Highly Conductive and Reusable Cellulose Hydrogels for Supercapacitor Applications
<p>Structure units of (<b>a</b>) Alginate molecule, (<b>b</b>) PEDOT:PSS molecule, and (<b>c</b>) Na-Alginate/PEDOT:PSS molecule.</p> "> Figure 2
<p>(<b>a</b>) Sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) dissociates in water and (<b>b</b>) Na-alginate/PEDOT:PSS composite hydrogel electrolyte synthesis mechanism.</p> "> Figure 3
<p>(<b>a</b>) Na-Alginate/PEDOT:PSS hydrogel as an electrolyte; (<b>b</b>) the graphite conductive substrate as an electrode; (<b>c</b>) fabricated supercapacitor; and (<b>d</b>) powering up a light-emitting diode (LED).</p> "> Figure 4
<p>FESEM images of (<b>a</b>,<b>b</b>) Na-Alginate and (<b>c</b>,<b>d</b>) Na-Alginate/PEDOT:PSS Hydrogels.</p> "> Figure 5
<p>FTIR spectra of (a) Na-Alginate hydrogel, and (b) Na-Alginate/PEDOT:PSS hydrogel, respectively.</p> "> Figure 6
<p>CV curves of (<b>a</b>) Na-Alginate hydrogels and (<b>b</b>) Na-Alginate/PEDOT:PSS hydrogels at different scan rates of Na-Alginate hydrogels.</p> "> Figure 7
<p>(<b>a</b>) CV curves of Na-Alginate/PEDOT:PSS hydrogels as supercapacitor at different scan rates and (<b>b</b>) shape of the CV curve at 80 mV/s. Redox peaks are observed only in the case of the use of H<sub>2</sub>SO<sub>4</sub> acidic.</p> "> Figure 8
<p>The initial, second, and third cycle of (<b>a</b>) Na-Alginate and (<b>b</b>) Na-Alginate/PEDOT:PSS hydrogels as supercapacitors at 3, 5 and 8 mA current densities, respectively. (<b>c</b>) The final galvanostatic charge–discharge cycle of Na-Alginate and Na-Alginate/PEDOT:PSS Hydrogels at a 20 mA current densities.</p> "> Figure 9
<p>(<b>a</b>) Cycling stability of Na-Alginate and Na-Alginate/PEDOT:PSS hydrogel electrolyte/AC supercapacitor after 3000 cycles; (<b>b</b>) current density as a function of scan rate.</p> "> Figure 10
<p>Nyquist plots of the hydrogel electrolytes.</p> "> Figure 11
<p>(<b>a</b>) TGA of pure PEDOT:PSS and (<b>b</b>) Na-Alginate hydrogel electrolyte, Na-Alginate/PEDOT:PSS hydrogel electrolyte.</p> "> Figure 12
<p>(<b>a</b>) Techniques for verifying a hydrogel’s capacity for self-healing. (<b>b</b>) A diagrammatic representation of the self-healing mechanism that demonstrates the formation of imine and hydrogen bonds.</p> "> Figure 13
<p>The effects of 3 mL PEDOT:PSS on the self-healing behavior of the hydrogel electrolyte before and after cut hydrogel samples.</p> "> Figure 14
<p>(<b>a</b>) Circuit; (<b>b</b>) LED is illuminated by Na-Alginate/PEDOT:PSS combined electrolyte hydrogel to fabricate the supercapacitor.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Electrode
2.3. Preparation of Na-Alginate/PEDOT:PSS Blended Hydrogel
2.4. Characterization
2.5. Electrochemical Impedance Spectroscopy (EIS)
2.6. Electrochemical Studies
2.7. Device Preparation
3. Results and Discussion
3.1. Synthesis of Composite Hydrogel Electrolytes
3.2. Morphologies of the Na-Alginate/PEDOT:PSS Hydrogels
3.3. FTIR Analysis
3.4. Cyclic Voltammetry (CV)
3.5. Galvanostatic Charg–-Discharge (GCD)
3.6. Conductivity of PEDOT:PSS/Alginate
3.7. TGA: Thermal Analysis
3.8. Self-Healing Property
3.9. Device Fabrication
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shaw, R.K.; Long, B.R.; Werner, D.H.; Gavrin, A. The characterization of conductive textile materials intended for radio frequency applications. IEEE Antenn. Propag. Magaz. 2007, 49, 28–40. [Google Scholar] [CrossRef]
- Kasprzak, D.; Stępniak, I.; Galiński, M. Electrodes and hydrogel electrolytes based on cellulose: Fabrication and characterization as EDLC components. J. Solid. State Electrochem. 2018, 22, 3035–3047. [Google Scholar] [CrossRef] [Green Version]
- Bielska, S.; Sibinski, M.; Lukasik, A. Polymer temperature sensor for textronic applications. Mater. Sci. Eng. B 2009, 165, 50–52. [Google Scholar] [CrossRef]
- Ho, D.H.; Cheon, S.; Hong, P.; Park, J.H.; Suk, J.W.; Kim, D.H.; Han, J.T.; Cho, J.H. Multifunctional smart textronics with blow-spun nonwoven fabrics. Adv. Funct. Mater. 2019, 29, 1900025. [Google Scholar] [CrossRef]
- Cherenack, K.; Pieterson, L.V. Smart textiles: Challenges and opportunities. J. Appl. Phys. 2012, 112, 091301. [Google Scholar] [CrossRef] [Green Version]
- Kohler, A.R. Challenges for eco-design of emerging technologies: The case of electronic textiles. Mater. Des. 2013, 51, 51–60. [Google Scholar] [CrossRef]
- Norgate, T.E.; Jahanshahi, S.; Rankin, W.J. Assessing the environmental impact of metal production processes. J. Clean. Prod. 2007, 15, 838–848. [Google Scholar] [CrossRef]
- He, L.X.; Tjong, S.C. Nanostructured transparent conductive films: Fabrication, characterization and applications. Mater. Sci. Eng. R Rep. 2016, 109, 1–101. [Google Scholar] [CrossRef]
- Badawi, N.M.; Batoo, K.M. Conductive Nanocomposite Cotton Thread Strands for Wire and Industrial Applications. J. Electron. Mater. 2020, 49, 6483–6491. [Google Scholar] [CrossRef]
- Nakano, H.; Tetsuka, H.; Spencer, M.J.S.; Morishita, T. Chemical modification of group IV graphene analogs. Sci. Technol. Adv. Mater. 2018, 19, 76–100. [Google Scholar] [CrossRef] [Green Version]
- Shathi, M.A.; Chen, M.Z.; Khoso, N.A.; Rahman, M.T.; Bhattacharjee, B. Graphene coated textile based highly flexible and washable sports bra for human health monitoring. Mater. Design 2020, 193, 108792. [Google Scholar] [CrossRef]
- Zhang, X.C.; Noda, S.; Himeno, R.; Liu, H. Cardiovascular disease-induced thermal responses during passive heat stress: An integrated computational study. Int. J. Numer. Method. Biomed. Eng. 2016, 32, e02768. [Google Scholar] [CrossRef]
- Jeong, S.K.; Inaba, M.; Iriyama, Y.; Abe, T.; Ogumi, Z. Electrochemical intercalation of lithium-ion within graphite from propylene carbonate solutions. Electrochem. Solid-State Lett. 2003, 6, A13–A15. [Google Scholar] [CrossRef]
- Nikoleli, G.P.; Siontorou, C.G.; Nikolelis, D.P.; Karapetis, S.; Bratakou, S. Prototype biosensing devices: Design and microfabrication based on nanotechnological tools for the rapid in the field detection of food toxicants and environmental pollutants. In Nanotechnology Biosensensors; Elsvier: Amsterdam, The Netherlands, 2018; pp. 1–28. [Google Scholar]
- Zulan, L.; Zhi, L.; Lan, C.; Sihao, L.; Dayang, W.; Fangyin, D. Reduced graphene oxides coated silk fabrics with conductive property for wearable electronic textiles application. Adv. Electro Mater. 2019, 5, 1800648. [Google Scholar] [CrossRef]
- Cui, J.S.; Zhou, S.X. Highly conductive and ultra-durable electronic textiles via covalent immobilization of carbon nanomaterials on cotton fabric. J. Mater. Chem. C 2018, 6, 12273–12282. [Google Scholar] [CrossRef]
- Faruque, A.L.; Kiziltas, A.; Mielewski, D.; Naebe, M. A facile approach of fabricating electrically conductive knitted fabrics using graphene oxide and textile-based waste material. Polymers 2021, 13, 3003. [Google Scholar] [CrossRef]
- Alamer, F.A.; Badawi, N.M.; Alsalmi, O. Preparation and Characterization of Conductive Cotton Fabric Impregnated with Single-Walled Carbon Nanotubes. J. Electron. Mater. 2020, 49, 6582–6589. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Cao, Y.Y.; Liu, J.S.; Zhan, Z.K.; Li, X.L.; Li, W.J. Single-Wall carbon nanotube-coated cotton yarn for electrocardiography transmission. Micromachines 2018, 9, 132. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.H.; Huang, Y.; Wu, C.; Mao, L.D.; Wang, Y.; Xie, Z.C.; Liu, C.X.; Zhang, Y.G. Flexible and reversibly deformable radio-frequency antenna based on stretchable SWCNTs/PANI/Lycra conductive fabric. Smart Mater. Struct. 2017, 26, 105036. [Google Scholar] [CrossRef]
- Yang, Z.; Pang, Y.; Han, X.L.; Yang, Y.F.; Ling, J.; Jian, M.Q.; Zhang, Y.Y.; Yang, Y.; Ren, T.L. Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 2021, 12, 9134–9141. [Google Scholar] [CrossRef]
- Hu, L.B.; Pasta, M.; la Mantia, F.; Cui, L.F.; Jeong, S.; Deshazer, H.D.; Choi, J.W.; Han, S.M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. A rubberlike stretchable active matrix using elastic conductors. Science 2021, 321, 1468–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalton, A.B.; Collins, S.; Razal, J.; Munoz, E.; Ebron, V.H.; Kim, B.G.; Coleman, J.N.; Ferraris, J.P.; Baughman, R.H. Continuous carbon nanotube composite fibers: Properties, potential applications, and problems. J. Mater. Chem. 2004, 14, 1–3. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.; Gao, L.; He, X.Y.; Liu, P.; Liu, C.X. Characterization of stretchable SWCNTs/Lycra fabric electrode with dyeing process. J. Mater. Sci. Mater. Electron. 2017, 28, 4279–4287. [Google Scholar] [CrossRef]
- Zallouz, S.; Le, J.M.; Ab, M.; Lia, C.; Ghimbeu, M. Alkaline hydrogel electrolyte from biosourced chitosan to enhance the rate capability and energy density of carbon-based supercapacitors. Energy Adv. 2022, 1, 1051–1064. [Google Scholar] [CrossRef]
- Perrozzi, F.; Croce, S.; Treossi, E.; Palermo, V.; Santucci, S.; Fioravanti, G.; Ottaviano, L. Reduction dependent Wetting properties of Graphene Oxide. Carbon 2014, 77, 473. [Google Scholar] [CrossRef]
- Huang, L.; Li, C.; Yuan, W.; Shi, G. Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels. Nanoscale 2013, 5, 3780. [Google Scholar] [CrossRef]
- Iqbal, J.; Bashir, S.; Ansari, M.O.; Jafer, R.; Jilani, A.; Mohammad, S.; Ramesh, K.; Ramesh, S. Ternary nanocomposites for supercapattery. In Advances in Supercapacitor and Supercapattery: Innovations in Energy Storage Devices; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Chen, G.Z. Supercapattery: Merit merge of capacitive and Nernstian charge storage mechanisms. Curr. Opin. Electrochem. 2020, 21, 358–367. [Google Scholar] [CrossRef]
- Bakandritsos, A.; Jakubec, P.; Pykal, M.; Otyepka, M. Covalently functionalized graphene as a supercapacitor electrode material. FlatChem 2019, 13, 25–33. [Google Scholar] [CrossRef]
- Wu, Z.S.; Parvez, K.; Winter, A.; Vieker, H.; Liu, X.; Han, S.; Turchanin, A.; Feng, X.; Müllen, K. Layer-by-Layer Assembled Heteroatom-Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Micro-Supercapacitors. Adv. Mater. 2014, 26, 4552–4558. [Google Scholar] [CrossRef] [PubMed]
- Ilanchezhiyan, P.; Zakirov, A.S.; Kumar, G.M.; Yuldashev, S.U.; Cho, H.D.; Kang, T.W.; Mamadalimov, A.T. Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications. RSC Advances 2015, 5, 10697–10702. [Google Scholar] [CrossRef]
- Luo, S.D. Carbon TL Structure–property–processing relationships of single-wall carbon nanotube thin film piezoresistive sensors. Carbon 2013, 59, 315–324. [Google Scholar] [CrossRef]
- Heo, J.S.; Eom, J.; Kim, Y.H.; Park, S.K. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications. Small 2018, 14, 1703034. [Google Scholar] [CrossRef]
- Maitra, J.; Shukla, V.K. Cross-linking in Hydrogen-A Review. Am. J. Polym. Sci. 2014, 4, 25–31. [Google Scholar]
- Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M.; Pei, Z.; Wang, Z.; Xue, Q.; Xie, X.; Zhi, C. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 2015, 6, 10310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.; Sun, G.; Zhang, G.; Yang, H.; Xiao, Y.; Gao, J.; Zhang, Z.; Qu, L.A. crosslinked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance. Nano Res. 2019, 12, 1199–1206. [Google Scholar] [CrossRef]
- Gajewski, P.; Béguin, F. Hydrogel–Polymer Electrolyte for Electrochemical Capacitors with High Volumetric Energy and Life Span. Chem. Sus. Chem. 2020, 13, 1876–1881. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.Q.; Geng, C.L.; Deng, X.G.; Chen, J.J.; Wu, Z.X.; Huang, Y.F.; Wu, J.H. Improvement of quasi-solid-state supercapacitors based on a “water-in-salt” hydrogel electrolyte by introducing redox-active ionic liquid and carbon nanotubes. New J. Chem. 2022, 46, 10662–10670. [Google Scholar] [CrossRef]
- Nujud Badawi, M.; Bhatia, M.; Ramesh, S.; Ramesh, K.; Khan, M.; Adil, S.F. Enhancement of the Performance Properties of Pure Cotton Fabric by Incorporating Conducting Polymer (PEDOT:PSS) for Flexible and Foldable Electrochemical Applications. J. Electron. Mater. 2023, 52, 2201–2215. [Google Scholar] [CrossRef]
- Kayser, L.V.; Lipomi, D.J. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 2019, 31, 1806133. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.S.; Badawi, M.N.; Batoo, K.M.; Ma, I.A.W.; Ramesh, K.; Ramesh, S.; Shah, M. Fabrication and characterization of graphene oxide based polymer nanocomposite coatings, improved stability and hydrophobicity. Sci. Rep. 2023, 13, 8946. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Tian, M.; Feng, R.; Dang, Y.; Zhang, M. Novel Self-Healing Hydrogel with Injectable, pH-Responsive, Strain-Sensitive, Promoting Wound-Healing, and Hemostatic Properties Based on Collagen and Chitosan. ACS Biomater. Sci. Eng. 2020, 6, 3855–3867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, X.; Wang, Y.; Hao, J. Rapid-Forming and Self-Healing Agarose-Based Hydrogels for Tissue Adhesives and Potential. Wound Dressings. Biomacromolecules 2018, 19, 980–988. [Google Scholar] [CrossRef]
- Li, H.; Cheng, F.; Wei, X.; Yi, X.; Tang, S.; Wang, Z.; Zhang, Y.S.; He, J.; Huang, Y. Injectable, self-healing, antibacterial, and hemostatic N,O-carboxymethyl chitosan/oxidized chondroitin sulfate composite hydrogel for wound dressing. Mater. Sci. Eng. C 2021, 118, 111324. [Google Scholar] [CrossRef] [PubMed]
- Badawi, N.M.; Bhatia, M.; Ramesh, S.; Ramesh, K.; Kuniyil, M.; Shaik, M.R.; Khan, M.; Shaik, B.; Adil, S.F. Self-Healing, Flexible and Smart 3D Hydrogel Electrolytes Based on Alginate/PEDOT:PSS for Supercapacitor Applications. Polymers 2023, 15, 571. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, M.; Jiang, C.; Zhu, P.; Sun, B.; Gao, Q.; Gao, C.; Liu, R. Highly adhesive and self-healing γ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics. Nano Energy 2022, 95, 106991. [Google Scholar] [CrossRef]
- Thakur, S.; Verma, A.; Raizada, P.; Gunduz, O.; Janas, D.; Alsanie, W.F.; Scarpa, F.; Thakur, V.K. Bentonite-based sodium alginate/dextrin cross-linked poly (acrylic acid) hydrogel nanohybrids for facile removal of paraquat herbicide from aqueous solutions. Chemosphere 2022, 291, 133002. [Google Scholar] [CrossRef]
- Mirek, A.; Belaid, H.; Barranger, F.; Grzeczkowicz, M.; Bouden, Y.; Cavaillès, V.; Lewińska, D.; Bechelany, M. Development of a new 3D bioprinted antibiotic delivery system based on a cross-linked gelatin–alginate hydrogel. J. Mater. Chem. B 2022, 10, 8862–8874. [Google Scholar] [CrossRef]
- Lee, S.; Park, K.; Kum, J.; An, S.; Yu, K.J.; Kim, H.; Shin, M.; Son, D. Stretchable Surface Electrode Arrays Using an Alginate/PEDOT:PSS-Based Conductive Hydrogel for Conformal Brain Interfacing. Polymers 2022, 15, 84. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, W.; Yao, B.; Li, C.; Shi, G. Solution-processed PEDOT:PSS/graphene composites as the electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 3587–3593. [Google Scholar] [CrossRef]
Formulation | Na-Alginate/PEDOT:PSS | DMSO | H2SO4 |
---|---|---|---|
Na-Alginate/PEDOT:PSS composite 1 | 0.4 g of Na-Alginate + 3 mL PEDOT:PSS | 0.2 ML | 1 ML |
Na-Alginate/PEDOT:PSS composite 2 | 0.5 ML | 2 ML | |
Na-Alginate/PEDOT:PSS composite 3 | 1.00 ML | 4 ML |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badawi, N.M.; Batoo, K.M.; Subramaniam, R.; Kasi, R.; Hussain, S.; Imran, A.; Muthuramamoorthy, M. Highly Conductive and Reusable Cellulose Hydrogels for Supercapacitor Applications. Micromachines 2023, 14, 1461. https://doi.org/10.3390/mi14071461
Badawi NM, Batoo KM, Subramaniam R, Kasi R, Hussain S, Imran A, Muthuramamoorthy M. Highly Conductive and Reusable Cellulose Hydrogels for Supercapacitor Applications. Micromachines. 2023; 14(7):1461. https://doi.org/10.3390/mi14071461
Chicago/Turabian StyleBadawi, Nujud Mohammed, Khalid Mujasam Batoo, Ramesh Subramaniam, Ramesh Kasi, Sajjad Hussain, Ahamad Imran, and Muthumareeswaran Muthuramamoorthy. 2023. "Highly Conductive and Reusable Cellulose Hydrogels for Supercapacitor Applications" Micromachines 14, no. 7: 1461. https://doi.org/10.3390/mi14071461