Gallium Nitride High Electron Mobility Transistor Device with Integrated On-Chip Array Junction Temperature Monitoring Unit
<p>(<b>a</b>) The cross-sectional structure of GaN-HEMT power device cell with integrated temperature monitoring unit. (<b>b</b>) Photograph of the GaN power device with an embedded temperature sensing unit taken by a digital camera. (<b>b’</b>) A magnified view of the temperature sensing unit. (<b>c</b>) Schematic of the preparation procedure for GaN power devices with integrated distributed junction temperature monitoring unit. (Arrows denote the sequential direction of the fabrication steps).</p> "> Figure 2
<p>Transfer characteristics of the fabricated GaN-HEMT at V<sub>DS</sub> = 3 V.</p> "> Figure 3
<p>Output characteristics of the fabricated GaN-HEMT.</p> "> Figure 4
<p>Relative resistance changes versus the applied temperature of the sensing unit at different positions, corresponding to the left (<b>a</b>), middle (<b>b</b>), and right (<b>c</b>) positions, respectively.</p> "> Figure 5
<p>(<b>a</b>–<b>d</b>) Thermal images of the GaN-HEMT power device with integrated temperature monitoring unit under different drain current conditions, corresponding to constant currents of 0.0 A (<b>a</b>), 0.5 A (<b>b</b>), 1.0 A (<b>c</b>), and 1.5 A (<b>d</b>). (<b>e</b>) Comparison of the temperatures measured by the infrared imager and the temperature monitoring units at different locations under normal working conditions of the device. (Arrows associate the data curves with their vertical axes).</p> ">
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gareau, J.; Hou, R.Y.; Emadi, A. Review of Loss Distribution, Analysis, and Measurement Techniques for GaN HEMTs. IEEE Trans. Power Electron. 2020, 35, 7405–7418. [Google Scholar] [CrossRef]
- Qin, H.H.; Peng, J.J.; Zhang, Z.M.; Zhang, F.H.; Zhao, X.; Xu, Z.X. Junction temperature prediction method of GaN HEMT power devices based on accurate on-voltage testing. Energy Rep. 2023, 9, 389–395. [Google Scholar] [CrossRef]
- Li, W.H.; Chen, Y.X.; Luo, H.Z.; Zhou, Y.; Yang, H.; He, X.N. Review and prospect of junction temperature extraction principle of high power semiconductor devices. Proc. CSEE 2016, 36, 3546–3557. [Google Scholar] [CrossRef]
- Wen, H.Q.; Li, X.Y.; Zhang, F.; Qu, Z.F.; Jiang, Y.Z.; Luo, N.Y.; Wang, G.Y.; Wang, X.; Liu, W.; Cui, M.; et al. Junction Temperature Extraction for Silicon Carbide Power Devices: A Comprehensive Review IEEE Trans. Power Electron. 2025, 40, 3090–3111. [Google Scholar] [CrossRef]
- Morel, C.; Morel, J.Y. Power Semiconductor Junction Temperature and Lifetime Estimations: A Review. Energies 2024, 17, 4589. [Google Scholar] [CrossRef]
- Chou, H.P.; Cheng, S.; Cheng, C.H.; Chuang, C.W. Development and characterization of the thermal behavior of packaged cascode GaN HEMTs. Mater. Sci. Semicond. Process 2016, 41, 304–311. [Google Scholar] [CrossRef]
- Kuball, M.; Pomeroy, J.W. A Review of Raman Thermography for Electronic and Opto-Electronic Device Measurement with Submicron Spatial and Nanosecond Temporal Resolution. IEEE Trans. Device Mater. Reliab. 2016, 16, 667–684. [Google Scholar] [CrossRef]
- Choi, S.; Heller, E.R.; Dorsey, D.; Vetury, R.; Graham, S. Thermometry of AlGaN/GaN HEMTs Using Multispectral Raman Features. IEEE Trans. Electron Devices 2013, 60, 1898–1904. [Google Scholar] [CrossRef]
- Matei, C.; Urbonas, J.; Votsi, H.; Kendig, D.; Aaen, P.H. Dynamic Temperature Measurements of a GaN DC-DC Boost Converter at MHz Frequencies IEEE Trans. Power Electron. 2020, 35, 8303–8310. [Google Scholar] [CrossRef]
- Chen, X.J.; Tang, D.S. Thermal Simulations in GaN HEMTs Considering the Coupling Effects of Ballistic-Diffusive Transport and Thermal Spreading. IEEE Trans. Compon. Pack. Manuf. Technol. 2023, 13, 1929–1943. [Google Scholar] [CrossRef]
- Li, L.A.; Li, X.B.; Pu, T.F.; Cheng, S.H.; Li, H.D.; Ao, J.P. Vertical GaN-Based Temperature Sensor by Using TiN Anode Schottky Barrier Diode. IEEE Sens. J. 2021, 21, 1273–1278. [Google Scholar] [CrossRef]
- Smirnov, V.; Sergeev, V.; Gavrikov, A.; Kulikov, A. Measuring Thermal Resistance of GaN HEMTs Using Modulation Method. IEEE Trans. Electron Devices 2020, 67, 4112–4117. [Google Scholar] [CrossRef]
- Fu, Z.W.; Zheng, B.J.; Huang, X.; Zhou, B.; Yang, X.F.; Guo, H.X. Comparative Research of Infrared Thermography and Electrical Measurement Method for the Thermal Characteristics Test of GaN HEMT Devices. In Proceedings of the 22nd International Conference on Electronic Packaging Technology (ICEPT), Xiamen, China, 14–17 September 2021. [Google Scholar]
- Shan, Y.W.; Gao, W.; Huang, Z.Y.; Kuang, W.Z.; Wu, Z.; Zhang, B. Test Methods and Principles of Thermal Resistance for GaN HEMT Power Devices. In Proceedings of the 21st International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, China, 12–15 August 2020. [Google Scholar]
- Griffo, A.; Wang, J.B.; Colombage, K.; Kamel, T. Real-Time Measurement of Temperature Sensitive Electrical Parameters in SiC Power MOSFETs. IEEE Trans. Ind. Electron. 2018, 65, 2663–2671. [Google Scholar] [CrossRef]
- Yang, X.; Heng, K.; Dai, X.Y.; Wu, X.L.; Liu, G.Y. A Temperature-Dependent Cauer Model Simulation of IGBT Module With Analytical Thermal Impedance Characterization. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 3055–3065. [Google Scholar] [CrossRef]
- Reiner, R.; Waltereit, P.; Weiss, B.; Wespel, M.; Meder, D.; Mikulla, M.; Quay, R.; Ambacher, O. Linear Temperature Sensors in High-Voltage GaN-HEMT Power Devices. In Proceedings of the 31st Annual IEEE Applied Power Electronics Specialists Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 2083–2086. [Google Scholar]
- Visvkarma, A.K.; Sharma, C.; Laishram, R.; Kapoor, S.; Rawal, D.S.; Vinayak, S.; Saxena, M. Comparative study of Au and Ni/Au gated AlGaN/GaN high electron mobility transistors. AIP Adv. 2019, 9, 5. [Google Scholar]
- Mahajan, S.S.; Tomar, A.; Laishram, R.; Kapoor, S.; Mailk, A.; Naik, A.A.; Vinayak, S.; Sehgal, B.K. Gate leakage current suppression in AlGaN/GaN HEMT by RTP annealing. In Physics of Semiconductor Devices: 17th International Workshop on the Physics of Semiconductor Devices 2013; Environmental Science and Engineering; Springer International Publishing: Cham, Switzerland, 2013; pp. 145–147. [Google Scholar]
- Lee, F.; Su, L.Y.; Wang, C.H.; Wu, Y.R.; Huang, J.J. Impact of Gate Metal on the Performance of p-GaN/AlGaN/GaN High Electron Mobility Transistors. IEEE Electron Device Lett. 2015, 36, 232–234. [Google Scholar] [CrossRef]
- Huang, S.; Liu, X.Y.; Wei, K.; Liu, G.G.; Wang, X.H.; Sun, B.; Yang, X.L.; Shen, B.; Liu, C.; Liu, S.H.; et al. O3-sourced atomic layer deposition of high quality Al2O3 gate dielectric for normally-off GaN metal-insulator-semiconductor high-electron-mobility transistors. Appl. Phys. Lett. 2015, 106, 232–234. [Google Scholar] [CrossRef]
- Lei, S.; Su, N.N.; Li, M.W. Thermal-Resistance Effect of Graphene at High Temperatures in Nanoelectromechanical Temperature Sensors. Micromachines 2022, 13, 2078. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.Y.; Liu, J.Y.; Niu, J.R. Research of a Novel Ag Temperature Sensor Based on Fabric Substrate Fabricated by Magnetron Sputtering. Materials 2021, 14, 6014. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Su, Y.; Xiao, M.; Wu, J.; Zhang, X.; Chen, H. Gallium Nitride High Electron Mobility Transistor Device with Integrated On-Chip Array Junction Temperature Monitoring Unit. Micromachines 2025, 16, 304. https://doi.org/10.3390/mi16030304
Chang Y, Su Y, Xiao M, Wu J, Zhang X, Chen H. Gallium Nitride High Electron Mobility Transistor Device with Integrated On-Chip Array Junction Temperature Monitoring Unit. Micromachines. 2025; 16(3):304. https://doi.org/10.3390/mi16030304
Chicago/Turabian StyleChang, Yukuan, Yue Su, Mingke Xiao, Jiatao Wu, Xu Zhang, and Hongda Chen. 2025. "Gallium Nitride High Electron Mobility Transistor Device with Integrated On-Chip Array Junction Temperature Monitoring Unit" Micromachines 16, no. 3: 304. https://doi.org/10.3390/mi16030304
APA StyleChang, Y., Su, Y., Xiao, M., Wu, J., Zhang, X., & Chen, H. (2025). Gallium Nitride High Electron Mobility Transistor Device with Integrated On-Chip Array Junction Temperature Monitoring Unit. Micromachines, 16(3), 304. https://doi.org/10.3390/mi16030304