
Citation: Ma, J.; Guo, Z.; Song, M.

SSPRD: A Shared-Storage-Based

Hardware Packet Reordering and

Deduplication System for Multipath

Transmission in Wide Area Networks.

Micromachines 2024, 15, 1323. https://

doi.org/10.3390/mi15111323

Academic Editor: Arman Roohi

Received: 15 August 2024

Revised: 19 October 2024

Accepted: 27 October 2024

Published: 30 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

SSPRD: A Shared-Storage-Based Hardware Packet Reordering
and Deduplication System for Multipath Transmission in Wide
Area Networks
Jiandong Ma 1,2 , Zhichuan Guo 1,2,* and Mangu Song 1,3

1 National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of
Sciences, No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China; majd@dsp.ac.cn (J.M.);
songmg@dsp.ac.cn (M.S.)

2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China

3 Suzhou Haiwang Network Technologies Co., Ltd., Suzhou 215163, China
* Correspondence: guozc@dsp.ac.cn

Abstract: To increase bandwidth and overcome packet loss in Wide Area Networks (WANs), per-
packet multipath transmission and redundant transmission are increasingly being used as Software-
Defined Wide Area Network (SD-WAN) solutions. However, this results in out-of-order and duplicate
packets in the destination network. To restore sequential and unique data streams for multiple con-
nections, hardware packet buffers with significant depth are required due to the large delay difference
between WAN paths. To address this issue, SSPRD, a shared-storage-based packet reordering and
deduplication system using a Field-Programmable Gate Array (FPGA), is proposed. The storage
space for packets and sub-buffers is shared by all sessions with dynamic allocation. Packets are stored
in the DDR and are sorted by their descriptors in the buffers. We also develop a sub-buffer-based
timeout event handling algorithm. While supporting four sessions, SSPRD achieves a deep reorder
buffer on hardware, with a depth of up to 15,360 packets per session. Compared with other solutions,
SSPRD reduces buffer space usage by 62.5%, and reaches a packet reordering and deduplicating
performance of 10 Gbps for 1500-byte packets.

Keywords: packet reordering; multipath transmission; WAN; FPGA

1. Introduction

Wide Area Networks (WANs) are telecommunications networks that extend over
a large geographical area, including enterprise networks, education networks, and the
Internet. Users can access WANs through various wired or wireless methods provided by
different Internet Service Providers (ISPs).

However, compared to Local Area Networks (LANs), WANs, especially the Internet,
suffer from low bandwidth, high latency, and occasional packet loss and disorder [1]. For
enterprises which have branch offices located in a separate geographic area, the limited
and unstable performance of the Internet leads to problems such as application response
timeouts, slow file transfers, and video lag in online meetings between branch offices,
between branch offices and headquarters, or between data centers.

To address this issue, WAN optimization [2] based on Software-Defined Wide Area
Network (SD-WAN) architecture is proposed. Multipath transmission and redundant
transmission are two typical optimization methods. In the SD-WAN solution of Huawei [3],
“multi-send-selective-receive” transmission (redundant transmission) and “per-packet load
balancing” transmission are proposed. Multipath transmission allows data streams to be
transmitted via different paths to increase bandwidth [4] and load balancing. Per-packet
multipath transmission, capable of splitting “elephant flows” [5], outperforms traditional
per-flow multipath transmission and is widely deployed in new network architectures,

Micromachines 2024, 15, 1323. https://doi.org/10.3390/mi15111323 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi15111323
https://doi.org/10.3390/mi15111323
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0009-0000-9171-3118
https://orcid.org/0000-0003-2489-9949
https://doi.org/10.3390/mi15111323
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi15111323?type=check_update&version=1

Micromachines 2024, 15, 1323 2 of 17

such as Information-Centric Networking (ICN) [6], and other network environments such
as Data Center Networks (DCNs) [7] and mobile networks [8]. Redundant transmission
replicates data packets and transmits them simultaneously through different paths to fix
packet loss and reduce latency [9].

However, multipath transmission and redundant transmission lead to packet disorder
and duplication at the destination network. Unfortunately, most applications and transport
protocols do not support handling a large number of out-of-order or duplicate packets.
QUIC, TCP, RoCEv2, and other transport protocols with data integrity checks assume
that packet loss occurs when receiving disordered packets, and trigger retransmission or
congestion window reduction, severely impacting performance. Moreover, sorting packets
or discarding duplicate packets through a network stack or user software will consume
significant CPU cycles and PCIe-Memory bandwidth at the destination host, which affects
other applications. The Customer Premises Equipment (CPE) devices [3] at the destination
network achieve packet reordering and deduplicating. However, the implementation
details are not disclosed.

Therefore, a hardware packet reordering and deduplication system is required for
the Customer Premises Equipment (CPE) located in the destination SD-WAN network
when applying multipath transmission and redundant transmission. The packets can be
identified by packet number (PN). The system can also be used for PN-based network
protocol packet sorting and deduplicating, such as RTP, QUIC, RoCEv2, and other user-
defined protocols. The system should be able to deduplicate and reorder the incoming
packet streams and forward the processed streams to the network hosts that are running
multiple kinds of user applications.

For reordering, the system should have a packet buffer whose depth is greater than the
Out-of-Order Degree [10], as well as the Maximum Packet Disorder Distance, max_PDD,
for each session. In this paper, network delay refers to the time it takes for a packet to travel
from the source to the destination over a network, which is the one-trip time or half of the
Round-Trip Time (RTT). Because multipath transmission is a reason for packet disordering,
max_PDD is mainly influenced by the Maximum Multipath Delay Difference, max_MDD.
We investigated the value of max_MDD in WANs. According to network measurements
performed by Xu [11] in China, from Chongqing to Gansu (which are separated by a
distance of 985km), the backbone delay varies from about 7.5 ms to nearly 27.5 ms due
to different routing paths. PingPlotter [12] suggested that network latency is related to
distance and connection type. Every 120 miles causes 1 ms of delay, and the inherent delay
of cable internet is between 2.5 ms and 20 ms. Tianxia [13] compares the latency between a
public network and an SD-WAN optimized network. Due to the use of different networks,
most of the delay differences are within 7.5 ms, with the maximum being 16.25 ms (Hong
Kong–Frankfurt). Considering the measurement results above and delay jitter [14], we
assume that the maximum delay difference between multiple WAN paths does not exceed
17.5 ms.

At a B bandwidth with an MTU packet size, the Maximum Packet Disorder Distance
max_PDD at the receiver can be calculated by max_MDD using Equation (1).

max_PDD =
B × max_MDD

MTU
. (1)

For WANs, the typical bandwidth is 10 Gbps. And in this study, we aimed to support
1500-byte packets, which is the Maximum Transmission Unit (MTU) in WANs. When
B = 10 Gbps, max_MDD = 17.5 ms, and MTU = 1500 B, we have max_PDD = 14,583.

Therefore, in order to handle out-of-order packets in an environment with a 10 Gbps
bandwidth, a 1500-byte packet size, and a 17.5 ms max multipath delay difference, the packet
reordering and deduplication system should have a buffer with a depth of 14,583 packets
per session while supporting multiple sessions.

Current hardware packet reordering and deduplication methods mainly use data
structures such as chains (linked lists) [15], Content-Addressable Memory (CAM), shift

Micromachines 2024, 15, 1323 3 of 17

registers [16], Random Access Memory (RAM) (ring buffer, array) [17–20], and parallel
FIFO (First-In First-Out) memories. They are suitable for specific disorder modes, assuming
rare pkt loss or a small max_PDD. When the depth of the buffer increases, these methods
require large logic or storage resources. Alternatively, a packet-metadata-based sorting
approach [21] has been proposed, enabling the sorting of 512 packets. However, as the
max_PDD and the number of connections increase, the module occupies too many logical
and storage resources to be implemented on a chip.

To address this issue, we propose SSPRD, a Shared-Storage-based hardware Packet
Reordering and Deduplication system. We sort the packets by their descriptors instead
of themselves. For the incoming packets which need to be cached, we store them in the
DDR and place their packet descriptors in the session buffers for reordering. Each session’s
buffer consists of 16 sub-buffers and there are 1024 packet descriptors in each sub-buffer.
The main contributions of this work are as follows:

• The storage space of packets and packet descriptor sub-buffers is shared by all sessions
with dynamic allocation. Due to the shared storage strategy and packet timeout mech-
anism, their space usage remains generally constant regardless of the session count.

• A sub-buffer-based timeout event handling algorithm is proposed. We create a timeout
event only for the first packet in a sub-buffer. If the first packet in a sub-buffer has
timed out, we output the timeout packets, keep the non-timeout packets in the sub-
buffer, and create a new timeout event for the sub-buffer.

• While supporting four sessions, SSPRD achieves deep reorder buffering on hardware,
with a depth of up to 15,360 packets per session. Compared with other solutions,
SSPRD reduces buffer space usage by 62.5%, and reaches a packet reordering and
deduplicating performance of 10 Gbps for 1500-byte packets.

2. Related Work

Implementing packet reordering and deduplication on hardware platforms, such
as Field-Programmable Gate Array (FPGA) or Network Interface Card (NIC), not only
leverages the benefits of its high performance and low power consumption, but also
minimizes the usage of CPU and PCIe bandwidth for the receiver hosts.

TCP/IP Offload Engine (TOE) is a hardware component that aims to offload TCP
protocol processing from the CPU. TCP reassembly, involving packet reordering, is one of
its key functions. Zhou [17] proposes a packet reordering scheme on FPGA, supporting
a sorting depth of 43 discontinuous TCP packets. It uses two separate RAMs to store the
start and end sequence numbers and the DDR storage addresses of out-of-order packets.
A scanning method is established to sort and merge frames, similar to that used in [22,23].
Although it supports a number of sessions, it is only suitable for specific out-of-order
patterns caused by packet loss or disorder with low probability. If most incoming packets
are out of order with a large disorder distance, the sorting buffer will be quickly exhausted.

Network Processors (NPs) commonly leverage multiple CPU cores to enhance packet
processing throughput, often introducing packet disorder as a consequence. Meitinger [18]
employs a circular buffer for sorting and discusses the sequence number wrap-around
issue. Wu [15] establishes a chain-based sorting structure, and Traboulsi [20] enhances the
management capability of circular queues. However, these methods assume no packet loss,
and related data structures do not support much deeper sorting. Song et al. [24] enable
in-network packet reordering in Data Center Networks with the help of P4 programmable
switches. which is not feasible in WANs.

Hoang [16] proposes a sorting circuit based on shift registers that is able to insert an
out-of-order packet in the correct order in two clock cycles. However, the circuit is too
complex to achieve a deeper list. For a 16-bit sequence number, a 512-depth packet sorting
list consumes 80% of the Adjustable Logic Modules (ALMs) of a Cyclone V FPGA board.

To improve the sorting depth, Ukon [19] uses a packet array with 480 members for
each session, and each member can store a packet no larger than 2KB. However, storing
packets and buffers on a chip would occupy too many resources in the scenario of our study.

Micromachines 2024, 15, 1323 4 of 17

MELO [25] implements a linked list of bitmap blocks to achieve selective loss recovery
transport and efficient memory management, but the proposed linked list does not support
random access. LEFT [26] improves MELO’s performance with a recently used cache.
However, a cache is only a local optimization method for performance, and introduces
additional design complexity; the random access performance of the linked list is still
unstable. Additionally, in [18,25,26], the systems are simulated but not implemented
on hardware.

For higher memory efficiency, Beneš [21] proposes a packet reordering unit based on
packet metadata. After listing the shortcomings of packet arrays, parallel FIFOs, and other
methods of resource consumption, the author chooses to store the out-of-order packets in
DRAM and sorts their metadatas on a chip using an array. The metadata consist of the
sequence number, the DRAM address, and the packet length. Although the use of metadata
reduces buffer space usage, there is no theoretical support for how much space should
be occupied by packet storage without packet timeout management, introducing the risk
of space exhaustion during packet loss. Moreover, this method has poor scalability and
performance. The space usage of the buffers increases linearly with the number of sessions,
and the design stores all the incoming packets in the DDR regardless of their sequence
number, which leads to a bottleneck in the system throughput.

3. System Design
3.1. Design Overview

Based on the packet buffer in the DDR, SSPRD transforms redundant and out-of-order
data streams into ordered and unique data streams. The architecture of SSPRD is illustrated
in Figure 1. The red arrows represent the AXIS packet stream containing duplicate and
out-of-order packets, entering the system from the left in the diagram. The green arrows
represent the AXIS packet stream sorted and deduplicated by the system, exiting from the
right in the diagram. The yellow arrows denote the AXI4 data interface to the DDR, used
for reading and writing packets and sub-buffers. The black arrows indicate information
channels between modules.

Scheduler

Session Manager

Timer
Subbuffer Pool

Manager

Subbuffer Handler

Pkt Store

M
U

X

DDR

Pkt In Pkt Out

AXIS Pkt Stream, Containing Duplicate and Out-of-order Packets

AXIS Pkt Stream, After Reordering and deduplicating

AXI4 Interface, for Reading and Writing DDR

Figure 1. System overview of SSPRD.

The system is composed of multiple modules. The Session Manager serves as the
primary logic processing module, handling packet and timeout events, and maintaining
the Expected Packet Numbers (EPNs), packet timeout thresholds, and sub-buffer node

Micromachines 2024, 15, 1323 5 of 17

arrays of sessions. The Scheduler manages packet reception, triggers packet processing
requests, and, based on the processing results, either drops packets, caches them in the DDR,
or sends them forward. The Timer module handles the creation and triggering of timeout
events. The Sub-buffer Pool Manager handles the allocation and release of sub-buffers.
The Pkt Store module can store packets in the DDR and output their packet descriptors,
or retrieve packets from the DDR based on their packet descriptors. The Sub-buffer Handler
module manages the scanning and updating of sub-buffers, which consist of thousands
of packet descriptor nodes. The MUX module merges two AXIS packet streams into one
output stream.

In the following sections, we describe the idea of our design and the details of
each module.

3.2. Shared Packet Storage

SSPRD implements shared packet storage, which stores all the packets together and is
shared by all sessions. Packets are stored in an area called Packet Storage Space, as shown in
Figure 2a, and identified by packet descriptors. A Packet descriptor, as shown in Figure 2c,
consists of packet length and packet ID. The blocks of the Packet Storage Space for storing
packets are indexed by packet IDs, which are managed in an area called Available Packet
ID Pool, as shown in Figure 2b. The Pkt Store manages the Packet Storage Space and
the Available Packet ID Pool. It can store the incoming packets in the DDR and output
their descriptors, or retrieve the packets from the DDR according to their descriptors.
The separation of packet storage and reordering functions allows packets to be sorted by
their descriptors instead of themselves in the buffer, which greatly reduces the space usage
of buffers.

Packet Storage Space in DDR

Available Packet ID Pool

pkt_id_1pkt_id_3pkt_id_16k-1

2KB

pkt_descriptor

pkt_idencoded_pkt_len

14bit10bit

24bit

......

pkt_id

pkt_id

......

pkt_id

pkt_id

......

read_ptr

write_ptr

unused_pkt_id

available_pkt_id

ptr move direction:

pkt_id_2 pkt_id_0

(a) Packet Storage Space

(b) Available Packet ID Pool (c) Packet Descriptor

PACKETPACKET

......

PACKET

pkt_id=1

pkt_id=0pkt_id=3

store a pkt store a pktretrieve a pkt

32MB

Figure 2. Design of shared packet storage. (a) Partition of Packet Storage Space. (b) Allocation and
freeing of packet IDs in Available Packet ID Pool. (c) Content of a packet descriptor.

Micromachines 2024, 15, 1323 6 of 17

Next, we determine a reasonable size for the Pkt Storage Space. Because of the shared
packet storage strategy, after the packets are reordered and output by the system, their
space can be reused by other packets. Therefore, the size of the Packet Storage Space is
related to the completion time of reordering. We use the term “packet hole” to describe
a gap where packets have not arrived yet in the reorder buffer. Assuming the maximum
multipath delay difference is 17.5 ms and there is no packet loss, any packet hole can be
filled within 17.5 ms. Since there are 14,583 incoming packets in 17.5 ms under a 10 Gbps
bandwidth and a 1500-byte packet size, as calculated before, a 16,384-packet-depth Packet
Storage Space will never be exhausted without packet loss.

However, even with multipath and redundant transmission, packet loss in WANs
cannot be avoided completely, ultimately causing long-lived packet holes and exhaustion of
the Packet Storage Space. Hence, we developed a packet timeout mechanism in the buffer.
The packet timeout threshold of a session is configured by the user based on applications
or network conditions, and its maximum is 17.5 ms as calculated before. The system evicts
timeout packets from the buffer and outputs them.

In addition, SSPRD is responsible for packet sorting and deduplication. In cases of
packet loss, SSPRD outputs the packet stream directly to the receiver of the network. User
applications can handle packet loss in various ways based on their service type. On the one
hand, applications tolerant of packet loss (e.g., live video streaming, voice chatting) can use
the ordered and deduplicated data stream directly. On the other hand, applications that
check data integrity (e.g., large file transfers) can easily trigger retransmission based on the
continuity of the data stream PN, thereby reducing the complexity of the network stack at
the receiver.

In summary, with the packet timeout mechanism, a 16,384-packet-depth Packet Storage
Space is sufficient for our design. The size of the Packet Storage Space is dependent on the
network bandwidth, packet size, and maximum multipath delay differences, independent
of the number of sessions.

The Packet Storage Space in the DDR is organized into 16,384 blocks, each 2 KB in
size and indexed by packet ID, as depicted in Figure 2a. Each block has enough space to
store an entire packet because the MTU for WANs is commonly 1500 bytes. The proposed
design of Packet Storage Space is free of fragmentation issues and complex management
due to fixed-size memory allocation. The space occupied by Packet Storage Space is
16,384 × 2 KB = 32 MB.

To maximize memory utilization, the blocks in the Packet Storage Space are dynami-
cally occupied and released. Each block is identified by its packet ID. The Available Packet
ID Pool, maintained as a circular array with read and write pointers (similar to FIFO), stores
the idle packet IDs as shown in Figure 2b. Initially, all packet IDs are written into the pool.
When a packet needs to be stored in the DDR, the packet ID identified by the read pointer
is popped from the pool, indicating the location where the packet should be placed, and the
read pointer is incremented by 1. Conversely, when a packet is retrieved from the DDR, its
packet ID is written to the position identified by the write pointer, and the write pointer is
incremented by 1.

The Available Packet ID Pool is stored on a chip for performance. Because there are
16,384 packet IDs, the width of a packet ID is 14 bits. The Xilinx BRAM36k is a memory
block with a width of 72 bits and a depth of 512. Thus, the Available Packet ID Pool occupies
16,384 × 14 bits = 224 Kbits, that is, 7 BRAMs.

Packets stored in the DDR are identified by packet descriptors, as shown in Figure 2c.
A 24-bit packet descriptor consists of a packet ID and an encoded packet length. Additional
information, including the precise packet length, can be stored within the packet ID blocks
in the DDR.

3.3. Shared Buffer Storage

We implemented shared buffer storage for memory efficiency. Packet descriptors are
stored and sorted in the buffers of each session, but not every session’s buffer is in use

Micromachines 2024, 15, 1323 7 of 17

simultaneously. Therefore, in the same way, we designed the Sub-buffer Storage Space and
the Available Sub-buffer ID Pool, managed by the Sub-buffer Pool Manager. Considering
the logical resource footprint, each session’s buffer consists of 16 sub-buffers, each capable
of caching 1024 packet descriptor nodes. Sub-buffers are not reserved for any session,
but are shared by all sessions. When a sub-buffer is needed by a session, it will be allocated
from the Available Sub-buffer ID Pool. When a sub-buffer is empty, it will be cleared
and released.

The session sub-buffers are indexed sequentially from 0 to 15. A header pointer
points to the position of the EPN (Expected Packet Number) in a session buffer. It can
move forward with the arrival of sequential packets. The header pointer may point to the
middle of a sub-buffer, as shown in Figure 3. The green part of the buffer is the available
reorder cache. We choose not to reuse the blank part of the buffer due to design complexity.
Therefore, it is conservative to state that, for SSPRD, the depth of the reorder buffer per
session is 1024 × 15 = 15,360.

EPN

subbuffer_0subbuffer_1subbuffer_2......subbuffer_15

ptr move direction

Figure 3. Available part of reorder buffer per session.

Next, we determined the appropriate size for the Sub-buffer Storage Space. The upper-
layer SD-WAN application dynamically controls how the 10 Gbps bandwidth is distributed
across different sessions. Therefore, the share of the bandwidth decreases the max_PDD
of each session. Thus, according to Equation (1), if there is one active stream at a rate of
10 Gbps, a 15,360-depth buffer (which consumes 16 sub-buffers) is enough for reordering.
If there are two active streams, each at a rate of 5 Gbps, for example, two 7680-depth buffers
are enough for reordering. As the number of sessions increases, the bandwidth of 10 Gbps is
shared. Because out-of-order packets can be cached near the boundaries of sub-buffers dur-
ing transmission, each active session needs at least two sub-buffers. Therefore, the number
of sub-buffers required in the Sub-buffer Storage Space is 16 + 2 × Session_Count, where
Session_Count is the number of sessions. Additionally, if the session count is 1, the number
of sub-buffers needed is 16, because one session could occupy 16 sub-buffers at most.

In the example implementation presented in this paper, the session count is 4 (equal
to the session count in Benevs [21]), so there are 16 + 2 × 4 = 24 sub-buffers in the
Sub-buffer Storage Space. Hence, the width of a sub-buffer ID is 5 bits. The width of a
packet descriptor node is 32 bits (described later). The Sub-buffer Storage Space occupies
32 bits × 1024 × 24 = 96 KB of DDR space. The Available Sub-buffer ID Pool occupies
5 bits × 24 = 120 bits, or 1 BRAM.

To achieve a deep, high-speed buffer, we employed the idea of hierarchical storage.
Each session’s buffer is a 16-depth sub-buffer node array, as illustrated in Figure 4. The
session sub-buffer nodes are indexed sequentially from 0 to 15. Each sub-buffer node
contains a sub-buffer ID, a valid bit, a checksum, and the number of valid packet descriptor
nodes in this sub-buffer. The sub-buffer node arrays with low space usage and high access
frequency are stored on a chip, while the sub-buffers with large space requirements are
stored in DDR. The sub-buffer ID serves as an address to access the sub-buffer in the
DDR when necessary. Using a hierarchical storage strategy, we achieve a balance between
on-chip resource usage and performance.

Because the width of a sub-buffer node is 20 bits, the width of a sub-buffer node
array is 20 bits × 16 = 320 bits. For four sessions, all the sub-buffer node arrays occupy
320 bits × 4 = 1.25 Kbits, that is, 5 BRAMs.

Within a sub-buffer node, the valid bit indicates whether the related sub-buffer has
been allocated (is in use) or not. If the valid bit is 1, the sub-buffer can be obtained from the
DDR by the sub-buffer ID. The checksum records a random number when the sub-buffer

Micromachines 2024, 15, 1323 8 of 17

is first allocated, which is used to verify the validity of timeout events. The number of
valid packet descriptors in the sub-buffer accelerates the scanning process while handling
timeout events. This will be explained in the following subsections.

On-chip BRAM

Off-chip DDR

valid

1bit

pktdesc_count

10bit

subbuffer_id

5bit

subbuffer_node_0

20bit

checksum

4bit

pktdesc_node_0pktdesc_node_1…...pktdesc_node_1023

subbuffer

4kB

32bit

valid timestamp pktdesc

1bit 7bit 24bit

subbuffer_node_1......subbuffer_node_15session buffer

Figure 4. Hierarchical storage of session buffer. Sub-buffer ID serves as the address of the sub-buffer.

Within a packet descriptor node, the valid bit indicates whether the entry in the sub-
buffer has been used (cached a packet) or not. If the valid bit is 1, the packet can be retrieved
from the DDR by the packet descriptor. The timestamp records the packet’s arrival time in
milliseconds, which will be explained later.

3.4. Packet Processing

When the system receives a packet, the Scheduler extracts the session ID and packet
number (PN) from the packet and forms a packet processing request, which is sent to the
Session Manager for further processing.

Because each session’s buffer is a typical circular buffer consisting of multiple sub-
buffers, the Index of the sub-buffer (in a sub-buffer node array) where a packet numbered
PN falls can be obtained using Equation (2).

Index = (PN/Subbu f f er_Depth)%Array_Length. (2)

Here, Subbu f f er_depth, representing the depth of a sub-buffer containing packet
descriptor nodes, is 1024, as described before. Array_Length, representing the number of
elements (sub-buffers) in a sub-buffer node array, is 16. Note that “/” represents the integer
division and “%” represents the modulo operation.

Additionally, the O f f set of the packet descriptor node (in a sub-buffer) where a packet
numbered PN is located can be calculated using Equation (3).

O f f set = PN%Subbu f f er_Depth. (3)

Note that “%” represents the modulo operation.
It is economic to implement Equations (2) and (3) in the hardware because both

Subbu f f er_Depth = 1024 and Array_Length = 16 are powers of two.
We maintained an Expected Packet Number (EPN) for each session, which represents

the PN of the next sequential packet. The head pointer of the circular buffer points to the

Micromachines 2024, 15, 1323 9 of 17

position of the EPN in the buffer, and it can move forward with the arrival of sequential
packets or handling of timeout events. The EPN is also updated as the head pointer
moves forward.

After receiving a packet processing request containing the session ID and PN, the Ses-
sion Manager reads the EPN, packet timeout threshold, and sub-buffer node array of this
session from BRAMs. The subsequent processes are based on the comparison results of the
PN and the EPN.

If the PN is less than the EPN, the packet is regarded as a duplicate packet and is
dropped. To avoid affecting retransmission, the system outputs the retransmitted packets
(marked by the SD-WAN devices at the sender) for which the PN is less than the EPN.

If the PN is equal to the EPN, the packet is considered ordered and is outputted.
Compared with Benevs [21], our system is improved, as we send the sequential packet
out instead of storing it in the DDR. Meanwhile, if the PN falls into a valid sub-buffer, we
send the consecutive packet descriptors from the position of EPN in the sub-buffer, to the
Pkt Store to output ordered packets from the DDR. This process may involve multiple
sub-buffers and enables the emptied sub-buffers to be freed. Due to read latency, if there
are packets of the same session waiting to be retrieved from the DDR, the sequential packet
has to be cached and sent by the Pkt Store instead of the Scheduler to preserve order.

If the PN is greater than the EPN, the packet may be duplicated or out of order.
If the PN falls into a valid sub-buffer and the related packet descriptor node is occupied,
the packet is considered a duplicate and is discarded. Otherwise, the packet is out of order.
We store the out-of-order packet in the DDR and place its descriptor at the PN-related
location in the sub-buffer. Sub-buffers can be allocated from the pool if needed. Whenever
a sub-buffer is allocated, we initialize the corresponding sub-buffer node in the sub-buffer
node array and create a timeout event for the packet. Its timeout value is the packet timeout
threshold of this session.

3.5. Timeout Event

When a packet times out, the Timer sends a timeout event, including the session ID,
sub-buffer Index, packet offset, and checksum, to the Session Manager for processing.

As discussed before, packet loss results in long-lived packet holes in session buffers,
affecting packet reordering and the reuse of the memory pool. Therefore, a packet timeout
mechanism is required. Since we assume that the maximum multipath delay difference is
17.5 ms in our design, the timeout value of any packet in the buffer is less than 17.5 ms and
can be specified by different sessions. The Timer module is responsible for managing and
triggering timeout events.

Creating a timeout event for every packet requires high performance of the Timer
module. However, creating only one timeout event for the entire buffer is inaccurate,
resulting in either large latency or insufficient waiting times for out-of-order packets.
Hence, we use the sub-buffer as the timeout management unit. When a sub-buffer is first
allocated to cache a packet, we create a timeout event for the packet. For subsequent
packets falling in the same sub-buffer, we only record their arrival timestamps in the packet
descriptor nodes. As a result, each session can create 16 timeout events at most, significantly
reducing the Timer’s workload.

When the first packet in a sub-buffer has timed out, if we only output all the packets
before the timeout packet, the sub-buffer may get rid of timeout management. However,
if we clear the entire sub-buffer, it is unfair to other packets. Especially when the packet rate
is low, the incoming packets in the sub-buffer are evicted without waiting for a long enough
time. Therefore, we propose a timeout event handling algorithm to update the sub-buffer’s
timeout value instead of emptying the sub-buffer. The algorithm (Algorithm 1) is based
on packet arrival timestamps. Specifically, after receiving a timeout event, we output the
packets before the timeout packet and the consecutive packets from the timeout packet.
If there is an non-timeout packet after a packet hole, a new timeout event is created for the
non-timeout packet. The timeout value of the created timeout event is the time remaining

Micromachines 2024, 15, 1323 10 of 17

until the non-timeout packet expires. The algorithm keeps the packets which have not
timed out in the buffer to ensure long enough waiting times for out-of-order packets in
packet holes.

Algorithm 1 Timeout Event Handling Algorithm

1: Receive a timeout event. Assume the timeout packet is in sub-buffer A.
2: Output all the packets before the timeout packet in the buffer;
3: Output the timeout packet;
4: pkt_hole_exist = 0;
5: while sub-buffer A is not empty do
6: Scan to the next packet descriptor node in sub-buffer A, called packet N;
7: if pkt_hole_exist = 0 then
8: if packet N is empty then
9: pktdesc_hole_exist = 1;

10: else
11: Output packet N;
12: end if
13: else
14: if packet N is valid and has not timed out then
15: Create a new timeout event for packet N;

break
16: else
17: if packet N is valid and has timed out then
18: Output packet N;
19: pktdesc_hole_exist = 0;
20: end if
21: end if
22: end if
23: end while

The timestamp in a packet descriptor node is used to determine whether the packet
timed out or not, and calculate the new timeout value for the sub-buffer. The packet
descriptor count field in a sub-buffer node is used to terminate the scanning process when
the sub-buffer is empty. A randomly generated checksum is stored in the sub-buffer
node and the timeout event in order to ensure the validity of the incoming timeout event,
because sub-buffers are dynamically allocated and released.

4. Implementation and Evaluation

We developed the proposed SSPRD in Verilog and implemented it on a Sugon NetFirm-
4E04 [27] FPGA board. The chip of the FPGA board is Xilinx Kintex-7 series xc7k325tffg900-
2 [28]. We deployed the FPGA board on a Dell R740 [29] commodity server. There were
203,800 LUTs, 64,000 LUTRAMs, 407,600 FFs, and 445 BRAMs on the FPGA. Memory
modules of 8 GB (2 × 4 GB) were installed on the FGPA board.

SSPRD was integrated into Corundum [30], and the system frequency was 200 MHz.
Python-based Cocotb [31] (version 1.8.1) was used for simulation. The data width of the
AXI interface of the DDR Memory Interface Generator (MIG) was 512 bits, and the data
width of the AXIS interface of the packet stream was 128 bits.

4.1. Specifications and Resource Utilization

SSPRD achieves a sorting buffer with a maximum depth of 16,384 packets per session,
which is sufficient for packet reordering and deduplication under 10 Gbps traffic with
1500-byte packets and a 17.5 ms multipath delay difference. We compared the reorder
buffer depth per session with other hardware solutions in Table 1. It can be seen that SSPRD
has the deepest sorting buffer, 32 times deeper than that in [16,21].

Micromachines 2024, 15, 1323 11 of 17

Table 1. The reorder buffer depth per session of hardware packet sorting solutions.

Design Platform Reorder Buffer Depth

Meitinger [18] NP 32
Wu [15] NP 32

Traboulsi [20] NP 128
Zhou [17] FPGA 43
Ukon [19] FPGA 480

Benevs [21] FPGA 512
Hoang [16] FPGA 512

SSPRD FPGA 16,384

In the example implementation presented in this paper, the session count is 4 (equal
to the session count in Benevs [21]) and the sub-buffer count is 24. Additionally, the ar-
chitecture of SSPRD is scalable to support various session numbers or buffer depths by
specifically adjusting its data structures. The storage utilization of SSPRD is shown in
Table 2. After synthesizing SSPRD using Vivado 2020.2, the logical resource utilization
was obtained, as shown in Table 3. With low resource and space consumption, SSPRD can
easily be integrated into existing SD-WAN CPE devices.

Table 2. The storage utilization of SSPRD.

Data Structure On-Chip BRAM Off-chip DDR

Packet Storage Space - 32 MB
Available Packet ID Pool 224 Kbits 1 -
Sub-buffer Storage Space - 80 KB

Available Sub-buffer ID Pool 120 bits 2 -
Session Sub-buffer Node

Array 1.25 Kbits 3 -

1 Consumes 7 BRAMs. 2 Consumes 1 BRAM. 3 Consumes 5 BRAMs.

Table 3. The logical resource utilization of SSPRD.

Resource Type Utilization

LUT 19,953 (9.79%)
LUTRAM 5542 (8.66%)

FF 30,366 (7.45%)
BRAM 21 (4.72%)

4.2. Shared vs. Pre-Allocated Storage

Shared storage is superior to pre-allocated storage in terms of space occupation.
During the following comparison, we assume that the bandwidth is 10 Gbps, the packet
size is 1500 bytes, and the maximum multipath delay difference is 17.5 ms. Hence, the depth
of a reorder buffer should be up to 15,360 packets per session. Every packet occupies 2 KB
of DDR space for alignment.

The storage space of packets and sub-buffers in our design is shared by all sessions.
Due to the shared storage strategy and the packet timeout mechanism, the storage space of
packets and packet descriptor buffers is mainly determined by the network bandwidth,
packet size, and maximum multipath delay difference, and is generally independent of
the number of sessions. The number of sub-buffers needed is 16 + 2 × Session_Count
considering each active session requires at least two sub-buffers, as described before.
Additionally if the session count is 1, the number of sub-buffers is 16 because one session can
occupy 16 sub-buffers at most. As a result, we can determine the relationship between the
size of buffer storage and the number of sessions, represented by a blue line in Figure 5a. The
relationship between the size of packet storage and the number of sessions is represented
by a blue line in Figure 5b.

Micromachines 2024, 15, 1323 12 of 17

(a) (b)

Figure 5. Comparison of the space usage based on shared storage strategy and pre-allocated storage
strategy. (a) Size of packet descriptor buffer storage. (b) Size of packet storage.

However, if the packet storage space is pre-allocated (or reserved) for sessions, simi-
larly to the design of Ukon [19], it will occupy Bu f f er_Depth × Pkt_Size × Session_Num
of DDR space, as represented by a red line in Figure 5a. If the storage space of packet
descriptor buffers is pre-allocated for sessions, similarly to the design of Benevs [21], its
space consumption will be Bu f f er_Depth× Pktdesc_Width× Session_Num, as represented
by a red line in Figure 5b. According to Figure 5, it can be concluded that the shared storage
strategy dramatically reduces the storage footprint of SSPRD for storing packets and packet
descriptor buffers. Compared with Benevs [21] in Figure 5a, for which the session count is
also 4, SSPRD reduces the buffer space usage by 62.5%.

In Table 4, we list the packet and the buffer storage strategies of the FPGA packet
reordering solutions. We can see that SSPRD first adopts the shared storage strategy
for both packets and buffers. Although [16,21] employ a shared packet storage, these
methods fail to determine a reasonable size of packet storage space due to the lack of packet
timeout mechanism.

Table 4. Packet and buffer storage strategies of FPGA packet reordering solutions.

Design Packet Storage Strategy Buffer Storage Strategy

Zhou [17] Pre-allocated -
Ukon [19] Pre-allocated -

Hoang [16] Shared 1 Consuming too many ALMs 2

Benevs [21] Shared 1 Pre-allocated
SSPRD Shared Shared

1 Have no packet timeout mechanism. 2 Consume 81% ALM resource of Cyclone V FPGA under a reorder depth
of 512 with 16-bit PN per session.

4.3. Deduplicating and Reordering Performance

The test environment used in this study is shown in Figure 6. Port 0 and Port 1 of the
FPGA were connected to Port 3 and Port 4, respectively, of the Spirent C50 packet generator
at 10 Gbps. SSPRD receives the out-of-order and duplicate packet streams from the Spirent
C50, and outputs the ordered and deduplicated packet streams back to the Spirent C50 for
checking. Under a specified packet rate of Spirent, the test is passed if the captured output
packets from SSPRD match the expected results without any packet loss inside the FPGA.

When Spirent generates ordered (PN = EPN) or duplicate (for which PN < EPN)
packets, SSPRD achieves 10 Gbps throughput because no DDR access for sub-buffers or
packets is required. Next, we focus on the tests that the system needs to access the DDR.

Micromachines 2024, 15, 1323 13 of 17

SERVER-R740
 Kintex7 FPGA

Spirent C50

Packet Generator

port 0

port 1

out-of-order/duplicate

packet steam

ordered/deduplicated

packet steam

port 3

port 4

(a)

(b)

SSPRD

Figure 6. Test environment. (a) Test setup diagram. (b) Test hardware environment. Spirent C50
ports are on left side of picture, and FPGA ports are on right side.

In the packet deduplicating test, the sequence of the PNs of the packets generated
by Spirent is “x + 2, x + 2, ..., x + 2”, where x is a random 32-bit number and the EPN of
a session is x + 1. After the first out-of-order packet (PN = x + 2) is cached in the DDR,
the subsequent packets are all duplicate packets. It is efficient to obtain a pure packet
deduplicating performance. Additionally, we send a packet (PN = x + 1) last to verify that
the reorder function works. Figure 7a shows the deduplicating performance of SSPRD,
which reaches a throughput of 10 Gbps when the packet length is 640 bytes or greater.

(a) (b)

Figure 7. Performance test. (a) Deduplicating throughput. (b) Reordering throughput.

In the packet reordering test, we generated an out-of-order stream with a maximum
OOO distance of 15,360 as follows. Assume the EPN of a session is x + 1, where x is
a random 32-bit number. First, we prepared the sequential packets from PN = x + 1 to
PN = x + 15,360. Second, we exchanged the packets of PN = x + 1 and PN = x + 15,360.
Third, we randomly shuffled the order of packets from PN = x + 2 to PN = x + 15,359. In
this way, we created an out-of-order stream and sent it by Spirent. Figure 7b shows the
reordering performance of SSPRD, which achieves 10 Gbps throughput when the packet
length is 1360 bytes or greater.

Micromachines 2024, 15, 1323 14 of 17

We further tested SSPRD in four sessions. The packet length was set to 1500 bytes.
In the four-session packet deduplicating test, Spirent sent four duplicated streams, each
at a rate of 2.5 Gbps. The PN list of each stream is the same as that in the single-session
duplicating test mentioned before. In the four-session packet reordering test, Spirent sent
four OOO streams, each at a rate of 2.5 Gbps. The PN list of each stream is basically the
same as that in the test mentioned before, except the maximum OOO distance of the PN
list for each stream is 2.5 Gbps × 17.5 ms/1500 B = 3646 (according to Equation (1)). In the
tests, we captured the output packets from SSPRD and checked the PN list of each output
stream and we verified whether there is any packet loss inside the FPGA. SSPRD passed
both the packet deduplicating test and reordering test in the four sessions, with a 1500-byte
packet size and a sum of 10Gbps bandwidth.

Deduplicating achieves higher throughput than sorting due to its lower DDR access
frequency. Handling a duplicate packet involves reading a sub-buffer from the DDR once,
while handling an out-of-order packet requires reading and writing a sub-buffer once and
storing a packet in the DDR. Using High-Bandwidth Memory (HBM) instead of DDR can
improve the performance of our system in the future.

Table 5 compares the reordering throughput (for 1500-byte packets) per session of
the FPGA solutions, which stores out-of-order packets in off-chip memory. Hoang [16]
consumes a large amount of logical resources to complete sorting in two cycles, and is
unable to achieve a sorting buffer deeper than 512. Apart from the unfeasible solution,
SSPRD achieves 10 Gbps reordering throughput, and outperforms the other systems.
The performance of our system is sufficient for multipath transmission in WANs. Compared
with Benevs [21] (system frequency is 156.25 MHz), SSPRD runs at a higher frequency
of 200 MHz and Benevs stores all incoming packets in DDR. However, we checked the
packet’s PN first and decided how the packet was processed later, which improved our
system’s performance by reducing the number of packets written into DDR unnecessarily.

Table 5. The packet storage location and reordering throughput per session of FPGA solutions.

Design Packet Storage Location Throughput

Hoang [16] Off-chip Complete sorting in 2 cycles 1

Zhou [17] Off-chip 4 Gbps
Benevs [21] Off-chip 1 Gbps

SSPRD Off-chip 10 Gbps
1 Consumes 81% of ALMs resource of Cyclone V FPGA under a reorder depth of 512 with 16-bit PN.

4.4. Handling Timeout Event

Using a wave simulation, we verified that the Sub-buffer Handler module follows
Algorithm 1 to handle timeout events. We use Python-based Cocotb [31] to emulate the
logical behaviors of the hardware RTL (Register Transfer Level) code. Figure 8a,b show a
waveform and diagram of the Sub-buffer Handler module handling a timeout event.

In the waveform, the width of the millisecond timestamp is 7 bits, cycled every 128 ms.
std_time_reg represents the timestamp of the current time. The current timestamp is 7 ms in
Figure 8a. The timestamp and valid bit of the packet descriptor nodes in the sub-buffer
are desc_timestamp and pktdesc_valid_reg, respectively. In Figure 8a, the valid bits of the
packet descriptor nodes A, B, C, and D are 1, 1, 0, and 1, respectively. And the timestamps
of nodes A, B, and D are 55 ms, 16 ms, and 125 ms. The packet timeout threshold of
this session was set to 17.5 ms. During the simulation, the module first outputs all the
packets before the timeout packet, and then scans forward and outputs the consecutive
packets after the timeout packet. When scanning to pktdesc_A, the module finds that it
timed out (the current timestamp is 7 ms, packet timestamp is 55 ms, and their difference
is 128 − 55 + 7 = 80 ms > 17.5 ms considering the wrap-around of the 7-bit timestamp).
Therefore, the module outputs packet A. The next packet descriptor node, pktdesc_B, also
timed out (packet timestamp is 16 ms, 128 − 16 + 7 = 119 ms > 17.5 ms). So the module
outputs packet B. The next node, pktdesc_C, is empty. It is a packet hole in the sub-buffer.

Micromachines 2024, 15, 1323 15 of 17

The next node, pktdesc_D, has not timed out (128 − 125 + 7 = 10 ms < 17.5 ms). So,
the module keeps packet D in the buffer and stops scanning forward. Meanwhile, a timeout
event, for which the timeout value is 17.5 ms − 10 ms = 7.5 ms, is created for packet D.
The EPN of this session is updated to a PN where pktdesc_C is represented.

Subbuffer

pktdesc_A(timeout) pktdesc_B(timeout) pktdesc_C(empty) pktdesc_D(timein)

smaller PSN larger PSN

Output the pkt. Output the pkt.

Due to the packet hole, packet D (has not

timed out) remains in the sub-buffer, and a

timeout event is created for packet D.

scanning direction of pktdesc_ptr

(a) Simulation waveform of handling a timeout event

(b) Processing diagram of handling a timeout event

Figure 8. A simulation of handling a timeout event in the sub-buffer. (a) Simulation waveform.
(b) Processing diagram.

The simulation shows that, while outputting the timeout packets, our algorithm keeps
the packet which has not timed out in the sub-buffer and a new timeout event is created for
the sub-buffer. The timeout value of the created timeout event is the time remaining until
the non-timeout packet expires.

5. Conclusions

In this paper, we propose SSPRD, a shared-storage-based hardware packet reordering
and deduplication system for multipath transmission in WANs. The storage space of
packets and buffers is shared by all sessions with dynamic allocation. We manage and
sort packets in the buffer based on their descriptors instead of themselves. A sub-buffer-
based timeout event handling algorithm is proposed. While supporting four sessions,
SSPRD achieves deep reorder buffering on hardware, with a depth of up to 15,360 packets
per session. Compared with other solutions, SSPRD reduces the buffer space usage by
62.5%, and reaches a packet reordering and deduplicating performance of 10 Gbps for
1500-byte packets.

Author Contributions: Conceptualization, Z.G.; methodology and implementation, J.M.; validation,
M.S.; writing—original draft preparation, J.M.; writing—review and editing, Z.G. and J.M.; supervi-
sion, Z.G. and M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China: Software-defined interconnecting chip and supporting software kit development (Project No.
2022YFB2901004).

Data Availability Statement: All the necessary data are included in the article.

Acknowledgments: The authors would like to thank Rui Lu for his insightful comments.

Micromachines 2024, 15, 1323 16 of 17

Conflicts of Interest: Author Mangu Song was employed by the company Suzhou Haiwang Network
Technologies Co., Ltd. The remaining authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Li, F.; Wang, X.; Pan, T.; Yang, J. Packet delay, loss and reordering in IPv6 world: A case study. In Proceedings of the 2016

International Conference on Computing, Networking and Communications (ICNC), Kauai, HI, USA, 15–18 February 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 1–6.

2. Zhang, Y.; Ansari, N.; Wu, M.; Yu, H. On wide area network optimization. IEEE Commun. Surv. Tutor. 2011, 14, 1090–1113.
[CrossRef]

3. WAN Optimization Configuration. Available online: https://support.huawei.com/enterprise/en/doc/EDOC1100189918/c518
82e4/wan-optimization-configuration (accessed on 29 July 2024).

4. Yuniarto, R.; Sari, R.F. Performance analysis of multipath deployment in software-defined wide area network (SDWAN).
In Proceedings of the 2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST),
Yogyakarta, Indonesia, 29–30 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 124–128.

5. Cao, Y.; Xu, M.; Fu, X.; Dong, E. Explicit multipath congestion control for data center networks. In Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments and Technologies, Santa Barbara, CA, USA, 9–12 December 2013; pp. 73–84.

6. Xu, Y.; Ni, H.; Zhu, X. Survey of Multipath Transmission Technologies in Information-Centric Networking. Netw. New Media
Technol. 2023, 12, 1–9, 20.

7. Dixit, A.; Prakash, P.; Hu, Y.C.; Kompella, R.R. On the impact of packet spraying in data center networks. In Proceedings of the
2013 Proceedings IEEE Infocom, Turin, Italy, 14–19 April 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 2130–2138.

8. Nassef, O.; Johnson, S.; Mahmoodi, T. Per-Packet Partial Reliability at the Transport Layer for Multipath Networks. IEEE Commun.
Mag. 2024, 62, 112–116. [CrossRef]

9. Spyropoulos, T.; Psounis, K.; Raghavendra, C.S. Spray and wait: An efficient routing scheme for intermittently connected mobile
networks. In Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking, Philadelphia, PA, USA, 26
August 2005; pp. 252–259.

10. Jin, K.; Dong, D.; Li, C.; Huang, L.; Ma, S.; Fu, B. DancerFly: An Order-Aware Network-on-Chip Router On-the-Fly Mitigating
Multi-path Packet Reordering. Int. J. Parallel Program. 2020, 48, 730–749. [CrossRef]

11. Xu, C.; Zhao, G.; Liu, Y.; Gilani, S.M.M. Charactering network latency in China: A view from gateway. J. High Speed Netw. 2016,
22, 253–264. [CrossRef]

12. What Are Good Latency & Ping Speeds. Available online: https://www.pingplotter.com/wisdom/article/is-my-connection-
good (accessed on 26 July 2024).

13. Global Private Leased Circuit. Available online: https://www.idcbest.com/2017/GPLC.asp (accessed on 29 July 2024).
14. Dahmouni, H.; Girard, A.; Ouzineb, M.; Sanso, B. The impact of jitter on traffic flow optimization in communication networks.

IEEE Trans. Netw. Serv. Manag. 2012, 9, 279–292. [CrossRef]
15. Wu, B.; Xu, Y.; Lu, H.; Liu, B. A practical packet reordering mechanism with flow granularity for parallelism exploiting in

network processors. In Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium, Denver, CO,
USA, 4–8 April 2005; IEEE: Piscataway, NJ, USA, 2005; p. 8.

16. Hoang, V.Q.; Chen, Y. Cost-effective network reordering using FPGA. Sensors 2023, 23, 819. [CrossRef] [PubMed]
17. Zhou, F.; Hu, Q. High-performance FPGA implementation of packet reordering for multiple TCP connections. In Proceedings

of the 2011 11th International Symposium on Communications & Information Technologies (ISCIT), Hangzhou, China, 12–14
October 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 318–322.

18. Meitinger, M.; Ohlendorf, R.; Wild, T.; Herkersdorf, A. A hardware packet re-sequencer unit for network processors. In
Architecture of Computing Systems—ARCS 2008: 21st International Conference, Dresden, Germany, 25–28 February 2008; Proceedings
21; Springer: Berlin/Heidelberg, Germany, 2008; pp. 85–97.

19. Ukon, Y.; Yamazaki, K.; Nitta, K. Video service function chaining with a real-time packet reordering circuit. In Proceedings of the
2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; IEEE: Piscataway, NJ,
USA, 2018; pp. 1–5.

20. Traboulsi, S.; Meitinger, M.; Ohlendorf, R.; Herkersdorf, A. An efficient hardware architecture for packet re-sequencing in
network processors mpsocs. In Proceedings of the 2009 12th Euromicro Conference on Digital System Design, Architectures,
Methods and Tools, Patras, Greece, 27–29 August 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 11–18.

21. Beneš, T.; Ubik, S.; Halák, J. Packet reordering correction for low-latency network applications. In Proceedings of the 2022 11th
Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 7–11 June 2022; IEEE: Piscataway, NJ, USA,
2022; pp. 1–5.

22. Vu, T.H.; Tuan, N.Q.; Thinh, T.N.; Nguyen, N.T.H. Memory-efficient tcp reassembly using fpga. In Proceedings of the 2nd
Symposium on Information and Communication Technology, Hanoi, Vietnam, 13–14 October 2011; pp. 238–243.

23. Dharmapurikar, S.; Paxson, V. Robust TCP reassembly in the presence of adversaries. In Proceedings of the 14th USENIX Security
Symposium, Baltimore, MD USA, 31 July–5 August 2005; Volume 14, pp. 65–80.

http://doi.org/10.1109/SURV.2011.092311.00071
https://support.huawei.com/enterprise/en/doc/EDOC1100189918/c51882e4/wan-optimization-configuration
https://support.huawei.com/enterprise/en/doc/EDOC1100189918/c51882e4/wan-optimization-configuration
http://dx.doi.org/10.1109/MCOM.022.2300304
http://dx.doi.org/10.1007/s10766-019-00648-9
http://dx.doi.org/10.3233/JHS-160547
https://www.pingplotter.com/wisdom/article/is-my-connection-good
https://www.pingplotter.com/wisdom/article/is-my-connection-good
https://www.idcbest.com/2017/GPLC.asp
http://dx.doi.org/10.1109/TNSM.2012.051712.110148
http://dx.doi.org/10.3390/s23020819
http://www.ncbi.nlm.nih.gov/pubmed/36679615

Micromachines 2024, 15, 1323 17 of 17

24. Song, C.H.; Khooi, X.Z.; Joshi, R.; Choi, I.; Li, J.; Chan, M.C. Network load balancing with in-network reordering support for
rdma. In Proceedings of the ACM SIGCOMM 2023 Conference, New York, NY, USA, 10–14 September 2023; pp. 816–831.

25. Lu, Y.; Chen, G.; Ruan, Z.; Xiao, W.; Li, B.; Zhang, J.; Xiong, Y.; Cheng, P.; Chen, E. Memory efficient loss recovery for hardware-
based transport in datacenter. In Proceedings of the First Asia-Pacific Workshop on Networking, Hong Kong, China, 3–4 August
2017; pp. 22–28.

26. Huang, P.; Zhang, X.; Chen, Z.; Liu, C.; Chen, G. LEFT: LightwEight and FasT packet Reordering for RDMA. In Proceedings of
the 8th Asia-Pacific Workshop on Networking, Sydney, Australia, 3–4 August 2024; pp. 67–73.

27. Sugon NetFirm Intelligent Acceleration Card. Available online: https://static.sugon.com/www/attached/file/20130319/20130
319131039_81246.pdf (accessed on 29 October 2024).

28. 7 Series FPGAs Data Sheet: Overview (DS180). Available online: https://docs.amd.com/v/u/en-US/ds180_7Series_Overview
(accessed on 29 October 2024).

29. Dell EMC PowerEdge R740 Spec Sheet. Available online: https://i.dell.com/sites/csdocuments/Product_Docs/en/poweredge-
r740-specsheet.pdf (accessed on 29 October 2024).

30. Forencich, A.; Snoeren, A.C.; Porter, G.; Papen, G. Corundum: An open-source 100-gbps nic. In Proceedings of the 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Fayetteville, AR, USA,
3–6 May 2020; IEEE: Piscataway, NJ, USA, 2020.

31. Rosser, B.J. Cocotb: A Python-based digital logic verification framework. In Micro-Electronics Section Seminar; CERN: Geneva,
Switzerland, 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://static.sugon.com/www/attached/file/20130319/20130319131039_81246.pdf
https://static.sugon.com/www/attached/file/20130319/20130319131039_81246.pdf
https://docs.amd.com/v/u/en-US/ds180_7Series_Overview
https://i.dell.com/sites/csdocuments/Product_Docs/en/poweredge-r740-specsheet.pdf
https://i.dell.com/sites/csdocuments/Product_Docs/en/poweredge-r740-specsheet.pdf

	Introduction
	Related Work
	System Design
	Design Overview
	Shared Packet Storage
	Shared Buffer Storage
	Packet Processing
	Timeout Event

	Implementation and Evaluation
	Specifications and Resource Utilization
	Shared vs. Pre-Allocated Storage
	Deduplicating and Reordering Performance
	Handling Timeout Event

	Conclusions
	References

