Repressed Exercise-Induced Hepcidin Levels after Danggui Buxue Tang Supplementation in Male Recreational Runners
<p>Flowchart of participant enrollment, allocation, and treatment.</p> "> Figure 2
<p>The chromatogram of DBT analysed using (<b>a</b>) HPLC-ELSD and (<b>b</b>) HPLC-PDA. <sup>1</sup> astragaloside IV, <sup>2</sup> ferulic acid, <sup>3</sup> ligustilide, <sup>4</sup> <span class="html-italic">n</span>-butylidenephthalide.</p> "> Figure 3
<p>Relationship between VO<sub>2</sub>max and finish time in each group as analysed using Spearman’s correlation (<span class="html-italic">r</span> = −0.925, <span class="html-italic">p</span> < 0.001, slope = −1.203 in control group; <span class="html-italic">r</span> = −0.649, <span class="html-italic">p</span> < 0.05, slope = −0.682 in DBT group).</p> "> Figure 4
<p>Changes in serum levels of (<b>a</b>) hepcidin, (<b>b</b>) iron, (<b>c</b>) ferritin, and (<b>d</b>) haptoglobin. <sup>†</sup> Significant group × time effect (<span class="html-italic">p</span> < 0.05) analysed using two-way repeated measures ANOVA. <sup>#</sup> <span class="html-italic">p</span> = 0.050, * <span class="html-italic">p</span> < 0.050, ** <span class="html-italic">p</span> < 0.010, *** <span class="html-italic">p</span> < 0.001 as compared with Pre-Tre in each independent group using paired <span class="html-italic">t</span>-test.</p> "> Figure 5
<p>Changes in serum levels of (<b>a</b>) malondialdehyde (MDA), (<b>b</b>) superoxide dismutase (SOD), (<b>c</b>) catalase (CAT), and plasma levels of (<b>d</b>) glutathione peroxidase (GPx). <b><sup>†</sup></b> Significant group × time effect (<span class="html-italic">p</span> < 0.05) analysed using two-way repeated measures ANOVA. <b>*</b> <span class="html-italic">p</span> < 0.050, <b>**</b> <span class="html-italic">p</span> < 0.010, <b>***</b> <span class="html-italic">p</span> < 0.001 as compared with Pre-Tre in each independent group using paired <span class="html-italic">t</span>-test.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Preparation of DBT and Placebo
2.2. Phytochemical Analysis of DBT
2.2.1. Chemicals and Reagents
2.2.2. Apparatus
2.2.3. Determination of Polysaccharides and Total Flavonoids
2.2.4. Determination of Astragaloside IV
2.2.5. Determination of Ferulic Acid, Ligustilide, and n-Butylidenephthalide
2.3. Clinical Study
2.3.1. Ethics Approval
2.3.2. Participants
2.3.3. Experimental Design
2.4. Measurement of Maximal Oxygen Consumption
2.5. Biochemical Analysis of Blood and Urine
2.6. Statistical Analysis
3. Results
3.1. Phytochemical Properties of DBT
3.2. Characteristics and Exercise Performance of Participants
3.3. Iron Status and Haptoglobin Levels
3.4. Oxidative Stress and Antioxidant Activities
3.5. Complete Blood Counts, Inflammatory and Metabolic Markers
3.6. Urine OB
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | alanine aminotransferase |
AM | the roots of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao |
ANOVA | analysis of variance |
AS | the roots of Angelica sinensis (Oliv) Diels |
AST | aspartate aminotransferase |
CAT | catalase |
DBT | Danggui Buxue Tang |
ELSD | evaporative light scattering detector |
GPx | glutathione peroxidase |
Hb | haemoglobin |
HCT | haematocrit |
HPLC | high-performance liquid chromatography |
HRmax | maximal heart rate |
IL | interleukin |
LDH | lactic dehydrogenase |
MCH | mean corpuscular haemoglobin |
MCHC | mean corpuscular haemoglobin concentration |
MCV | mean corpuscular volume |
MDA | malondialdehyde |
OB | occult blood |
OCP | oral contraceptive pill |
PDA | photodiode array |
RBC | red blood cell |
RPE | rating of perceived exertion |
SOD | superoxide dismutase |
TNF | tumour necrosis factor |
VO2max | maximal oxygen consumption |
WBC | white blood cell |
References
- Kong, W.N.; Gao, G.; Chang, Y.Z. Hepcidin and sports anemia. Cell Biosci. 2014, 4, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DellaValle, D.M.; Haas, J.D. Impact of iron depletion without anemia on performance in trained endurance athletes at the beginning of a training season: A study of female collegiate rowers. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Reinke, S.; Taylor, W.R.; Duda, G.N.; von Haehling, S.; Reinke, P.; Volk, H.D.; Anker, S.D.; Doehner, W. Absolute and functional iron deficiency in professional athletes during training and recovery. Int. J. Cardiol. 2012, 156, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, L.M.; Hinton, P.S. Prevalence of iron deficiency with and without anemia in recreationally active men and women. J. Am. Diet. Assoc. 2005, 105, 975–978. [Google Scholar] [CrossRef] [PubMed]
- Beard, J.; Tobin, B. Iron status and exercise. Am. J. Clin. Nutr. 2000, 72, 594S–597S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeling, P. Exercise as a mediator of hepcidin activity in athletes. Eur. J. Appl. Physiol. 2010, 110, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T. Hepcidin and iron regulation, 10 years later. Blood 2011, 117, 4425–4433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemeth, E.; Tuttle, M.S.; Powelson, J.; Vaughn, M.B.; Donovan, A.; Ward, D.M.; Ganz, T.; Kaplan, J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004, 306, 2090–2093. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Sánchez-Oliver, A.J.; Mata-Ordoñez, F.; Feria-Madueño, A.; Grimaldi-Puyana, M.; López-Samanes, Á.; Pérez-López, A. Effects of an Acute Exercise Bout on Serum Hepcidin Levels. Nutrients 2018, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Roecker, L.; Meier-Buttermilch, R.; Brechtel, L.; Nemeth, E.; Ganz, T. Iron-regulatory protein hepcidin is increased in female athletes after a marathon. Eur. J. Appl. Physiol. 2005, 95, 569–571. [Google Scholar] [CrossRef] [PubMed]
- Peeling, P.; Dawson, B.; Goodman, C.; Landers, G.; Wiegerinck, E.T.; Swinkels, D.W.; Trinder, D. Training surface and intensity: Inflammation, hemolysis, and hepcidin expression. Med. Sci. Sports Exerc. 2009, 41, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Pasiakos, S.M.; Margolis, L.M.; Murphy, N.E.; McClung, H.L.; Martini, S.; Gundersen, Y.; Castellani, J.W.; Karl, J.P.; Teien, H.K.; Madslien, E.H.; et al. Effects of exercise mode, energy, and macronutrient interventions on inflammation during military training. Physiol. Rep. 2016, 4, e12820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzedzej, A.; Ignatiuk, W.; Jaworska, J.; Grzywacz, T.; Lipinska, P.; Antosiewicz, J.; Korek, A.; Ziemann, E. The effect of the competitive season in professional basketball on inflammation and iron metabolism. Biol. Sport 2016, 33, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Skarpanska-Stejnborn, A.; Basta, P.; Trzeciak, J.; Szczesniak-Pilaczynska, L. Effect of intense physical exercise on hepcidin levels and selected parameters of iron metabolism in rowing athletes. Eur. J. Appl. Physiol. 2015, 115, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Sim, M.; Dawson, B.; Landers, G.J.; Swinkels, D.W.; Tjalsma, H.; Wiegerinck, E.T.; Trinder, D.; Peeling, P. A seven day running training period increases basal urinary hepcidin levels as compared to cycling. J. Int. Soc. Sports Nutr. 2014, 11, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonilla, J.F.; Narváez, R.; Chuaire, L. Sports as a cause of oxidative stress and hemolysis. Colombia Médica 2005, 36, 275–280. [Google Scholar]
- Lukaski, H.C. Vitamin and mineral status: Effects on physical performance. Nutrition 2004, 20, 632–644. [Google Scholar] [CrossRef] [PubMed]
- McClung, J.P.; Karl, J.P.; Cable, S.J.; Williams, K.W.; Young, A.J.; Lieberman, H.R. Longitudinal decrements in iron status during military training in female soldiers. Br. J. Nutr. 2009, 102, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Tolkien, Z.; Stecher, L.; Mander, A.P.; Pereira, D.I.; Powell, J.J. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0117383. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.P.; Zeng, F.; Liu, J.Y.; Guo, D.; Zhang, Y. Inhibitory effect of polysaccharides isolated from angelica sinensis on hepcidin expression. J. Ethnopharmacol. 2011, 134, 944–948. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Zhang, Y.; You, R.X.; Zeng, F.; Guo, D.; Wang, K.P. Polysaccharide isolated from angelica sinensis inhibits hepcidin expression in rats with iron deficiency anemia. J. Med. Food 2012, 15, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, M.M.; Zeng, F.; Yao, C.; Wang, K.P. Study to establish the role of jak2 and smad1/5/8 pathways in the inhibition of hepcidin by polysaccharides from angelica sinensis. J. Ethnopharmacol. 2012, 144, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cheng, Y.; Wang, N.; Zhang, Q.; Wang, K. The action of jak, smad and erk signal pathways on hepcidin suppression by polysaccharides from angelica sinensis in rats with iron deficiency anemia. Food Funct. 2014, 5, 1381–1388. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.C.; Chen, S.Y.; Tsai, P.W.; Ganzon, J.G.; Lee, C.J.; Shiah, H.S.; Wang, C.C. Effects of dang-gui-bu-xue-tang, an herbal decoction, on iron uptake in iron-deficient anemia. Drug Des. Dev. Ther. 2016, 10, 949–957. [Google Scholar]
- Yeh, T.S.; Chuang, H.L.; Huang, W.C.; Chen, Y.M.; Huang, C.C.; Hsu, M.C. Astragalus membranaceus improves exercise performance and ameliorates exercise-induced fatigue in trained mice. Molecules 2014, 19, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.S.; Huang, C.C.; Chuang, H.L.; Hsu, M.C. Angelica sinensis improves exercise performance and protects against physical fatigue in trained mice. Molecules 2014, 19, 3926–3939. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.S.; Hsu, C.C.; Yang, S.C.; Hsu, M.C.; Liu, J.F. Angelica sinensis promotes myotube hypertrophy through the pi3k/akt/mtor pathway. BMC Complement. Altern. Med. 2014, 14, 144. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.W.; Chen, Y.M.; Hsu, Y.J.; Huang, C.C.; Wu, Y.T.; Hsu, M.C. Protective effects of the roots of angelica sinensis on strenuous exercise-induced sports anemia in rats. J. Ethnopharmacol. 2016, 193, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, H.G.; Li, X.H. A chinese herbal decoction, danggui buxue tang, improves chronic fatigue syndrome induced by food restriction and forced swimming in rats. Phytother. Res. PTR 2011, 25, 1825–1832. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science and Technology Press: Beijing, China, 2015. [Google Scholar]
- Heyward, V.H.; Gibson, A. Advanced Fitness Assessment and Exercise Prescription, 7th ed.; Human Kinetics: Champaign, IL, USA, 2014. [Google Scholar]
- Bruce, R.A.; Kusumi, F.; Hosmer, D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am. Heart J. 1973, 85, 546–562. [Google Scholar] [CrossRef]
- Lee, C.L.; Hsu, M.; Astorino, T.A.; Liu, T.W.; Chang, W.D. Effectiveness of 2 weeks of high-intensity interval training on performance and hormone status in adolescent triathletes. J. Sports Med. Phys. Fit. 2017, 57, 319–329. [Google Scholar]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Gong, A.G.; Li, N.; Lau, K.M.; Lee, P.S.; Yan, L.; Xu, M.L.; Lam, C.T.; Kong, A.Y.; Lin, H.Q.; Dong, T.T.; et al. Calycosin orchestrates the functions of danggui buxue tang, a chinese herbal decoction composing of astragali radix and angelica sinensis radix: An evaluation by using calycosin-knock out herbal extract. J. Ethnopharmacol. 2015, 168, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.Y.; Choi, R.C.; Guo, A.J.; Bi, C.W.; Zhu, K.Y.; Du, C.Y.; Zhang, Z.X.; Lau, D.T.; Dong, T.T.; Tsim, K.W. The membrane permeability of astragali radix-derived formononetin and calycosin is increased by angelicae sinensis radix in caco-2 cells: A synergistic action of an ancient herbal decoction danggui buxue tang. J. Pharm. Biomed. Anal. 2012, 70, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.Y.; Zhang, Z.X.; Du, C.Y.; Zhang, W.L.; Bi, C.W.; Choi, R.C.; Dong, T.T.; Tsim, K.W. Ferulic acid enhances the chemical and biological properties of astragali radix: A stimulator for danggui buxue tang, an ancient chinese herbal decoction. Planta Med. 2014, 80, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Z.; Choi, R.C.; Li, J.; Xie, H.Q.; Cheung, A.W.; Duan, R.; Guo, A.J.; Zhu, J.T.; Chen, V.P.; Bi, C.W.; et al. Ligustilide suppresses the biological properties of danggui buxue tang: A chinese herbal decoction composed of radix astragali and radix angelica sinensis. Planta Med. 2010, 76, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.Y.; Zheng, K.Y.; Zhang, W.L.; Chen, J.P.; Yao, P.; Bi, C.W.; Dong, T.T.; Tsim, K.W. Identification of angelica oil as a suppressor for the biological properties of danggui buxue tang: A chinese herbal decoction composes of astragali radix and angelica sinensis radix. J. Ethnopharmacol. 2014, 154, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.W.; Xie, D.; Xia, B.; Zhen, R.T.; Liu, I.M.; Cheng, J.T. Suppression of transforming growth factor-beta1 gene expression by danggui buxue tang, a traditional chinese herbal preparation, in retarding the progress of renal damage in streptozotocin-induced diabetic rats. Horm. Metab. Res. 2006, 38, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Zhao, Z.; Chen, Y.; Wang, Q.; Tao, Y.; Yang, L.; Fan, T.P.; Liu, C. The chinese herbal decoction danggui buxue tang inhibits angiogenesis in a rat model of liver fibrosis. Evid. Based Complement. Altern. Med. 2012, 2012, 284963. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liang, Y.Z. Chemical composition and inhibitory effect on hepatic fibrosis of danggui buxue decoction. Fitoterapia 2010, 81, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Mak, D.H.; Chiu, P.Y.; Dong, T.T.; Tsim, K.W.; Ko, K.M. Dang-gui buxue tang produces a more potent cardioprotective effect than its component herb extracts and enhances glutathione status in rat heart mitochondria and erythrocytes. Phytother. Res. 2006, 20, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Feng, L.J.; Huang, Y.; Li, P.; Xu, D.J.; Li, J.; Wu, Q. Total glucosides of danggui buxue tang attenuates bleomycin-induced pulmonary fibrosis via inhibition of extracellular matrix remodelling. J. Pharm. Pharmacol. 2012, 64, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhou, W.C.; Li, D.L.; Mo, X.T.; Xu, L.; Li, L.C.; Cui, W.H.; Gao, J. Total glucosides of danggui buxue tang attenuate blm-induced pulmonary fibrosis via regulating oxidative stress by inhibiting nox4. Oxid. Med. Cell Longev. 2015, 2015, 645814. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, S.; Deng, X.; Yang, X.; Huang, X. Danggui-buxue-tang decoction has an anti-inflammatory effect in diabetic atherosclerosis rat model. Diabetes Res. Clin. Pract. 2006, 74, 194–196. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.T.; Cheung, J.K.; Li, J.; Chu, G.K.; Duan, R.; Cheung, A.W.; Zhao, K.J.; Dong, T.T.; Tsim, K.W. A chinese herbal decoction, danggui buxue tang, prepared from radix astragali and radix angelicae sinensis stimulates the immune responses. Planta Med. 2006, 72, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Li, X.T.; Wang, B.; Li, J.L.; Yang, R.; Li, S.C.; Zhang, M.; Huang, W.; Cao, L. Effects of dangguibuxue tang, a chinese herbal medicine, on growth performance and immune responses in broiler chicks. Biol. Res. 2013, 46, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Chiu, P.Y.; Leung, H.Y.; Siu, A.H.; Poon, M.K.; Dong, T.T.; Tsim, K.W.; Ko, K.M. Dang-gui buxue tang protects against oxidant injury by enhancing cellular glutathione in h9c2 cells: Role of glutathione synthesis and regeneration. Planta Med. 2007, 73, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.D.; Ma, Y.H.; Zhao, J.X.; Zhao, X.K. Protection of ultra-filtration extract from danggui buxue decoction on oxidative damage in cardiomyocytes of neonatal rats and its mechanism. Chin. J. Integr. Med. 2011, 17, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.T.; Cheung, J.K.; Choi, R.C.; Cheung, A.W.; Li, J.; Jiang, Z.Y.; Duan, R.; Zhao, K.J.; Ding, A.W.; Dong, T.T.; et al. A chinese herbal decoction prepared from radix astragali and radix angelicae sinensis induces the expression of erythropoietin in cultured hep3b cells. Planta Med. 2008, 74, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.Y.; Choi, R.C.; Xie, H.Q.; Cheung, A.W.; Guo, A.J.; Leung, K.W.; Chen, V.P.; Bi, C.W.; Zhu, K.Y.; Chan, G.K.; et al. The expression of erythropoietin triggered by Danggui Buxue Tang, a Chinese herbal decoction prepared from radix astragali and radix angelicae sinensis, is mediated by the hypoxia-inducible factor in cultured hek293t cells. J. Ethnopharmacol. 2010, 132, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Haines, C.J.; Lam, P.M.; Chung, T.K.; Cheng, K.F.; Leung, P.C. A randomized, double-blind, placebo-controlled study of the effect of a Chinese herbal medicine preparation (Dang Gui Buxue Tang) on menopausal symptoms in Hong Kong Chinese women. Climacteric 2008, 11, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Cheng, K.F.; Lo, W.M.; Law, C.; Li, L.; Leung, P.C.; Chung, T.K.; Haines, C.J. A randomized, double-blind, multiple-dose escalation study of a chinese herbal medicine preparation (Dang Gui Buxue Tang) for moderate to severe menopausal symptoms and quality of life in postmenopausal women. Menopause 2013, 20, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.C.; Yang, K.Z.; Sun, X.F. Efficacy of auxiliary therapy with danggui buxue decoction no.1 in treating patients of non-small cell lung cancer at peri-operational stage. Chin. J. Integr. Med. 2009, 15, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Committee on Chinese Medicine and Pharmacy. Taiwan Herbal Pharmacopeia; Ministry of Health and Welfare: Taipei, Taiwan, 2016.
- Zhao, M.M.; Zhang, Y.; Li, L.S.; Yu, Z.K.; Li, B. Efficacy and safety of danggui buxue decoction in combination with western medicine treatment of anemia for renal anemia: A systematic review and meta-analysis. Ann. Transl. Med. 2017, 5, 136. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.H.; Chen, Z.W.; Pan, Y.W.; Luo, D.M.; Su, Z.R.; Chen, H.M.; Qin, Z.; Huang, S.Q.; Lei, G. Evaluation of safety of modified-danggui buxue tang in rodents: Immunological, toxicity and hormonal aspects. J. Ethnopharmacol. 2016, 183, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Sim, M.; Dawson, B.; Landers, G.; Swinkels, D.W.; Tjalsma, H.; Yeap, B.B.; Trinder, D.; Peeling, P. Oral contraception does not alter typical post-exercise interleukin-6 and hepcidin levels in females. J. Sci. Med. Sport 2015, 18, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Watts, E. Athletes’ anaemia. A review of possible causes and guidelines on investigation. Br. J. Sports Med. 1989, 23, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Burden, R.J.; Pollock, N.; Whyte, G.P.; Richards, T.; Moore, B.; Busbridge, M.; Srai, S.K.; Otto, J.; Pedlar, C.R. Effect of Intravenous Iron on Aerobic Capacity and Iron Metabolism in Elite Athletes. Med. Sci. Sports Exerc. 2015, 47, 1399–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, F.; Mikkelsen, B.B.; Nielsen, J.B.; Andersen, H.R.; Grandjean, P. Plasma malondialdehyde as biomarker for oxidative stress: Reference interval and effects of life-style factors. Clin. Chem. 1997, 43, 1209–1214. [Google Scholar] [PubMed]
- Fu, J.; Wang, Z.; Huang, L.; Zheng, S.; Wang, D.; Chen, S.; Zhang, H.; Yang, S. Review of the botanical characteristics, phytochemistry, and pharmacology of astragalus membranaceus (huangqi). Phytother. Res. 2014, 28, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.H.; Lai, J.I.; Wang, S.H.; How, C.K.; Li, L.H.; Kao, W.F.; Yang, C.C.; Chen, R.J. Early changes of the anemia phenomenon in male 100-km ultramarathoners. J. Chin. Med. Assoc. 2015, 78, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Convertino, V.A. Blood volume: Its adaptation to endurance training. Med. Sci. Sports Exerc. 1991, 23, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-W.; Huang, T.-Z.; Chang, W.-H.; Tseng, Y.-C.; Wu, Y.-T.; Hsu, M.-C. Acute garcinia mangostana (mangosteen) supplementation does not alleviate physical fatigue during exercise: A randomized, double-blind, placebo-controlled, crossover trial. J. Int. Soc. Sports Nutr. 2016, 13, 20. [Google Scholar] [CrossRef] [PubMed]
Compound | PubChem CID |
---|---|
d-Glucose | 5793 |
Rutin | 5280805 |
Astragaloside IV | 158694 |
Ferulic acid | 445858 |
Ligustilide | 5319022 |
n-Butylidenephthalide | 642376 |
Parameter | Control (n = 14) | DBT (n = 14) |
---|---|---|
Age (year) | 23.1 (2.5) | 22.7 (2.0) |
Height (cm) | 172.4 (3.7) | 173.1 (5.6) |
Weight (kg) | 73.3 (10.7) | 69 (8.6) |
HRmax (beat·min−1) | 194.3 (10.6) | 192.2 (7.3) |
VO2max (mL·kg−1·min−1) | 56.6 (11.5) | 57.0 (10.6) |
Finish time (min) | 87.6 (15.6) | 75.3 (11.3) * |
Parameter | Control (n = 14) | DBT (n = 14) |
---|---|---|
Hepcidin (ng·mL−1) | 14.4 (7.9) | 13.1 (8.2) |
Iron (μg·dL−1) | 77.4 (23.3) | 99.3 (33.9) |
Ferritin (ng·mL−1) | 113.4 (96.0) | 156.9 (137.7) |
Parameter | Control (n = 14) | DBT (n = 14) | Normal Range | ||||||
---|---|---|---|---|---|---|---|---|---|
Pre-Tre | Post-Ex | 24-h Rec | 72-h Rec | Pre-Tre | Post-Ex | 24-h Rec | 72-h Rec | ||
Complete blood counts | |||||||||
WBC (×103·μL−1) | 6.55 (1.66) | 9.49 (1.79) *** | 6.24 (1.49) | 6.55 (2.15) | 6.27 (1.29) | 9.81 (3.20) *** | 6.16 (1.43) | 5.90 (1.13) | 3.5–11 |
RBC (×106·μL−1) | 5.31 (0.29) | 5.33 (0.31) | 5.08 (0.34) ** | 5.07 (0.26) ** | 5.35 (0.54) | 5.41 (0.71) | 5.13 (0.61) ** | 5.09 (0.57) ** | 4.0–6.0 |
Hb (g·dL−1) | 15.2 (0.9) | 15.3 (1.0) | 14.9 (0.9) | 15.0 (0.7) | 15.2 (0.7) | 15.2 (1.1) | 14.8 (0.9) * | 14.7 (0.7) ** | 12–16 |
HCT (%) | 47.8 (1.9) | 47.7 (2.0) | 45.4 (2.1) ** | 45.3 (1.3) ** | 47.4 (2.0) | 47.9 (3.2) | 45.4 (2.3) ** | 45.1 (1.9) ** | 36–46 |
MCV (fL) | 90.1 (2.7) | 89.7 (2.8) ** | 89.7 (2.8) ** | 89.6 (2.8) ** | 89.2 (7.6) | 89.3 (7.3) | 89.3 (7.4) | 89.2 (7.3) | 80–102 |
MCH (pg) | 28.7 (1.5) | 28.7 (1.1) | 29.5 (1.3) ** | 29.6 (1.1) ** | 28.7 (2.7) | 28.4 (2.7) * | 29.1 (2.9) * | 29.1 (2.8) * | 27–34 |
MCHC (%) | 31.8 (0.9) | 31.9 (0.9) | 32.9 (0.8) *** | 33.0 (0.9) *** | 32.2 (0.9) | 31.8 (0.9) | 32.6 (1.2) | 32.6 (0.8) * | 30–36 |
Platelet (×103·μL−1) | 253.3 (60.6) | 288.3 (63.7) ** | 248 (50.0) | 245.9 (55.0) | 223.3 (43.6) | 284.6 (53.9) *** | 235.1 (42.9) | 239.6 (49.7) | 150–450 |
Inflammatory markers | |||||||||
TNF-α (pg·mL−1) | 2.65 (1.07) | 8.79 (0.77) *** | 7.72 (1.53) *** | 4.36 (5.57) | 3.56 (1.97) | 9.54 (1.51) *** | 8.09 (0.96) *** | 3.33 (2.17) | |
IL-6 (pg·mL−1) | 1.10 (0.65) | 9.89 (8.79) ** | 3.01 (0.61) *** | 1.39 (0.78) | 1.04 (0.44) | 8.43 (4.34) *** | 3.01 (0.63) *** | 1.56 (0.96) | |
Metabolic markers | |||||||||
AST (U·L−1) | 28.6 (33.8) | 34.5 (35.7) ** | 30.43 (32.1) | 35.4 (36.9) ** | 22.1 (8.8) | 25.8 (12.3) * | 19.6 (14.1) | 26.9 (17.7) | 8–38 |
ALT (U·L−1) | 31.4 (46.2) | 31.5 (42.7) | 20.3 (27.8) | 32.2 (41.5) | 23.1 (28.3) | 27.1 (34.5) * | 16.4 (25.5) *** | 28.4 (42.7) | 4–40 |
LDH (U·L−1) | 157.5 (17.6) | 213.1 (34.7) *** | 121.6 (50.2) * | 185.4 (24.7) *** | 167.6 (23.8) | 214.4 (35.6) *** | 110.1 (32.4) *** | 188.6 (31.1) ** | 106–211 |
Ammonia (μg·dL−1) | 68.1 (15.0) | 159.4 (53.0) *** | 62.5 (12.5) | 76.3 (13.4) * | 68.0 (11.4) | 175.1 (46.5) *** | 69.5 (15.2) | 78.3 (17.9) | 31–123 |
Urine OB | Control (n = 14) | DBT (n = 14) | ||||||
---|---|---|---|---|---|---|---|---|
Pre-Tre | Post-Ex | 24-h Rec | 72-h Rec | Pre-Tre | Post-Ex | 24-h Rec | 72-h Rec | |
− | 13 | 11 | 12 | 14 | 14 | 11 | 14 | 14 |
+/− | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 |
+ | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
++ | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
+++ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
++++ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-W.; Chen, C.-Y.; Yen, C.-C.; Wu, Y.-T.; Hsu, M.-C. Repressed Exercise-Induced Hepcidin Levels after Danggui Buxue Tang Supplementation in Male Recreational Runners. Nutrients 2018, 10, 1318. https://doi.org/10.3390/nu10091318
Chang C-W, Chen C-Y, Yen C-C, Wu Y-T, Hsu M-C. Repressed Exercise-Induced Hepcidin Levels after Danggui Buxue Tang Supplementation in Male Recreational Runners. Nutrients. 2018; 10(9):1318. https://doi.org/10.3390/nu10091318
Chicago/Turabian StyleChang, Chih-Wei, Chao-Yen Chen, Ching-Chi Yen, Yu-Tse Wu, and Mei-Chich Hsu. 2018. "Repressed Exercise-Induced Hepcidin Levels after Danggui Buxue Tang Supplementation in Male Recreational Runners" Nutrients 10, no. 9: 1318. https://doi.org/10.3390/nu10091318
APA StyleChang, C. -W., Chen, C. -Y., Yen, C. -C., Wu, Y. -T., & Hsu, M. -C. (2018). Repressed Exercise-Induced Hepcidin Levels after Danggui Buxue Tang Supplementation in Male Recreational Runners. Nutrients, 10(9), 1318. https://doi.org/10.3390/nu10091318