Associations of Serum Manganese Levels with Prediabetes and Diabetes among ≥60-Year-Old Chinese Adults: A Population-Based Cross-Sectional Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Serum Mn Measurements
2.3. Biochemical Assessments
2.4. Assessment of Diabetes and Prediabetes
2.5. Assessment of Other Variables
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. The Associations of Serum Mn Levels with Prediabetes and Diabetes
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Berry, C.; Tardif, J.C.; Bourassa, M.G. Coronary heart disease in patients with diabetes: Part I: Recent advances in prevention and noninvasive management. J. Am. Coll. Cardiol. 2007, 49, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, L.; He, J.; Bi, Y.; Li, M.; Wang, T.; Wang, L.; Jiang, Y.; Dai, M.; Lu, J.; et al. Prevalence and control of diabetes in Chinese adults. JAMA 2013, 310, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Sun, H.X.; Ye, F.L.; Wang, G.; Ling, H.W.; Chen, S.D.; Jiang, G.X. Dementia among elderly in Shanghai suburb: A rural community survey. J. Alzheimer’s Dis. 2014, 39, 883–889. [Google Scholar]
- Fraga, C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Asp. Med. 2005, 26, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Aschner, J.L.; Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Asp. Med. 2005, 26, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Malecki, E.A.; Huttner, D.L.; Greger, J.L. Manganese status, gut endogenous losses of manganese, and antioxidant enzyme activity in rats fed varying levels of manganese and fat. Biol. Trace Elem. Res. 1994, 42, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Bond, J.S.; Failla, M.L.; Unger, D.F. Elevated manganese concentration and arginase activity in livers of streptozotocin–induced diabetic rats. J. Biol. Chem. 1983, 258, 8004–8009. [Google Scholar] [PubMed]
- Korc, M. Manganese action on pancreatic protein synthesis in normal and diabetic rats. Am. J. Physiol. 1983, 245, G628–G634. [Google Scholar] [PubMed]
- Candilish, D.J. Minerals. J. Am. Coll. Nutr. 2000, 17, 286–310. [Google Scholar]
- Koh, E.S.; Kim, S.J.; Yoon, H.E.; Chung, J.H.; Chung, S.; Park, C.W.; Chang, Y.S.; Shin, S.J. Association of blood manganese level with diabetes and renal dysfunction: A cross-sectional study of the Korean general population. BMC Endocr. Disord. 2014, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Rambousková, J.; Krsková, A.; Slavíková, M.; Cejchanová, M.; Wranová, K.; Procházka, B.; Cerná, M. Trace elements in the blood of institutionalized elderly in the Czech Republic. Arch. Gerontol. Geriatr. 2013, 56, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Kosenko, L.G. Concentration of trace elements in blood of patients with diabetes mellitus. Fed. Proc. Transl. Suppl. 1965, 24, 237–238. [Google Scholar] [PubMed]
- Kazi, T.G.; Afridi, H.I.; Kazi, N.; Jamali, M.K.; Arain, M.B.; Jalbani, N.; Kandhro, G.A. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol. Trace Elem. Res. 2008, 122, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Forte, G.; Bocca, B.; Peruzzu, A.; Tolu, F.; Asara, Y.; Farace, C.; Oggiano, R.; Madeddu, R. Blood metals concentration in type 1 and type 2 diabetics. Biol. Trace Elem. Res. 2013, 156, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Lisun-Lobanova, V.P. Trace elements (manganese, copper, zinc) in patients with diabetes mellitus. Zdravookhr. Beloruss. 1963, 9, 49–53. [Google Scholar] [PubMed]
- Flores, C.R.; Puga, M.P.; Wrobel, K.; Garay Sevilla, M.E.; Wrobel, K. Trace elements status in diabetes mellitus type 2: Possible role of the interaction between molybdenum and copper in the progress of typical complications. Diabetes Res. Clin. Pract. 2011, 91, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Mowé, M.; Bøhmer, T.; Kindt, E. Reduced nutritional status in an elderly population (>70 years) is probable before disease and possibly contributes to the development of disease. Am. J. Clin. Nutr. 1994, 59, 317–324. [Google Scholar] [PubMed]
- Beletate, V.; El Dib, R.P.; Atallah, A.N. Zinc supplementation for the prevention of type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2007, 24. [Google Scholar] [CrossRef] [Green Version]
- Nathan, D.M.; Davidson, M.B.; De Fronzo, R.A.; Heine, R.J.; Henry, R.R.; Pratley, R.; Zinman, B.; American Diabetes Association. Impaired fasting glucose and impaired glucose tolerance: Implications for care. Diabetes Care 2007, 30, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Twigg, S.M.; Kamp, M.C.; Davis, T.M.; Neylon, E.K.; Flack, J.R.; Australian Diabetes Society; Australian Diabetes Educators Association. Prediabetes: A position statement from the Australian Diabetes Society and Australian Diabetes Educators Association. Med. J. Aust. 2007, 186, 461–465. [Google Scholar] [PubMed]
- Haase, H.; Overbeck, S.; Rink, L. Zinc supplementation for the treatment or prevention of disease: Current status and future perspectives. Exp. Gerontol. 2008, 43, 394–408. [Google Scholar] [CrossRef] [PubMed]
- Department of Noncommunicable Disease Surveillance. Part 1. Diagnosis and classification of diabetes mellitus. In Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 1999. [Google Scholar]
- Ngueta, G.; Kengne, A.P. Low-level environmental lead exposure and dysglycemia in adult individuals: Results from the Canadian health and measure survey 2007–2011. Biol. Trace Elem. Res. 2016. [Google Scholar] [CrossRef] [PubMed]
- Oulhote, Y.; Mergler, D.; Bouchard, M.F. Sex- and age-differences in blood manganese levels in the U.S. general population: National health and nutrition examination survey 2011–2012. Environ. Health 2014, 13. [Google Scholar] [CrossRef] [PubMed]
- Finley, J.W.; Johnson, P.E.; Johnson, L.K. Sex affects manganese absorption and retention by humans from a diet adequate in manganese. Am. J. Clin. Nutr. 1994, 60, 949–955. [Google Scholar] [PubMed]
- Onat, A.; Hergenç, G.; Keleş, I.; Doğan, Y.; Türkmen, S.; Sansoy, V. Sex difference in development of diabetes and cardiovascular disease on the way from obesity and metabolic syndrome. Metabolism 2005, 54, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Monterrosa, A.E.; Haffner, S.M.; Stern, M.P.; Hazuda, H.P. Sex difference in lifestyle factors predictive of diabetes in Mexican-Americans. Diabetes Care 1995, 18, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Paek, K.W.; Chun, K.H. Sex difference of type 2 diabetes affected by abdominal obesity versus overall obesity. Yonsei Med. J. 2010, 51, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.M., Jr.; Uriu–Hare, J.Y.; Olin, K.L.; Oster, M.H.; Anawalt, B.D.; Critchfield, J.W.; Keen, C.L. Copper, zinc, manganese, and magnesium status and complications of diabetes mellitus. Diabetes Care 1991, 14, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Serdar, M.A.; Bakir, F.; Haşimi, A.; Celik, T.; Akin, O.; Kenar, L.; Aykut, O.; Yildirimkaya, M. Trace and toxic element patterns in nonsmoker patients with noninsulin-dependent diabetes mellitus, impaired glucose tolerance, and fasting glucose. Int. J. Diabetes Dev. Ctries. 2009, 29, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Ekmekcioglu, C.; Prohaska, C.; Pomazal, K.; Steffan, I.; Schernthaner, G.; Marktl, W. Concentrations of seven trace elements in different hematological matrices in patients with type 2 diabetes as compared to healthy controls. Biol. Trace Elem. Res. 2001, 79, 205–219. [Google Scholar] [CrossRef]
- Adewumi, M.T.; Njoku, C.H.; Saidu, Y.; Abubakar, M.K.; Shehu, R.A.; Bilbis, L.S. Serum chromium, copper and manganese levels of diabetic subjects in Katsina, Nigeria. Asian J. Biochem. 2007, 2, 284–288. [Google Scholar]
- Ekin, S.; Mert, N.; Gunduz, H.; Meral, I. Serum sialic acid levels and selected mineral status in patients with type 2 diabetes mellitus. Biol. Trace Elem. Res. 2003, 94, 193–201. [Google Scholar] [CrossRef]
- Williams, M.; Todd, G.D.; Roney, N.; Crawford, J.; Coles, C.; McClure, P.R.; Garey, J.D.; Zaccaria, K.; Citra, M. Toxicological Profile for Manganese; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2012. [Google Scholar]
- Wang, L.D. Comprehensive Report of Chinese National Nutrition and Health Survey in 2002; People’s Medical Publishing House: Beijing, China, 2005. [Google Scholar]
- Leblanc, J.C.; Guérin, T.; Noël, L.; Calamassi-Tran, G.; Volatier, J.L.; Verger, P. Dietary exposure estimates of 18 elements from the 1st French Total Diet Study. Food Addit. Contam. 2005, 22, 624–641. [Google Scholar] [CrossRef] [PubMed]
- Turconi, G.; Minoia, C.; Ronchi, A.; Roggi, C. Dietary exposure estimates of twenty–one trace elements from a Total Diet Study carried out in Pavia, Northern Italy. Br. J. Nutr. 2009, 101, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.; Gutiérrez, A.J.; Revert, C.; Reguera, J.I.; Burgos, A.; Hardisson, A. Daily dietary intake of iron, copper, zinc and manganese in a Spanish population. Int. J. Food Sci. Nutr. 2009, 60, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Bae, Y.J.; Kim, S.J.; Choi, M.K. Estimation of manganese daily intake among adults in Korea. Nutr. Res. Pract. 2008, 2, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.D.; Greger, J.L. Longitudinal changes of manganese–dependent superoxide dismutase and other indexes of manganese and iron status in women. Am. J. Clin. Nutr. 1992, 55, 747–752. [Google Scholar] [PubMed]
- Bureau, I.; Anderson, R.A.; Arnaud, J.; Raysiguier, Y.; Favier, A.E.; Roussel, A.M. Trace mineral status in post menopausal women: Impact of hormonal replacement therapy. J. Trace Elem. Med. Biol. 2002, 16, 9–13. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, E.; Bermejo, L.M.; López-Sobaler, A.M.; Ortega, R.M. An inadequate intake of manganese may favour insulin resistance in girls. Nutr. Hosp. 2011, 26, 965–970. [Google Scholar] [PubMed]
- Clark, N.A.; Teschke, K.; Rideout, K.; Copes, R. Trace element levels in adults from the west coast of Canada and associations with age, gender, diet, activities, and levels of other trace elements. Chemosphere 2007, 70, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Olsén, L.; Lind, P.M.; Lind, L. Gender differences for associations between circulating levels of metals and coronary risk in the elderly. Int. J. Hyg. Environ. Health 2012, 215, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Lee, C.K.; Moon, C.S.; Choi, I.J.; Lee, K.J.; Yi, S.M.; Jang, B.K.; Yoon, B.J.; Kim, D.S.; Peak, D.; et al. Korea National Survey for Environmental Pollutants in the Human Body 2008: Heavy metals in the blood or urine of the Korean population. Int. J. Hyg. Environ. Health 2012, 215, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K.; Kim, Y. Effects of menopause on blood manganese levels in women: Analysis of 2008–2009 Korean National Health and Nutrition Examination Survey data. Neurotoxicology 2012, 33, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Nicoloff, G.; Mutaftchiev, K.; Strashimirov, D.; Petrova, C. Serum manganese in children with diabetes mellitus type 1. Diabetol. Croat. 2003, 33, 47–51. [Google Scholar]
- Bocca, B.; Madeddu, R.; Asara, Y.; Tolu, P.; Marchal, J.A.; Forte, G. Assessment of reference ranges for blood Cu, Mn, Se and Zn in a selected Italian population. J. Trace Elem. Med. Biol. 2011, 25, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Jouihan, H.A.; Cooksey, R.C.; Jones, D.; Kim, H.J.; Winge, D.R.; McClain, D.A. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology 2013, 154, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Mergler, D.; Baldwin, M. Early manifestations of manganese neurotoxicity in humans: An update. Environ. Res. 1997, 73, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Chinese Nutrition Society. Chinese Dietary Reference Intakes; Science Press: Beijing, China, 2013. [Google Scholar]
- Kim, Y.; Lee, B.K. Iron deficiency increases blood manganese level in the Korean general population according to KNHANES 2008. Neurotoxicology 2011, 32, 247–254. [Google Scholar] [CrossRef] [PubMed]
Variables | Total | Men | Women | p-Value |
---|---|---|---|---|
N | 2402 | 964 | 1438 | |
Age, year | 67.54 ± 5.40 | 67.49 ± 5.41 | 67.58 ± 5.38 | 0.684 |
SBP, mmHg | 136.68 ± 16.57 | 137.54 ± 16.99 | 136.10 ± 16.26 | 0.037 |
DBP, mmHg | 82.06 ± 8.82 | 83.01 ± 9.64 | 81.42 ± 8.17 | <0.001 |
BMI, kg/m2 | 26.42 ± 3.54 | 26.29 ± 3.28 | 26.51 ± 3.71 | 0.134 |
Blood index | ||||
TC, mmol/L | 5.37 ± 1.03 | 5.05 ± 0.93 | 5.59 ± 1.04 | <0.001 |
TG, mmol/L | 1.51 (1.10, 2.10) | 1.40 (1.00, 1.96) | 1.60 (1.20, 2.20) | <0.001 |
FPG, mmol/L | 6.5 ± 11.90 | 6.49 ± 1.77 | 6.53 ± 1.98 | 0.587 |
BUN, mmol/L | 5.81 ± 1.63 | 6.01 ± 1.61 | 5.68 ± 1.66 | <0.001 |
CCr, min/L | 60.14 ± 22.69 | 64.51 ± 16.03 | 57.21 ± 25.82 | <0.001 |
CRE, μmol/L | 97.64 ± 34.04 | 108.23 ± 44.80 | 90.54 ± 21.58 | <0.002 |
Smoking status, % (n) | ||||
Current smoker | 19.2 (462) | 32.0 (308) | 10.7 (154) | <0.001 |
Former smoker | 3.5 (84) | 6.0 (58) | 1.8 (26) | <0.001 |
Nonsmoker | 77.3 (1856) | 62.0 (598) | 87.5 (1258) | <0.001 |
Drinking status, % (n) | ||||
Daily drinker | 7.1 (170) | 16.7 (161) | 0.6 (9) | <0.001 |
Occasional drinker | 4.8 (116) | 11.4 (110) | 0.4 (6) | <0.001 |
Nondrinker | 88.1 (2116) | 71.9 (693) | 99.0 (1423) | <0.001 |
Exercise status, % (n) | ||||
High | 51.2 (1229) | 55.7 (537) | 48.1 (692) | 0.001 |
Low | 16.5 (396) | 14.4 (139) | 17.9 (257) | 0.029 |
None | 32.3 (777) | 29.9 (288) | 34.0 (489) | 0.038 |
Serum Mn, μg/L | 5.79 (2.91, 11.13) | 6.02 (2.86, 11.17) | 5.64 (2.95, 11.10) | 0.694 |
History of Disease | ||||
Obesity, % (n) | 29.8 (715) | 28.4 (274) | 30.7 (441) | 0.238 |
Diabetes, % (n) | 28.4 (682) | 25.6 (247) | 30.3 (435) | 0.014 |
Hypertension, % (n) | 72.5 (1742) | 72.6 (700) | 72.5 (1042) | 0.972 |
Stroke, % (n) | 4.6 (111) | 7.1 (68) | 3.0 (43) | <0.001 |
CHD, % (n) | 14.7 (353) | 10.9 (105) | 17.2 (248) | <0.001 |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
Variables | Normoglycemia (n = 529) | Prediabetes (n = 146) | Diabetes (n = 289) | p-Value | Normoglycemia (n = 751) | Prediabetes (n = 193) | Diabetes (n = 494) | p-Value |
Age, year | 67.41 ± 5.41 | 66.97 ± 5.24 | 67.90 ± 5.51 | 0.208 | 67.29 ± 5.05 | 67.27 ± 5.23 | 68.14 ± 5.87 | 0.106 |
SBP, mmHg | 136.00 ± 17.24 | 141.85 ± 8.64 * | 138.19 ± 15.23 # | 0.001 | 134.44 ± 15.93 | 137.54 ± 17.33 * | 138.07 ± 16.08 * | <0.001 |
DBP, mmHg | 82.99 ± 9.71 | 84.97 ± 10.00 * | 82.03 ± 9.18 # | 0.011 | 81.10 ± 8.05 | 82.17 ± 8.70 | 81.49 ± 8.14 | 0.325 |
BMI, kg/m2 | 26.04 ± 3.36 | 26.62 ± 3.33 | 26.59 ± 3.07 * | 0.03 | 26.09 ± 3.64 | 26.96 ± 4.04 * | 26.96 ± 3.61 * | <0.001 |
Blood index | ||||||||
TC, mmol/L | 5.01 ± 0.91 | 5.15 ± 0.92 | 5.08 ± 0.95 | 0.214 | 5.59 ± 1.01 | 5.71 ± 1.03 | 5.54 ± 1.09 | 0.148 |
TG, mmol/L | 1.37 (1.00, 1.90) | 1.48 (1.07, 2.10) | 1.45 (1.05, 2.00) | 0.087 | 1.59 (1.20, 2.10) | 1.71 (1.30, 2.41) * | 1.66 (1.20, 2.30) | 0.024 |
FPG, mmol/L | 5.47 ± 0.43 | 6.43 ± 0.26 * | 8.38 ± 2.14 *,# | <0.001 | 5.43 ± 0.44 | 6.43 ± 0.26 * | 8.24 ± 2.51 *,# | <0.001 |
BUN, mmol/L | 5.97 ± 1.53 | 5.97 ± 1.60 | 6.12 ± 1.74 | 0.414 | 5.61 ± 1.49 | 5.64 ± 1.71 | 5.78 ± 1.80 | 0.190 |
CRE, μmol/L | 107.96 ± 46.23 | 107.01 ± 16.29 | 109.35 ± 51.53 | 0.858 | 89.48 ± 14.63 | 90.39 ± 15.90 | 92.22 ± 30.48 | 0.090 |
Smoking status, %(n) | ||||||||
Current smoker | 33.5 (177) | 33.6 (49) | 28.4 (82) | 0.297 | 11.5 (86) | 9.8 (19) | 9.9 (49) | 0.636 |
Former smoker | 5.3 (28) | 8.2 (12) | 6.2 (18) | 0.414 | 1.5 (11) | 1.0 (2) | 2.6 (13) | 0.219 |
Nonsmoker | 61.2 (324) | 58.2 (85) | 65.4 (189) | 0.297 | 87.1 (654) | 89.1 (172) | 87.4 (432) | 0.748 |
Drinking status, %(n) | ||||||||
Daily drinker | 18.3 (97) | 16.4 (24) | 13.8 (40) | 0.256 | 0.9 (7) | 0.5 (1) | 0.2 (1) | 0.274 |
Occasional drinker | 10.4 (55) | 15.8 (23) | 11.1 (32) | 0.193 | 0.5 (4) | 1.0 (2) | 0 (0) | 0.129 |
Nondrinker | 71.3 (377) | 67.8 (99) | 75.1 (217) | 0.251 | 98.5 (740) | 98.4 (190) | 99.8 (493) | 0.076 |
Exercise status, %(n) | ||||||||
High | 50.1 (265) | 55.5 (81) | 66.1 (191) *,# | <0.001 | 45.9 (345) | 56.0 (108) * | 48.4 (239) # | 0.045 |
Low | 14.9 (79) | 14.4 (21) | 13.5 (39) | 0.855 | 16.6 (125) | 21.8 (42) | 18.2 (90) | 0.247 |
None | 35.0 (185) | 30.1 (44) | 20.4 (59) *,# | <0.001 | 37.4 (281) | 22.3 (43) * | 33.4 (165) # | <0.001 |
Serum Mn, μg/L | 5.92 (3.05, 10.25) | 5.66 (2.15, 11.98) | 6.24 (2.56, 12.74) | 0.577 | 6.16 (3.28, 11.66) | 4.49 (2.39, 8.69) * | 5.56 (3.02, 11.14) # | 0.001 |
Low, %(n) | 49.9 (264) | 52.1 (76) | 44.3 (128) | 0.201 | 49.0 (368) | 58.0 (112) | 50.2 (248) | 0.080 |
Normal, %(n) | 48.2 (255) | 47.3 (69) | 53.3 (154) | 0.316 | 50.1 (376) | 41.5 (80) | 49.0 (242) | 0.099 |
High, %(n) | 1.9 (10) | 0.7 (1) | 2.4 (7) | 0.449 | 0.9 (7) | 0.5 (1) | 0.8 (4) | 0.851 |
Disease | ||||||||
Obesity, %(n) | 25.5 (135) | 32.2 (47) | 31.8 (92) | 0.088 | 26.1 (196) | 38.3 (74) * | 34.6 (171) * | <0.001 |
Hypertension, %(n) | 67.5 (357) | 75.3 (110) | 80.6 (233) * | <0.001 | 64.7 (486) | 74.1 (143) * | 83.6 (413) *,# | <0.001 |
Stroke, %(n) | 6.2 (33) | 5.5 (8) | 9.3 (27) | 0.183 | 2.3 (17) | 1.0 (2) | 4.9 (24) *,# | 0.007 |
CHD, %(n) | 11.5 (61) | 7.5 (11) | 11.4 (33) | 0.368 | 16.8 (126) | 13.5 (26) | 19.4 (96) | 0.157 |
Variables | Serum Mn Quartiles | p for Trend | |||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Prediabetes | |||||
Mn, μg/L (serum level) | 0~2.858 | 2.858~5.332 | 5.332~9.676 | 9.676~46.000 | |
Number at risk | 404 | 405 | 405 | 405 | |
Number with prediabetes | 110 | 77 | 78 | 74 | |
Crude | 1.000 | 0.610 (0.438, 0.849) | 0.630 (0.453, 0.876) | 0590 (0.423, 0.824) | 0.003 |
Model A | 1.000 | 0.607 (0.434, 0.849) | 0.633 (0.454, 0.883) | 0.607 (0.433, 0.851) | 0.005 |
Model B | 1.000 | 0.625 (0.446, 0.877) | 0.619 (0.442, 0.867) | 0.614 (0.437, 0.863) | 0.005 |
Diabetes | |||||
Mn, μg/L (serum level) | 0~2.952 | 2.952~5.534 | 5.534~10.384 | 10.384~46.340 | |
Number at risk | 515 | 517 | 515 | 516 | |
Number with diabetes | 205 | 179 | 180 | 219 | |
Crude | 1.000 | 0.801 (0.622, 1.031) | 0.813 (0.631, 1.046) | 1.115 (0.870, 1.429) | 0.387 |
Model A | 1.000 | 0.800 (0.619, 1.035) | 0.806 (0.623, 1.043) | 1.141 (0.887, 1.469) | 0.316 |
Model B | 1.000 | 0.824 (0.627, 1.082) | 0.762 (0.579, 1.003) | 1.150 (0.881, 1.501) | 0.413 |
Prediabetes + Diabetes | |||||
Mn, μg/L (serum level) | 0~2.836 | 2.836~5.429 | 5.429~10.092 | 10.092~46.340 | |
Number at risk | 601 | 601 | 600 | 600 | |
Number with dysglycemia | 309 | 257 | 263 | 293 | |
Crude | 1.000 | 0.706 (0.562, 0.886) | 0.737 (0.588, 0.926) | 0.902 (0.719, 1.131) | 0.463 |
Model A | 1.000 | 0.708 (0.562, 0.892) | 0.738 (0.586, 0.929) | 0.916 (0.728, 1.152) | 0.547 |
Model B | 1.000 | 0.723 (0.569, 0.918) | 0.704 (0.554, 0.895) | 0.909 (0.717, 1.153) | 0.413 |
Variables | Men | Women | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | p for Trend | Q1 | Q2 | Q3 | Q4 | p for Trend | |
Prediabetes | ||||||||||
Serum Mn (μg/L) | 0~2.52 | 2.52~5.12 | 5.13~9.85 | 9.86~46.00 | 0~2.91 | 2.91~5.65 | 5.65~11.06 | 11.06~15.49 | ||
Number at risk | 168 | 169 | 169 | 169 | 236 | 236 | 236 | 236 | ||
Number with prediabetes | 49 | 27 | 36 | 34 | 62 | 49 | 42 | 40 | ||
Crude | 1.000 | 0.462 (0.272, 0.784) | 0.657 (0.400, 1.080) | 0.612 (0.370, 1.011) | 0.126 | 1.000 | 0.578 (0.332, 1.006) | 0.473 (0.266, 0.839) | 0.383 (0.211, 0.699) | 0.009 |
Model A | 1.000 | 0.455 (0.267, 0.776) | 0.657 (0.398, 1.083) | 0.615 (0.370, 1.021) | 0.137 | 1.000 | 0.622 (0.353, 1.097) | 0.471 (0.263, 0.842) | 0.426 (0.232, 0.784) | 0.020 |
Model B | 1.000 | 0.463 (0.269, 0.798) | 0.639 (0.383, 1.065) | 0.614 (0.365, 1.031) | 0.134 | 1.000 | 0.773 (0.498, 1.200) | 0.602 (0.382, 0.947) | 0.603 (0.381, 0.953) | 0.015 |
Diabetes | ||||||||||
Serum Mn (μg/L) | 0~2.92 | 2.92~5.74 | 5.74~10.30 | 10.30~46.34 | 0~2.95 | 2.95~5.45 | 5.45~10.38 | 10.38~26.38 | ||
Number at risk | 204 | 205 | 204 | 205 | 311 | 312 | 311 | 311 | ||
Number with diabetes | 76 | 55 | 69 | 89 | 130 | 124 | 109 | 131 | ||
Crude | 1.000 | 0.618 (0.406, 0.939) | 0.867 (0.578, 1.302) | 1.267 (0.852, 1.883) | 0.104 | 1.000 | 0.918 (0.667, 1.264) | 0.751 (0.543, 1.039) | 1.013 (0.737, 1.393) | 0.868 |
Model A | 1.000 | 0.642 (0.418, 0.987) | 0.860 (0.567, 1.303) | 1.283 (0.854, 1.925) | 0.113 | 1.000 | 0.905 (0.654, 1.254) | 0.734 (0.527, 1.020) | 1.020 (0.738, 1.410) | 0.808 |
Model B | 1.000 | 0.659 (0.414, 0.992) | 0.850 (0.544, 1.326) | 1.361 (0.884, 2.096) | 0.086 | 1.000 | 0.989 (0.701, 1.396) | 0.675 (0.474, 0.962) | 1.007 (0.714, 1.420) | 0.649 |
Prediabetes + Diabetes | ||||||||||
Serum Mn (μg/L) | 0~2.80 | 2.83~5.58 | 5.61~10.20 | 10.22~46.34 | 0~2.86 | 2.86~5.33 | 5.34~9.99 | 9.99~26.38 | ||
Number at risk | 241 | 241 | 241 | 241 | 358 | 361 | 360 | 359 | ||
Number with dysglycemia | 122 | 87 | 105 | 121 | 186 | 171 | 159 | 171 | ||
Crude | 1.000 | 0.551 (0.383, 0.793) | 0.753 (0.526, 1.078) | 0.984 (0.688, 1.406) | 0.664 | 1.000 | 0.832 (0.621, 1.115) | 0.732 (0.545, 0.981) | 0.841 (0.627, 1.128) | 0.171 |
Model A | 1.000 | 0.574 (0.397, 0.832) | 0.760 (0.528, 1.095) | 0.992 (0.690, 1.425) | 0.671 | 1.000 | 0.823 (0.611, 1.108) | 0.726 (0.539, 0.978) | 0.852 (0.633, 1.147) | 0.206 |
Model B | 1.000 | 0.572 (0.388, 0.844) | 0.744 (0.509, 1.088) | 0.987 (0.677, 1.439) | 0.728 | 1.000 | 0.888 (0.652, 1.208) | 0.668 (0.489, 0.913) | 0.847 (0.622, 1.153) | 0.117 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, M.; Lui, G.; Chang, H.; Zhang, M.; Liu, W.; Li, Z.; Liu, Y.; Huang, G. Associations of Serum Manganese Levels with Prediabetes and Diabetes among ≥60-Year-Old Chinese Adults: A Population-Based Cross-Sectional Analysis. Nutrients 2016, 8, 497. https://doi.org/10.3390/nu8080497
Wang X, Zhang M, Lui G, Chang H, Zhang M, Liu W, Li Z, Liu Y, Huang G. Associations of Serum Manganese Levels with Prediabetes and Diabetes among ≥60-Year-Old Chinese Adults: A Population-Based Cross-Sectional Analysis. Nutrients. 2016; 8(8):497. https://doi.org/10.3390/nu8080497
Chicago/Turabian StyleWang, Xuan, Mingyue Zhang, Guang Lui, Hong Chang, Meilin Zhang, Wei Liu, Ziwei Li, Yixin Liu, and Guowei Huang. 2016. "Associations of Serum Manganese Levels with Prediabetes and Diabetes among ≥60-Year-Old Chinese Adults: A Population-Based Cross-Sectional Analysis" Nutrients 8, no. 8: 497. https://doi.org/10.3390/nu8080497
APA StyleWang, X., Zhang, M., Lui, G., Chang, H., Zhang, M., Liu, W., Li, Z., Liu, Y., & Huang, G. (2016). Associations of Serum Manganese Levels with Prediabetes and Diabetes among ≥60-Year-Old Chinese Adults: A Population-Based Cross-Sectional Analysis. Nutrients, 8(8), 497. https://doi.org/10.3390/nu8080497