic Components
4.2. Sensors
4.3. Metamaterials
5. Functional 3D Metallic Microcomponents Fabricated by Direct Laser Writing
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MEMS | Microelectromechanical systems |
HF | High-frequency |
DIW | Direct ink writing |
EHD | Electrohydrodynamic printing |
LAED | Laser-assisted electrophoretic deposition |
LIFT | Laser-induced forward transfer |
MCE | Meniscus-confined electroplating |
ELD | Electroplating of locally dispensed ions in liquid |
DLW | Direct laser writing |
MDLW | Metal direct laser writing |
3D | Three-dimensional |
NA | Numerical aperture |
AOM | Acousto-optical modulator |
EDX | Energy-dispersive X-ray spectroscopy |
PET | Polyethylene terephthalate |
OFET | Organic field effect transistor |
PMMA | Polymethyl methacrylate |
SEM | Scanning electron microscopy |
PDMS | Polydimethylsiloxane |
ODMR | Optically detected magnetic resonance |
SERS | Surface-enhanced Raman scattering |
4-MBT | 4-methylbenzenethiol |
PVP | Poly(vinylpyrrolidone) |
TE | Transversal electric |
NDSS | N-decanoylsarcosine sodium |
2D | Two-dimensional |
TGA | Thermogravimetric analysis |
DSC | Differential scanning calorimetry |
DLP | Digital light processing |
PEGDA | Polyethylene glycol diacrylate |
References
- Vaezi, M.; Seitz, H.; Yang, S. A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Technol. 2013, 67, 1721–1754. [Google Scholar]
- Lewis, J.A. Direct Ink Writing of 3D Functional Materials. Adv. Funct. Mater. 2006, 16, 2193–2204. [Google Scholar] [CrossRef]
- Onses, M.S.; Ferreira, P.M.; Alleyne, A.G.; Rogers, J.A. Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing. Small 2015, 11, 4237–4266. [Google Scholar] [CrossRef] [PubMed]
- Takai, T.; Nakao, H.; Iwata, F. Three-dimensional microfabrication using local electrophoresis deposition and a laser trapping technique. Opt. Express 2014, 18, 28109–28117. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, A.I.; Kiyan, R.; Chichkov, B.N. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays. Opt. Express 2010, 18, 21198–21203. [Google Scholar] [CrossRef]
- Suryavanshi, A.P.; Yu, M.-F. Probe-based electrochemical fabrication of freestanding Cu nanowire array. Appl. Phys. Lett. 2006, 88, 083103. [Google Scholar] [CrossRef]
- Momotenko, D.; Page, A.; Adobes-Vidal, M.; Unwin, P.R. Write-Read 3D Patterning with a Dual-Channel Nanopipette. ACS Nano 2016, 10, 8871–8878. [Google Scholar] [CrossRef]
- Ladd, C.; So, J.-H.; Muth, J.; Dickey, M.D. 3D Printing of Free-Standing Liquid Metal Microstructures. Adv. Mater. 2013, 25, 5081–5085. [Google Scholar] [CrossRef]
- Parekh, D.P.; Ladd, C.; Panich, L.; Moussa, K.; Dickey, M.D. 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab Chip 2016, 16, 1812–1820. [Google Scholar] [CrossRef]
- Farahani, R.D.; Dube, M.; Therriault, D. Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications. Adv. Mater. 2016, 28, 5794–5821. [Google Scholar] [CrossRef]
- Hirt, L.; Reiser, A.; Spolenak, R.; Zambelli, T. Additive Manufacturing of Metal Structures at the Micrometer Scale. Adv. Mater. 2017, 29, 1604211. [Google Scholar] [CrossRef] [PubMed]
- LaFratta, C.N.; Fourkas, J.T.; Baldacchini, T.; Farrer, R.A. Multiphoton Fabrication. Angew. Chem. Int. Ed. 2007, 46, 6238–6258. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, J.K.; Renner, M.; Waller, E.H.; von Freymann, G. Three-Dimensional µ-Printing: An Enabling Technology. Adv. Opt. Mater. 2015, 3, 1488–1507. [Google Scholar] [CrossRef]
- Barner-Kowollik, C.; Bastmeyer, M.; Blasco, E.; Delaittre, G.; Müller, P.; Richter, B.; Wegener, M. 3D Laser Micro- and Nanoprinting: Challenges for Chemistry. Angew. Chem. 2017, 56, 15828–15845. [Google Scholar] [CrossRef]
- Tanaka, T.; Ishikawa, A.; Kawata, S. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Appl. Phys. Lett. 2006, 88, 081107. [Google Scholar] [CrossRef]
- Waller, E.H.; von Freymann, G. From photoinduced electron transfer to 3D metal microstructures via direct laser writing. Nanophotonics 2018, 7, 1259–1277. [Google Scholar] [CrossRef]
- Ishikawa, A.; Tanaka, T.; Kawata, S. Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye. Appl. Phys. Lett. 2006, 89, 113102. [Google Scholar] [CrossRef]
- Auyeung, R.C.Y.; Kim, H.; Mathews, S.A.; Pique, A. Laser Direct-Write of Metallic Nanoparticle Inks. JLMN 2007, 2, 21–25. [Google Scholar] [CrossRef]
- Maruo, S.; Saeki, T. Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. Opt. Express 2007, 16, 1174–1179. [Google Scholar] [CrossRef]
- Cao, Y.; Takeasu, N.; Tanaka, T.; Duan, X.; Kawata, S. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 2009, 5, 1144–1148. [Google Scholar] [CrossRef]
- Kang, S.Y.; Vora, K.; Mazur, E. One-step direct-laser metal writing of sub-100nm 3D silver nanostructures in a gelatin matrix. Nanotechnology 2015, 26, 121001. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.-C.; Zhang, Y.-L.; Hang, B.; Chen, Q.-D.; Sun, H.-B. Femtosecond-Laser Direct Writing of Metallic Micro/Nanostructures: From Fabrication Strategies to Future Applications. Small Methods 2018, 2, 1700413. [Google Scholar] [CrossRef]
- LaFratta, C.N.; Lim, D.; O’Malley, K.; Baldacchini, T.; Fourkas, J.T. Direct Laser Patterning of Conductive Wires on Three-Dimensional Polymeric Microstructures. Chem. Mater. 2006, 18, 2038–2042. [Google Scholar] [CrossRef]
- Gansel, J.K.; Thiel, M.; Rill, M.S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science 2009, 325, 1513–1515. [Google Scholar] [CrossRef] [PubMed]
- Radke, A.; Gissibl, T.; Klotzbücher, T.; Braun, P.V.; Giessen, H. Three-Dimensional Bichiral Plasmonic Crystals Fabricated by Direct Laser Writing and Electroless Silver Plating. Adv. Mater. 2011, 23, 3018–3021. [Google Scholar] [CrossRef]
- Terzaki, K.; Vasilantonakis, N.; Gaidukeviciute, A.; Reinhardt, C.; Fotakis, C.; Vamvakaki, M.; Farsari, M. 3D conducting nanostructures fabricated using direct laser writing. Opt. Mater. Express 2011, 1, 586–597. [Google Scholar] [CrossRef]
- Vasilantonakis, N.; Terzaki, K.; Sakellari, I.; Purlys, V.; Gray, D.; Soukoulis, C.M.; Vamvakaki, M.; Kafesaki, M.; Farsari, M. Three-Dimensional Metallic Photonic Crystals with Optical Bandgabps. Adv. Mater. 2012, 24, 1101–1105. [Google Scholar] [CrossRef]
- Tottori, S.; Zhang, L.; Qiu, F.; Krawczyk, K.K.; Franco-Obregon, A.; Nelson, B.J. Magnetical Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport. Adv. Mater. 2012, 24, 811–816. [Google Scholar] [CrossRef]
- Bagheri, S.; Weber, K.; Gissibl, T.; Weiss, T.; Neubrech, F.; Giessen, H. Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement. ACS Photonics 2015, 2, 779–786. [Google Scholar] [CrossRef]
- Gu, X.W.; Greer, J.R. Ultra-strong architected Cu meso-lattices. Extrem. Mech. Lett. 2015, 2, 7–14. [Google Scholar]
- Faniayeu, I.; Mizeikis, V. Vertical split-ring resonator perfect absorber metamaterial for IR frequencies realized via femtosecond direct laser writing. Appl. Phys. Express 2017, 10, 062001. [Google Scholar] [CrossRef]
- Oran, D.; Rodriques, S.G.; Gao, R.; Asano, S.; Skylar-Scott, M.A.; Chen, F.; Tillberg, P.W.; Marblestone, A.H.; Boyden, E.S. 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds. Science 2018, 362, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Afshar, A.; Yang, H.; Portela, C.M.; Kochmann, D.M.; Di Leo, C.V.; Greer, J.R. Electrochemically reconfigurable architected materials. Nature 2019, 573, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Maruo, S.; Nakamura, O.; Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 1997, 22, 132–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jesacher, A.; Booth, M.J. Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Opt. Express 2010, 18, 21090–21099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cumming, B.P.; Jesacher, A.; Booth, M.J.; Wilson, T.; Gu, M. Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate. Opt. Express 2011, 19, 9419–9425. [Google Scholar] [CrossRef] [PubMed]
- Waller, E.H.; Renner, M.; von Freymann, G. Active aberration- and point-spread-function control in direct laser writing. Opt. Express 2019, 20, 24949–24956. [Google Scholar] [CrossRef]
- Yang, L.; El-Tamer, A.; Hinze, U.; Li, J.; Hu, Y.; Huang, W.; Chu, J.; Chichkov, B.N. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Opt. Lasers Eng. 2015, 70, 26–32. [Google Scholar] [CrossRef]
- Fischer, J.; von Freymann, G.; Wegener, M. The Materials Challenge in Diffraction-Unlimited Direct Laser Writing Optical Lithograhpy. Adv. Mater. 2010, 22, 3578–3582. [Google Scholar] [CrossRef]
- Fischer, J.; Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 2012, 7, 22–44. [Google Scholar] [CrossRef]
- Bückmann, T.; Stenger, N.; Kadic, M.; Kaschke, J.; Frölich, A.; Kennerknecht, T.; Eberl, C.; Thiel, M.; Wegener, M. Tailored 3D Mechnaical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography. Adv. Mater. 2012, 22, 2710–2714. [Google Scholar] [CrossRef] [PubMed]
- Mueller, P.; Thiel, M.; Wegener, M. 3D direct laser writing using a 405 nm diode laser. Opt. Lett. 2014, 39, 6847–6850. [Google Scholar] [CrossRef] [PubMed]
- Mayer, F.; Richter, S.; Westhauser, J.; Blasco, E.; Barner-Kowollik, C.; Wegener, M. Multimaterial 3D laser microprinting using an integrated microfluidic system. Sci. Adv. 2019, 5, eaau9160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hippler, M.; Blasco, E.; Qu, J.; Tanaka, M.; Barner-Kowollik, C.; Wegener, M.; Bastmeyer, M. Controlling the shape of 3D microstructures by temperature and light. Nat. Commun. 2019, 10, 232. [Google Scholar] [CrossRef] [Green Version]
- Tabrizi, S.; Cao, Y.Y.; Lin, H.; Jia, B.H. Two-photon reduction: A cost-effective method for fabrication of functional metallic nanostructures. Sci. China-Phys. Mech. Astron. 2017, 60, 034201. [Google Scholar] [CrossRef]
- He, G.; Zheng, M.; Dong, X.; Jin, F.; Liu, J.; Duan, X.; Zhao, Z. The Conductive Silver Nanowires Fabricated by Two-beam Laser Direct Writing on the Flexible Sheet. Sci. Rep. 2017, 7, 41757. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, D.; Liu, X.; Wang, L.; Xu, W.; Haraguchi, M.; Li, A. Fabrication of microelectrodes based on precursor doped with metal seeds by femtosecond laser direct writing. Opt. Lett. 2014, 39, 434–437. [Google Scholar] [CrossRef]
- Xu, B.; Xia, H.; Niu, L.; Zhang, Y.; Sun, K.; Chen, Q.; Xu, Y.; Lv, Z.; Li, Z.; Misawa, H.; et al. Flexible Nanowiring of Metal on Nonplanar Substrates by Femtosecond-Laser-Induced Electroless Plating. Small 2010, 6, 1762–1766. [Google Scholar] [CrossRef]
- Jelezko, F.; Wrachtrup, J. Single defect centres in diamond: A review. Phys. Status Solidi 2006, 203, 3207–3225. [Google Scholar] [CrossRef]
- Dobrovitski, V.V.; Fuchs, G.D.; Falk, A.L.; Santori, C.; Awschalom, D.D. Quantum Control over Single Spins in Diamond. Annu. Rev. Condens. Matter Phys. 2013, 4, 23–50. [Google Scholar] [CrossRef]
- Schirhagl, R.; Chang, K.; Loretz, M.; Degen, C.L. Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology. Annu. Rev. Chem. 2014, 65, 83–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.R.; Lee, H.K.; Yang, Y.; Koh, C.S.L.; Lay, C.L.; Lee, Y.H.; Phang, I.Y.; Ling, X.Y. Direct Metal Writing and Precise Positioning of Gold Nanoparticles within Microfluidic Channels for SERS Sensing of Gaseous Analytes. ACS Appl. Mater. Interfaces 2017, 9, 39584–39593. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, Y.; Obata, K.; Machida, M.; Hohnholz, A.; Koch, J.; Suttmann, O.; Terakawa, M. Femtosecond-laser-based fabrication of metal/PDMS composite microstructures for mechanical force sensing. Opt. Mater. Express 2017, 7, 4203–4213. [Google Scholar] [CrossRef]
- Ishikawa, A.; Tanaka, T. Two-Photon Fabrication of Three-Dimensional Metallic Nanostructures for Plasmonic Metamaterials. JLMN 2012, 7, 11–15. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, Y.; Zheng, M.; Jia, Y.; Liu, J.; Dong, X.; Zhao, Z.; Li, C.; Xia, Y.; Ye, T.; et al. Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction. Opt. Mater. Express 2013, 3, 1660–1673. [Google Scholar] [CrossRef]
- Tabrizi, S.; Cao, Y.; Cumming, B.P.; Jia, B.; Gu, M. Functional Optical Plasmonic Resonators Fabricated. Adv. Opt. Mater. 2016, 4, 529–533. [Google Scholar] [CrossRef]
- Shukla, S.; Furlani, E.P.; Vidal, X.; Swihart, M.T.; Prasad, P.N. Two-Photon Lithography of Sub-Wavelength Metallic Structures in a Polymer Matrix. Adv. Mater. 2010, 22, 3695–3699. [Google Scholar] [CrossRef]
- Blasco, E.; Müller, J.; Müller, P.; Trouillet, V.; Schön, M.; Scherer, T.; Barner-Kowollik, C.; Wegener, M. Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing. Adv. Mater. 2016, 28, 3592–3595. [Google Scholar] [CrossRef]
- Liu, L.; Yang, D.; Wan, W.; Yang, H.; Gong, Q.; Li, Y. Fast fabrication of silver helical metamaterial with single-exposure femtosecond laser photoreduction. Nanophotonics 2019, 8, 1087–1093. [Google Scholar] [CrossRef]
- Vyatskikh, A.; Delalande, S.; Kudo, A.; Zhang, X.; Portela, C.M.; Greer, J.R. Additive manufacturing of 3D nano-architected metals. Nature 2018, 9, 593. [Google Scholar] [CrossRef]
- Fantino, E.; Chiappone, A.; Roppolo, I.; Manfredi, D.; Bongiovanni, R.; Pirri, C.F.; Calignano, F. 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles. Adv. Mater. 2016, 28, 3712–3717. [Google Scholar] [CrossRef] [PubMed]
- Abargues, R.; Rodrigues-Canto, P.J.; Calzada-Garcia, R.; Martinez-Pastor, J. Patterning of Conducting Polymers Using UV Lithography: The in-Situ Polymerization Approach. J. Phys. Chem. C 2012, 116, 17547–17553. [Google Scholar] [CrossRef]
Component Type | Material | Substrate | Resistivity | Dim. | Ref. |
---|---|---|---|---|---|
wires | Ag | flexible PET membrane | 2D | [46] | |
OFET electrodes | Ag | PMMA | 2D | [47] | |
microheater | Ag | non-planar microchannel | 2.5D | [48] | |
GHz antenna | Ag | glass | 2D | own work | |
(previously unpublished) | |||||
gas sensor | Au-PVP- | microchannel | - | 2D | [52] |
composite | |||||
force sensor | Ag-PDMS- | glass, gold electrodes | 2D | [53] | |
composite | |||||
metamaterial | Ag | quarz | 2D | [54] | |
metamaterial | Au | glass | 2D | [55] | |
metamaterial | Ag | glass | ? | 2D | [56] |
metamaterial | Au-SU8- | glass | - | 2D | [57] |
composite | |||||
metamaterial | Ag | glass | 2D | own work | |
(previously unpublished) | |||||
wires | Au-PEG- | glass | 3D | [58] | |
composite | (after annealing) | ||||
metamaterial | Ag | glass | 3D | [59] | |
nanolattice | Ni | glass | - | 3D | [60] |
microlattice | Ag-PEGDA- | glass | 3D | [61] | |
composite |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waller, E.H.; Dix, S.; Gutsche, J.; Widera, A.; von Freymann, G. Functional Metallic Microcomponents via Liquid-Phase Multiphoton Direct Laser Writing: A Review. Micromachines 2019, 10, 827. https://doi.org/10.3390/mi10120827
Waller EH, Dix S, Gutsche J, Widera A, von Freymann G. Functional Metallic Microcomponents via Liquid-Phase Multiphoton Direct Laser Writing: A Review. Micromachines. 2019; 10(12):827. https://doi.org/10.3390/mi10120827
Chicago/Turabian StyleWaller, Erik Hagen, Stefan Dix, Jonas Gutsche, Artur Widera, and Georg von Freymann. 2019. "Functional Metallic Microcomponents via Liquid-Phase Multiphoton Direct Laser Writing: A Review" Micromachines 10, no. 12: 827. https://doi.org/10.3390/mi10120827