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Abstract: Sensorineural hearing loss (SNHL), characterized by damage to the inner ear or auditory
nerve, is a prevalent auditory disorder. This study explores the potential of Castanopsis echinocarpa
(CAE) as a therapeutic agent for SNHL. In vivo experiments were conducted using zebrafish and
mouse models. Zebrafish with neomycin-induced ototoxicity were treated with CAE, resulting
in otic hair cell protection with an EC50 of 0.49 µg/mL and a therapeutic index of 1020. CAE
treatment improved auditory function and protected cochlear sensory cells in a mouse model after
noise-induced hearing loss (NIHL). RNA sequencing of NIHL mouse cochleae revealed that CAE up-
regulates genes involved in neurotransmitter synthesis, secretion, transport, and neuronal survival.
Real-time qPCR validation showed that NIHL decreased the mRNA expression of genes related to
neuronal function, such as Gabra1, Gad1, Slc32a1, CaMK2b, CaMKIV, and Slc17a7, while the CAE
treatment significantly elevated these levels. In conclusion, our findings provide strong evidence that
CAE protects against hearing loss by promoting sensory cell protection and enhancing the expression
of genes critical for neuronal function and survival.

Keywords: sensorineural hearing loss; Castanopsis echinocarpa; ototoxicity; noise-induced hearing
loss; neuronal function and survival

1. Introduction

Sensorineural hearing loss (SNHL) is a major global health concern, with its prevalence
significantly increasing over the past decade. This rise appears to be correlated with
increased exposure to hazardous noise levels in daily life, ototoxic agents, and aging [1].
Currently, more than 466 million people worldwide suffer from hearing loss, which is
projected to keep rising. Notably, excessive occupational noise exposure is a critical health
hazard, accounting for 16% of adult hearing loss cases, as reported by the World Health
Organization [2].

Auditory functions require complex interactions among the sensory cells in the inner
ear, specifically involving otic hair cells and spiral ganglion neurons. In noise-induced
hearing loss (NIHL), high-frequency sounds damage the cochlear sensory cells, which lack
the capacity to regenerate [3]. Therefore, hearing loss prevention strategies are crucial to
attenuate cochlear sensory cell loss by blocking several cellular mechanisms that contribute
to premature hearing impairment [4–6]. Recently, neuroprotective drugs, antioxidants,
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anti-inflammatory, and anti-apoptotic agents have been widely used to improve hearing
deficits in NIHL [7]. Specifically, polyphenols have been shown to protect sensory cells
and improve hearing function [8,9]. However, natural products have not been studied
extensively as potential treatments. Thus, we have been studying natural products with
high polyphenol content as candidates for hearing loss prevention [10,11].

Recently, growing research has focused on herbal species as multi-target approaches
to treat sensorineural hearing loss in vitro and in vivo. Currently, clinical trials have been
carried out using different traditional herbs, including Ginkgo biloba, Panax ginseng, and
Astragalus propinquus [12]. The molecular mechanisms of natural products on protection
and recovery from auditory insults involve targeting several pathophysiological states
such as oxidative damage, inflammation, disruption of ion homeostasis, pro-apoptotic
and apoptotic mediators, and decreased survival regulation. Such a multi-target approach
on the inner ear makes natural products important for drug discovery on hearing impair-
ments [12]. We previously demonstrated SNHL amelioration by using natural products.
To name a few, Curculigo orchioides showed protective efficacy from ototoxicity through
a reduction in oxidative stress and increased scavenging activity against free radicals
in vitro [13] and improved auditory function on NIHL in vivo [14]; Scutellaria baicalensis
showed improved auditory function on different models of SNHL in vivo through lipoxy-
genase inhibition [11]; and avocado oil (Persea ameriacana) demonstrated efficacy against
SNHL in vitro and in vivo by reducing the altered gene expression related to oxidative
stress, cytokine production, and protein synthesis [15].

After extensive screening, we identified Castanopsis echinocarpa (CAE)’s potential as
a therapy for SNHL. Despite recent interest in Castanopsis species, they have not yet
been widely studied. The leaves of these species are reported to be rich in polyphenols,
such as galloyl quinic acids, triterpene hexahydroxydiphenoyl esters, ellagitannins, phenol
glucosides, condensed tannins, and flavonol glycosides. Some species have already been
reported to possess powerful antioxidant properties, effective against oxidative stress
and inflammation and preventive against apoptosis [16–19]. Currently, no studies have
investigated Castanopsis species in the context of SNHL, and specifically, CAE has not
reported any pharmacological activity. Therefore, our aim is to demonstrate CAE’s efficacy
on different models of SNHL in vivo and to elucidate its mode of action.

In this study, we investigated the protective effect of CAE on different models of
SNHL in vivo, using the neomycin (NM)-induced ototoxicity model in zebrafish and the
NIHL model in mice. CAE demonstrated significant improvement in auditory function
and protective effects on auditory structures. To further assess CAE’s mechanism of action,
we identified differentially expressed genes in the cochlea of NIHL mice treated with CAE
using RNA sequencing. Then, for data validation, we performed real-time quantitative
PCR. We found that the protective effect of CAE on SNHL might be explained by the
up-regulation of gene expression related to neural functions, such as genes involved in
neurotransmitter synthesis, transport and release, and neuronal survival.

Recent research has demonstrated that the loss of hearing function is also related to
the damage in synaptic connections among cochlear hair cells and spiral ganglion neurons;
such damage can occur much earlier than otic hair cell death [20]. This study thus proposes
a therapeutic approach based on recent perspectives to treat hearing impairments.

2. Materials and Methods
2.1. Plant Collection and Voucher Specimen Information

The plant extract of Castanopsis echinocarpa Miq. (FBM070-066) used in this research
was obtained from the International Biological Material Research Center at the Korea
Research Institute of Bioscience and Biotechnology (Daejeon, Republic of Korea). The plant
was collected in Menglun Mengla district, Xishuangbanna, Yunnan province of China, in
December 2009. A voucher specimen (KRIB 0062375) is kept in the herbarium of the Korea
Research Institute of Bioscience and Biotechnology.
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2.2. Extraction Procedure for Castanopsis Echinocarpa (CAE)

The raw material was stored at room temperature until extraction. The extraction
process comprised two phases. Initially, we placed 1 kg of the aerial parts in a commercial
extractor (KS220, Kyungseo E&P Co., Ltd., Incheon, Republic of Korea) with 8 L of 70%
ethanol for 2 h. Subsequently, an additional 4 L of 70% ethanol was added, and the
extraction continued for another hour. The extract was filtered and concentrated, then
frozen at −50 ◦C for 24 h and freeze-dried in a rotary evaporator (HS-2001NS, Hahanshin
Scientific, Gimpo-si, Republic of Korea) for 7 days. The final yield of CAE was 15.5%, and
the product was stored at −20 ◦C.

2.3. Animals

Adult zebrafish (Danio rerio), wild-type strain, were housed in an S-type
1500(W) × 400(D) × 2050(H) mm system (WoojungBio, Inc., Suwon, Republic of Ko-
rea). Spawning and egg collection followed established protocols [15]. Embryos were
maintained under a 14 h light/10 h dark cycle at 28.5 ◦C ± 0.5 until 6 days post-fertilization,
after which they were randomly selected for experiments.

Six-week-old male mice, ICR strain, were obtained from Orient Bio, Inc. (Seongnam,
Republic of Korea). They were housed under a 12 h light/dark cycle with food and water ad
libitum and environmental conditions as follows: 23.0 ± 2.0 ◦C temperature and 50.0 ± 5.0%
humidity. Following a week of acclimation, mice were evaluated by auditory brainstem
response (ABR) test to confirm normal hearing (≤25 dB), representing the inclusion criteria
as described in previous studies [15].

2.4. Ethical Statement

All the procedures involving zebrafish and mice were conducted following protocols
approved by the Animal Care and Use Committee of Kyung Hee University [KHUASP-21-
230 and KHUASP-21-229, respectively].

2.5. Neomycin-Induced Ototoxicity in a Zebrafish Model

Zebrafish larvae were exposed to Neomycin sulfate (MB Cell Co., Irvine, CA, USA)
to induce ototoxicity, following established methods [15]. Post-exposure, larvae were first
rinsed and then treated with 0.03% sea salt solution and CAE for 6 h at 28 ◦C, respectively.
Post-treatment, larvae were stained with 0.1% YO-PRO-1 (Thermo Fisher Scientific Inc.,
Waltham, Massachusetts, USA) for 30 min for otic hair cell visualization, anesthetized with
0.04% tricaine, and examined using a fluorescence microscope (Olympus 1 × 70; Olympus
Co., Tokyo, Japan). Images were analyzed with Focus Lite software (Focus Co., Daejeon,
Republic of Korea).

2.6. The 50% Effective Concentration (EC50)

Varying concentrations (0.01 to 10 µg/mL) of CAE were defined to treat zebrafish
larvae. EC50 values were determined by non-linear regression using GraphPad Prism
version 5.01 software (Graph Pad Software, San Diego, CA, USA).

2.7. The 50% Lethal Concentration (LC50)

Varying concentrations (50 to 1000 µg/mL) of CAE were defined to treat zebrafish
larvae. LC50 values were determined by non-linear regression using GraphPad Prism
version 5.01 software (Graph Pad Software, San Diego, CA, USA).

2.8. Therapeutic Index (TI)

The therapeutic index (TI) was calculated to define the safety margin of CAE.

TI = LC50/EC50
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2.9. Noise-Induced Hearing Loss (NIHL) in Mice

NIHL procedures were performed as previously described [15]. Briefly, mice were
exposed to 115 dB sound pressure level (SPL) broadband noise (100 Hz to 10 kHz) for
90 min. Post-exposure, mice were divided into four groups (n = 10/group) and treated
orally once a day, as follows: control (0.3 mL distilled water), 100 mg/kg (CAE 100),
300 mg/kg (CAE 300), and 500 mg/kg (CAE 500) of CAE in distilled water, starting one
day after noise exposure.

2.10. Auditory Brainstem Response (ABR) Test

Auditory function was measured using channel recording (Intelligent Hearing Sys-
tems, Miami, FL, USA) as previously described [15]. Hearing thresholds were evaluated
with ABR using clicks, 8 kHz, and 16 kHz stimuli at 1, 10, and 20 days post-noise exposure.

2.11. Evaluation of Otoprotective Effects of Cochlear Hair Cells

After 20 days of drug administration, the cochleae were harvested, fixed, decalcified,
and microdissected as described previously [15]. Cochleae were stained for hair cell
visualization with 5 U/mL rhodamine phalloidin (Thermo Fisher Scientific Inc., Gainesville,
FL, USA), and outer hair cells (OHCs) at the apex, middle, and base of the cochlea were
identified and counted in a 1 mm strip. Hair cells were evaluated in three groups: control,
NIHL, and NIHL + CAE (n = 6 per group) using fluorescence microscopy.

2.12. mRNA Sequencing and Pathway Analysis

Twenty days post-administration, the cochleae were harvested for RNA extraction
using TRIzol™ reagent (Thermo Fisher Scientific Korea Ltd., Seoul, Republic of Korea)
and purified with a RNeasy mini kit (QIAGEN, Hilden, Germany). For sampling, both
right and left cochleae were collected from 3 animals in each group. RNA quality and
quantity were assessed using an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA).
Sequencing libraries were prepared with the TruSeq Stranded mRNA Sample Preparation
kit (Illumina, San Diego, CA, USA) per the manufacturer’s instructions. Libraries were
evaluated with an Agilent 2100 bioanalyzer and quantified by qPCR using the CFX96 Real
Time System (Bio-Rad, Hercules, CA, USA), then sequenced on a NextSeq500 sequencer
(Agilent, Santa Clara, CA, USA) with a paired-end 75 bp plus single 8 bp index read run.
The raw data from the RNA analysis were converted into sequence data and stored as
FASTQ files. Differentially expressed genes (DEGs) were determined based on an absolute
fold change (FC) greater than 1.4 and a p < 0.05. Reactome Pathway analysis was performed
to identify significant DEGs using Enrichr (2016) [21]. The 3 animals per group were pooled
into 1 biological replicate.

2.13. Quantitative PCR (qPCR)

Twenty days post-administration, total RNA was extracted from mice cochleae using
TRIzol™ reagent (Thermo Fisher Scientific Korea Ltd., Seoul, Republic of Korea) per the
manufacturer’s protocol. Briefly, 1 µg of total RNA was reverse-transcribed using the
RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific Korea Ltd., Seoul,
Republic of Korea). Relative mRNA expression was measured by qPCR, normalized to
β-actin. qPCR reactions contained 5 µL SYBR Select Master Mix (Applied Biosystems,
Thermo Fisher Scientific Korea Ltd., Seoul, Republic of Korea), 1 µL cDNA template,
1 µL each of forward and reverse primers (10 pmol each), and 2 µL RNAse-free water. The
qPCR parameters were initial denaturation at 95 ◦C for 5 min, followed by 45 cycles of
95 ◦C for 15 s, 60 ◦C for 15 s, and 72 ◦C for 20 s, with a melting step at 73 ◦C for 5 min. Gene
expression was analyzed using the 2−∆∆Ct method. Primer sequences are listed in Table 1.
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Table 1. Primers for qPCR.

Gene Name Forward Sequence Reverse Sequence

β-Actin GAAGAGCTATGAGCTGCCTGA TGATCCACATCTGCTGGAAGG
Gabra1 AATGGGCGGATTGGTGTC TCATCTTGGGAGGGCTGT
Gad1 GCCTGGAAGAGAAGAGTCGT TCCCCGTTCTTAGCTGGAAG

Slc17a7 TGGCTGTGTCATCTTCGTGAGG TTGCCAGCCGACTCCGTTCTAA
Camk4 GGAGAAGGGATACTACAGTGAGC CTGGTTTGAGGTCACGATGGAC
Camk2b CCTACGGCAAACCTGTGGACAT GCCTTGATCTGCTGGTACAGCT
Slc32a1 GGCTGGAACGTGACAAATGCCA TACAGGCACGCGATGAGGATCT

2.14. Statistical Analyses

Statistical analyses were performed using GraphPad Prism version 5.01 software
(GraphPad Software, San Diego, CA, USA). All data are expressed as the mean ± standard
error of the mean (SEM). The statistical significance between groups was determined using
a paired t-test or a one-way repeated measures ANOVA followed by Tukey’s post hoc test.
Statistical significance was set at p < 0.05.

3. Results
3.1. CAE’s Efficacy on Otic Hair Cell Protection after NM-Induced Ototoxicity in Zebrafish

The efficacy of CAE on otic neuromast hair cell protection was assessed following
exposure to the ototoxic drug neomycin (NM) using zebrafish. Hair cells within the otic
(O1) neuromast were damaged after NM exposure (Figure 1). NM exposure significantly
reduced (p < 0.001) the number of otic hair cells. In contrast, the CAE treatment significantly
promoted hair cell protection in a dose-dependent manner (p < 0.05, p < 0.01, and p < 0.001)
compared to the control. These findings indicate that CAE is effective in facilitating otic
hair cell protection following ototoxicity induced by NM.
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Figure 1. CAE’s efficacy on otic hair cell protection after neomycin-induced ototoxicity in zebrafish
model. (A) Number of otic hair cells in the untreated group (NM) and the treated groups (0.5, 1,
5, and 10 µg/mL of CAE). (B) Fluorescence images of otic hair cells in the normal (NOR), control
(NM), and treated groups. Hair cells were stained with YO-PRO-1 at 0.1%. Data are presented as
means ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 (control vs. treated groups). ### p < 0.001 (normal
vs. control group). n = 10 per group.

3.2. EC50, LC50, and TI Values of CAE in Zebrafish

To determine the EC50 value of CAE in NM-induced ototoxicity, a dose–response curve
was generated for CAE-treated zebrafish at varying concentrations (0.01 to 10 µg/mL). The
EC50 value of CAE was defined as 0.497 µg/mL (Figure 2A).
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Figure 2. Dose–response curves and therapeutic index of CAE. (A) The EC50 value of CAE in
neomycin (NM)-induced ototoxicity was defined as 0.497 µg/mL. (B) The LC50 value of zebrafish
embryos exposed to CAE for 48 h was defined as 500 µg/mL. (C) The therapeutic index (TI) of CAE
was calculated to be 1020, indicating a high level of drug safety. Data are presented as means ± SEM.
Conc. = concentration; EC50 = 50% effective concentration; LC50 = 50% lethal concentration. n = 10
per group for EC50; n = 20 per group for LC50.

To assess the LC50 value, mortality rates were examined in zebrafish exposed to CAE
at varying concentrations (50 to 1000 µg/mL). The LC50 value of CAE was defined as
500 µg/mL (Figure 2B).

The therapeutic index (TI) of CAE was then calculated; TI is defined as the ratio
of LC50 to EC50 (LC50/EC50). The TI is an index of drug safety, with higher TI values
indicating greater safety. The TI of CAE was calculated to be 1020, indicating a high level
of therapeutic safety for the use of CAE (Figure 2C).

3.3. Toxicity Evaluation of CAE

To evaluate CAE toxicity in zebrafish embryos, we investigated the hatching rate,
heartbeat, body length, and morphological changes in zebrafish embryos after 48 h of
exposure (Figure 3). A significant decrease in the hatching rate was observed in zebrafish
treated with CAE at concentrations of 500 µg/mL or higher. However, no significant differ-
ences were detected between the CAE-treated and non-treated groups at concentrations
up to 400 µg/mL (Figure 3A). Additionally, no significant differences were found in the
heartbeat and body length of zebrafish treated with CAE compared to the non-treated
group at concentrations up to 400 µg/mL (Figure 3B,C). These results indicate that CAE
does not exhibit toxicity at concentrations up to 400 µg/mL.
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Figure 3. Toxicity evaluation of CAE based on zebrafish embryo testing. Data represent 48 h
of exposure. (A) Hatching rate of zebrafish embryos exposed to CAE at varying concentrations:
10–1000 µg/mL. (B) Heartbeat rate (beats per minute) of zebrafish treated with CAE at varying con-
centrations: 10–400 µg/mL. (C) Body length of zebrafish treated with CAE at varying concentrations:
10–400 µg/mL. Data are presented as means ± SEM. n = 20 per group.

3.4. CAE Effects on Auditory Function in NIHL Mouse Model

We assessed the impact of CAE on auditory function using the auditory brainstem
response (ABR) test (Figure 4). The ABR thresholds prior to noise exposure were within nor-
mal ranges across the evaluated frequencies for all mice included in this study. Threshold
shifts were elevated on day 1 post-noise exposure. However, 20 days post-administration
of CAE treatment at various concentrations, the threshold shifts significantly decreased
(p < 0.05, p < 0.01, and p < 0.001) compared to the control group in response to click, 8 kHz,
and 16 kHz stimuli. Additionally, CAE exhibited a dose-dependent efficacy for click thresh-
olds (Figure 4A). In contrast, at 8 and 16 kHz, the 100 µg/mL CAE treatment demonstrated
a greater effect than higher concentrations (Figure 4B,C).
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stimulus (A), 8 kHz tone burst (B), and 16 kHz tone burst (C) in mouse model at 10 days (10 D)
and 20 days (20 D) after noise insult. Data are presented as means ± SEM. * p < 0.05, ** p < 0.01,
*** p < 0.001 (NIHL group vs. CAE-treated groups). CAE 100, 100 mg/kg; CAE 300, 300 mg/kg; CAE
500, 500 mg/kg. n = 10 per group.

3.5. CAE Alleviation of Cochlear Hair Cell Damage in NIHL Mice

Given that CAE at 100 mg/kg demonstrated superior efficacy in improving hearing
function, we evaluated its effects on cochlear hair cells at the apex, middle, and base
following noise-induced damage (Figure 5). Noise exposure resulted in a significant loss
of outer hair cells (OHCs) in the NIHL group (p < 0.01, p < 0.001), particularly in the
base of the cochlea (Figure 5A). In contrast, CAE administration after NIHL substantially
protected hair cells from noise-induced damage (Figure 5B). As shown in Figure 5A, the
quantification of OHCs revealed significantly higher numbers of OHCs (p < 0.05, p < 0.01)
in the CAE-treated mice compared to the untreated NIHL group. These results indicate
that CAE has therapeutic potential in hair cell protection.
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Figure 5. CAE alleviated cochlear hair cell damage in NIHL mice. (A) Outer hair cell (OHC) survival
in 1 mm segments from the apex, middle, and base of the cochlea (n = 6 per group). (B) Fluorescence
images of the outer (OHC) and inner (IHC) hair cells at the apex, middle, and base of the cochlea
by Rhodamine phalloidin staining. Scale bar = 50 µm. ## p < 0.01, ### p < 0.001 (normal group vs.
NIHL group). * p < 0.05, ** p < 0.01 (NIHL group vs. CAE-treated group). NOR = normal. CAE 100,
100 mg/kg. White triangles indicate the locations where the loss of outer hair cells occurred.
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3.6. Differential Gene Expression by CAE Treatment in the Cochlea of NIHL Mice

To further investigate the protective mechanism of CAE in noise-induced hair cell
damage, we conducted a transcriptome analysis to identify genes affected by CAE. RNA
sequencing was performed to monitor differential gene expression in the cochlea of NIHL
mice treated with CAE 100 mg/kg. Of the total genes expressed in the cochlea, 211 genes
were differentially expressed (with false discovery rate (FDR) adjusted Q < 0.01, |fold
change| ≥ 2.0) by the CAE treatment. Among these, 204 genes were up-regulated and
7 genes were down-regulated (Figure 6).
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Figure 6. Differential gene expression induced by CAE treatment in the cochlea of NIHL mice
(n = 3 per group) using Reactome Pathway analysis. Heat map based on RNA-seq analysis of gene
expression in the mouse cochlea and Venn diagram showing the overlap of RNA-seq results for
the regulated gene set of CAE vs. NIHL group. Genes were categorized into CAE-induced and
CAE-repressed groups. Of the total genes, 211 were significantly altered by CAE treatment (false
discovery rate (FDR) adjusted Q < 0.01, |fold change| ≥ 2.0).

A Reactome Pathway analysis was performed to identify the functional pathways
(Figure 7). We focused on the genes up-regulated by the CAE treatment that were enriched
in the transmission across chemical synapses (p value 8.74 × 10−21; Q value 1.21 × 10−18;
Enrichment score 101.5087) and the neuronal system (p value 2.92 × 10−22; Q value
8.09 × 10−20; Enrichment score 110.3959) pathways.
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Pathway analysis (n = 3 per group). Heat map generated from RNA-seq data showing gene sets
involved in transmission across chemical synapses (p value 8.74 × 10−21; Q value 1.21 × 10−18;
Enrichment score 101.5087) and the neuronal system (p value 2.92 × 10−22; Q value 8.09 × 10−20;
Enrichment score 110.3959).

3.7. CAE Effects on Neurotransmitter Synthesis, Secretion, Transport, and Neuronal Survival
Gene Expression in NIHL Mice

To validate the RNA-seq results, we examined the effect of NIHL on the expression of
genes affected by the CAE treatment (Figure 8). NIHL mice showed decreased expression
of genes related to neuronal function compared to normal mice. Specifically, the expression
of genes related to inhibitory synaptic transmission (Gabra1, Gad1, and Slc32a1), neuronal
survival (CaMK2b and CaMKIV), and synaptic function (CaMK2b and Slc17a7) were signifi-
cantly decreased by NIHL, suggesting that noise exposure reduces markers of neuronal
function and survival. Moreover, these genes’ expression was significantly increased by
CAE compared to the NIHL group. These results corroborate the RNA-seq findings and
suggest that the protective mechanism of CAE may involve the enhancement of neuronal
function and survival.
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Figure 8. Changes in the expression of neuronal function-related genes in NIHL mice treated
with CAE 100 mg/kg. Gene expression changes were evaluated by qPCR 20 days after noise
insult. The effects of CAE treatment on genes related to inhibitory synaptic transmission (A–C),
neuronal survival (D,E), and synaptic function (E,F) are shown. Data are presented as means ± SEM.
### p < 0.001 (NOR group vs. NIHL group); ** p < 0.01, *** p < 0.001 (NIHL group vs. CAE-treated
group). NOR = normal.

4. Discussion

In the present study, we evaluated the potential efficacy of CAE, given that certain
species of the genus Castanopsis are known to be rich in polyphenols such as flavonoids and
have demonstrated activity against oxidative stress, inflammation, and apoptosis [16–19],
which are key pharmacological targets in SNHL. However, there are no studies of Castanopsis
species effects on SNHL. Specifically, CAE has not been reported to have any pharmacological
activity. Therefore, we assessed the efficacy of CAE in two models of SNHL: one induced
by ototoxic agents and the other by noise exposure. Additionally, we sought to elucidate its
possible mode of action.

Protecting sensory hair cells has become a crucial target in the treatment of SNHL, as
the condition often results from hair cell loss [6,22,23]. The zebrafish lateral line has gained
prominence as a model system due to its morphological and physiological similarities to
mammalian cochlear hair cells. This model is valuable for investigating the underlying
mechanisms of pathology and for easily screening new candidates with potential activity
as SNHL treatments [24,25]. In this study, we evaluated the effect of CAE on otic hair cell
protection following ototoxicity induced by neomycin. Aminoglycoside ototoxicity, such as
that caused by neomycin, is well known to damage sensory hair cells through mechanisms
like those observed in NIHL [26]. Our results demonstrated that CAE significantly promotes
otic hair cell protection, with an EC50 value of 0.497 µg/mL. Additionally, our investigation
into the toxicity of CAE revealed that it is a safe drug, as indicated by its high therapeutic
index (TI) value of 1020.

Because noise exposure is one of the most prevalent forms of SNHL [23], we evaluated
CAE’s activity on auditory function in an NIHL mouse model. It is well known that NIHL
causes an increase in auditory thresholds and alterations in the waveforms of the ABR,
indicating a reduced response in different regions of the auditory pathway [27]. Our results
demonstrated that different doses of CAE were effective at the click, 8 kHz, and 16 kHz
frequencies, as evidenced by decreased hearing thresholds in the ABR. CAE significantly
improved auditory function after 20 days of treatment and also exhibited a protective effect
on sensory hair cells in the apex, middle, and base of the cochlea, as shown by rhodamine



Nutrients 2024, 16, 2716 12 of 14

phalloidin staining. Specifically, the effect of CAE was greater with the click stimulus.
The click stimulus contains several frequencies along the cochlear traveling wave [28]. In
contrast, tone bursts specifically represent 8 and 16 kHz. Our findings in the click stimulus
may also be related to higher frequencies not considered in this study. As shown in the ABR
data, the effect of CAE was greater at 16 kHz tone burst thresholds than at 8 kHz, which
could support the hypothesis of its efficacy at higher frequencies. This study provides
compelling evidence for the potential of CAE as a treatment for SNHL.

To elucidate the mode of action of CAE, we assessed the differential expression of
genes in NIHL mice following CAE treatment using RNA-seq. Among the genes affected by
CAE, we focused specifically on those involved in hearing impairments. The up-regulated
genes of interest were enriched in pathways related to chemical synaptic transmission and
the neuronal system.

Interestingly, we observed that the enriched genes were involved in neuronal function,
neuronal survival, and GABA inhibitory mechanisms. CAE up-regulated genes involved
in GABAergic inhibition, including GABA receptor genes (Gabrd, Gabra6, Gabrb2, Gabra1,
Gabrg2); glutamate decarboxylase genes (Gad1, Gad2), which catalyze the production of
GABA from L-glutamic acid; and a GABA transporter-related gene (Slc32a1). Impairments
in GABA-mediated synaptic transmission have been implicated in the pathogenesis of
auditory disorders [29]. A significant reduction in GABA receptors has been reported in
both noise-induced and age-related hearing loss, and increasing the expression of GABA
receptors has been suggested as a potential target for NIHL treatment to enhance auditory
function [30–32]. Additionally, Gad1 expression has been reported to decrease in the
cochlear nucleus and the inferior colliculus in hearing loss models [33].

Furthermore, CAE up-regulated genes related to synaptic function, such as Slc17a7 and
CaMK2b. Synaptic transmission at cochlear hair cells and spiral ganglion neurons is crucial
for normal hearing function. The Slc17a7 gene, also known as Vglut1, encodes the vesicular
glutamate transporter 1 (VGLUT1) protein, which is required for the transmission of sound-
induced signals from the cochlea to the central auditory pathway. Cochlear damage induced
by noise or ototoxic drugs results in decreased Vglut1 expression [34,35]. The CaMK2b
gene encodes the calcium/calmodulin-dependent protein kinase II beta (CaMKIIβ) protein.
Genes related to calcium homeostasis, such as CaMK2b, are important in ototoxic insults,
including cisplatin exposure, which leads to the decreased expression of genes related to
neurotransmitter secretion and transport [36]. The up-regulation of these genes has been
associated with increased survival of cochlear hair cells and spiral ganglion neurons after
cisplatin ototoxicity, making this an interesting pharmacological approach [36].

As mentioned previously, SNHL results from damage to otic hair cells and cochlear
spiral ganglion neurons. In vivo studies have demonstrated that it is possible to coun-
teract this damage by enhancing survival mechanisms, such as growth factors [34]. Both
Ca2+/calmodulin-dependent protein kinases II and IV (CaMKII and CaMKIV) have shown
survival-promoting effects on spiral ganglion neurons in vitro [37–39]. CAE up-regulated
both CaMKII and CaMKIV, suggesting that its mechanism of action might also involve
improved survival of cochlear spiral ganglion neurons.

To validate the RNA-seq results, we selected six neuronal function-related genes
identified in the cochlea of CAE-treated mice for qPCR analysis. The target genes were
related to GABA inhibitory action (Gabra1, Gad1, and Slc32a1), neuronal survival (CaMK2b
and CaMKIV), and synaptic function (CaMK2b and Slc17a7). As expected, NIHL mice
showed significantly decreased mRNA expression of genes related to neuronal function
and survival compared to normal mice, whereas the CAE treatment significantly increased
the mRNA levels of these genes.

5. Conclusions

Our data suggest that auditory function improvement and protection of sensory cells
by CAE might be explained through increased genes related to synthesis, secretion, and
transport of neurotransmitters and neuronal survival. In addition, this study provides
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more evidence about changes in genes related to neuronal function in the mice cochlea
after noise-induced hearing loss. Thus, we propose a therapeutic approach based on
recent perspectives to treat hearing impairments by improving neuronal function and
survival. However, a limitation of this study is the lack of sufficient evidence to support
proceeding to clinical trials, necessitating additional research on toxicity, pharmacokinetics,
pharmacodynamics, and dosage optimization. Another limitation in this study is the lack
of data demonstrating the difference in gene expression between the normal and NIHL
groups, which represents an opportunity for further studies. It would be necessary to
conduct a timeline study of the up-regulated and down-regulated genes in NIHL compared
to normal mice to better understand the optimal intervention with natural products, mainly
to translate these studies into clinical trials. Additionally, in subsequent studies, we will
characterize this extract to find the main compounds responsible for the therapeutic efficacy
of CAE and their potential synergistic effects.
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