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Abstract: Fusion of ALS and hyperspectral data can offer a powerful basis for the discrimination of
tree species and enables an accurate prediction of species-specific attributes. In this study, the fused
airborne laser scanning (ALS) data and hyperspectral images were used to model and predict the total
and species-specific volumes based on three forest inventory approaches, namely the individual tree
crown (ITC) approach, the semi-ITC approach, and the area-based approach (ABA). The performances
of these inventory approaches were analyzed and compared at the plot level in a complex Alpine
forest in Italy. For the ITC and semi-ITC approaches, an ITC delineation algorithm was applied. With
the ITC approach, the species-specific volumes were predicted with allometric models for each crown
segment and aggregated to the total volume. For the semi-ITC and ABA, a multivariate k-most similar
neighbor method was applied to simultaneously predict the total and species-specific volumes using
leave-one-out cross-validation at the plot level. In both methods, the ALS and hyperspectral variables
were important for volume modeling. The total volume of the ITC, semi-ITC, and ABA resulted in
relative root mean square errors (RMSEs) of 25.31%, 17.41%, 30.95% of the mean and systematic errors
(mean differences) of 21.59%, −0.27%, and −2.69% of the mean, respectively. The ITC approach
achieved high accuracies but large systematic errors for minority species. For majority species, the
semi-ITC performed slightly better compared to the ABA, resulting in higher accuracies and smaller
systematic errors. The results indicated that the semi-ITC outperformed the two other inventory
approaches. To conclude, we suggest that the semi-ITC method is further tested and assessed with
attention to its potential in operational forestry applications, especially in cases for which accurate
species-specific forest biophysical attributes are needed.

Keywords: species-specific volume; semi-individual tree crown; individual tree crown; area-based
approach; k-MSN; airborne laser scanning; hyperspectral data; data fusion; forestry

1. Introduction

Stem volume is one of the most relevant resource attributes of forest inventories. In most European
countries, volume is usually estimated or modeled based on field measurements [1]. In the Nordic
countries, conventional forest inventories at various geographical scales have over the past few decades
been enhanced by using remotely sensed data such as airborne laser scanning (ALS) and stereo aerial
photography [2,3]. It has been shown that for local management planning, data from ALS may reduce
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the overall costs by reducing the economic losses caused by incorrect decisions due to erroneous
data [4]. One of the biggest challenges in remote sensing-assisted inventories is the discrimination
among tree species [5]. Moreover, combining ALS data with hyperspectral images may improve
the accuracy of species identification [6]. The tree species information is needed for many forest
applications, especially to retrieve species-specific forest biophysical properties, such as volume and
diameter at breast height (DBH), to derive biodiversity indicators and to plan silvicultural activities
and cutting regimes.

Due to accurate three-dimensional measurements obtained by ALS [7,8], the ALS technology has
become one of the most valuable remote sensing methods for providing forest information. By using
ALS data, biophysical attributes such as volume, height, DBH, crown area, and stem density can be
derived or modeled with high accuracies [2,9–12]. However, the estimation of biophysical attributes can
be challenging in dense, multispecies, heterogeneous forest stands [13,14]. In the past, ALS data were
examined to classify the tree species at the individual tree crown (ITC) level using shape, structure, and
intensity features of the tree crowns [5,15]. In addition, when species-specific biophysical attributes are
required, ALS data are often fused with optical images, i.e., color-infrared [16–18], multispectral [19,20],
or hyperspectral [21,22] images, in order to improve the tree species classification [6,23,24]. Recently,
multi- or hyper-spectral ALS sensors were developed with a high potential to be used as a future
single-sensor solution for forest mapping [25–27]. Currently, remotely sensed hyperspectral data are
the most promising data source for classifying tree species due to their ability to detect subtle variations
in the chemical and structural properties of the tree canopy. Likewise, other studies demonstrated the
success of identifying tree species in other ecosystems [28,29]. Thus, the remote sensing technologies
that currently are considered to have the greatest potential to improve forest attribute characterization
are ALS, describing the 3D forest structure, and hyperspectral imagery, outperforming other techniques
for the identification of tree species [30]. The fusion of both has the potential to improve the forest
attribute prediction accuracy [31].

Most local forest management inventories assisted by ALS data follow the area-based approach
(ABA). For field sample plots distributed across the area of interest, several variables are extracted
from the ALS echoes describing structural properties, for which the statistical relationships with
field-measured biophysical attributes are constructed. The relationships, typically in the form of
regression models, are then used to predict biophysical attributes for larger areas [9,32]. As an
alternative, individual trees can be identified and the forest resource variables can be estimated as an
aggregate of individual tree properties. To obtain tree attributes, the ITC approach was introduced [33].
With the ITC approach, crown segments are detected and delineated by applying segmentation
algorithms [34,35]. The crown segments, often referred to as ITCs, can contain none, one, or several
trees. In particular, this approach presumes that one crown segment contains exclusively one tree. For
each crown segment, various ALS-derived structural variables are extracted, such as height and crown
area. Based on these variables, the biophysical attributes, such as volume and DBH, are predicted for
each segment and can be aggregated to other scales, e.g., a forest stand. Detection errors, i.e., omission
error (failure to detect a tree or segmenting multiple trees into a single crown segment) and commission
error (detecting an object that is not a tree or splitting a single tree into multiple crown segments),
usually lead to underprediction of the forest biophysical attributes [36]. To overcome this problem, the
semi-ITC approach has been proposed [37], which, in contrast to the ITC approach, allows a crown
segment to contain multiple trees.

Several studies in Finland aimed to estimate species-specific forest volume using the combination
of ALS data and aerial imagery based on ABA for three species groups: Norway spruce, Scots pine,
and deciduous [16–18,38]. All these studies used a non-parametric k-most similar neighbor (kMSN)
approach [39] based on Packalén and Maltamo [16]. Packalén and Maltamo [16] compared two
approaches for determining species-specific volumes at the plot level. The first approach predicted the
total volume using ALS data, upon which the species-specific volume was obtained by multiplying
the total volume by the proportion of each tree species obtained from aerial photographs and fuzzy
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classification. The second approach used the kMSN method for simultaneous prediction of volumes by
tree species. The kMSN method resulted in more accurate species-specific volume estimates, except for
the total volume where the fuzzy classification performed slightly better. Packalén and Maltamo [17]
extended the kMSN approach from the previous study [16] to a stand level and tested the simultaneous
prediction of volume, stem number, basal area, basal area median diameter, and tree height for the
same tree species groups. The attributes of coniferous tree species were predicted accurately and
those of deciduous trees less accurately, since they were minority species. Vauhkonen et al. [38] tested
the performance of alpha shape metrics calculated from ALS data combined with image variables
for species-specific volume predictions at the plot level. They demonstrated that using only ALS
variables resulted in less accurate estimates compared to using combined ALS and images variables.
Niska et al. [18] compared the kMSN method with three artificial neural network modeling methods:
the multilayer perceptron (MLP), support vector regression (SVR), and self-organizing map (SOM)
at the plot and stand level. The results revealed that the SVR and MLP models reached the greatest
prediction accuracy, the kMSN a lower accuracy, and the SOM the smallest prediction accuracy.
It should be noted that the SVR and MLP yielded negative estimates to some extent, whereas the
kMSN and SOM estimates were always within the range of the modeling data.

In Norway, Breidenbach et al. [37] determined species-specific volumes for four dominant tree
species (spruce, pine, birch, and aspen) using the ABA and semi-ITC approaches, combining the
ALS and multispectral data. They applied the kNN approach using MSN and random forest (RF)
methods for calculating statistical distances between the neighbors. The volumes predicted with
the semi-ITC approach resulted in smaller RMSE compared with the ABA results. Ørka et al. [23]
evaluated tree species composition in a Norwegian forest using (1) ALS data, (2) multispectral imagery,
(3) hyperspectral imagery, (4) fused ALS and multispectral data, and (5) fused ALS and hyperspectral
data. Subsequently, they predicted the basal area for spruce, pine, and deciduous trees for three
inventory approaches: ABA, semi-ITC, and ITC. For the ABA and semi-ITC approach, the kNN
algorithm with an Euclidean distance matrix was applied. The results suggested that the greatest
species accuracy was achieved by fusing the ALS and hyperspectral data. The ITC approach resulted in
the highest accuracy for deciduous species, while the ABA performed the best for the other tree species.

As mentioned above, different remote sensing-assisted forest inventory approaches have been
suggested to assess species-specific forest attributes. Each of them has their own pros and cons.
The advantage of the ABA is that it provides predictions with small systematic errors, i.e., mean
differences, but at the same time only the attributes of the main tree species can be predicted with high
accuracy, while for the minority species the errors were large and consequently resulted in inaccurate
species-specific attributes [23]. The ITC-based approaches are suitable for developing species-specific
models which could lead to more accurate stand-level estimations, particularly for mixed stands.
The main drawback of the ITC procedure are the under-predictions due to problems in detecting
suppressed and understory trees, especially in stands with a complex forest structure. We expect
that a solution for alleviating systematic errors lies in the semi-ITC approach, which has not been
sufficiently explored and tested in various forest conditions and ecosystems. In fact, only a few studies
have evaluated and compared the results of species-specific volumes and basal areas obtained from
different remote sensing-assisted forest inventory approaches [23,37]. In particular, most of these
studies were carried out in boreal forest conditions, accounting for spruce, pine, and deciduous tree
species groups. Moreover, most of the remote sensing-assisted inventory methods combine ALS data
with aerial photogrammetry or multispectral imagery to obtain species-specific volumes. The fusion
of complementary data sources, in particular ALS and hyperspectral data, typically result in greater
accuracies in contrast to using the respective data separately [6,23,40]. Therefore, the fusion of ALS and
hyperspectral data can offer a powerful basis for discriminating tree species and enables an accurate
prediction of species-specific attributes. The kNN approach has grown in popularity due to its ability
to successfully and simultaneously relate multiple forest attributes derived from field observations to
remotely sensed data [41]. However, to the very best of our knowledge, there are no studies to date
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that have tested the ITC, semi-ITC, and ABA approaches on a comparative basis with emphasis on
species-specific volumes.

Thus, the main goal of the present study was to predict and evaluate the species-specific volume
in a complex Alpine forest based on fused ALS and airborne hyperspectral data using three remote
sensing-assisted forest inventory approaches, i.e., the ITC, semi-ITC, and ABA. The performances of
all three inventory approaches were analyzed and compared for the total volume and volume of five
species classes.

2. Materials and Methods

2.1. Data Set Description

2.1.1. Study Area

The 32 km2 study area is located in an Italian Alpine forest in Pellizzano (46◦17′22′ ′N, 10◦46′05′ ′E),
situated in the province of Trento. The altitude of the forest area ranges from 900 to 2200 m above sea
level. The forest is dominated by Norway spruce (Picea abies (L.) Karst.), with the presence of other
coniferous species (e.g., larch (Larix decidua Mill.), silver fir (Abies alba Mill.)) and broadleaves species
(e.g., rowan (Sorbus aucuparia L.), aspen (Populus tremula L.), silver birch (Betula pendula Roth), and
sycamore maple (Acer pseudoplatanus L.)). At higher altitudes, the forest is sparse, whereas at lower
altitudes, the forest structure is more complex, varying from a one- to multi-layer forest with patches
of mixed and homogeneous tree species composition. The forest is managed by selective logging
focusing on the productive forest area, especially Norway spruce, and trees are harvested according to
their stem diameter.

2.1.2. Field Data

Between the summers of 2013 and 2015, 47 circular sample plots were surveyed. The size of the
sample plots was 700 m2. The center location of each plot was determined with global navigation
satellite system (GLONASS) measurements, resulting in a positional error of less than 1 m. At each
sample plot, the tree locations were recorded as polar coordinates by measuring the azimuth and
range to the center of the plot. For all trees within the sample plot, stem diameter at breast height and
tree species were recorded. Tree height for randomly selected trees was measured using a Vertex III
hypsometer. Tree heights of the remaining trees were predicted with allometric equations [1]. In each
sample plot, only trees with a DBH greater than 7.5 cm were considered in the analysis. Dead or
damaged trees were also excluded. In total, 1283 field trees were available for the analysis. The tree
level and plot level statistics are summarized in Table 1. The tree species observed for the 1283 trees
were: 76.5% Norway spruce, 9.0% larch, 6.2% rowan, 1.7% silver fir, 1.5% silver birch, 1.4% sycamore
maple, and 3.7% other minority broadleaves. For the following analysis, we grouped tree species
into five classes to predict species-specific volumes using the ITC and semi-ITC approaches: Norway
spruce, larch, rowan, silver fir, and other broadleaves (silver birch, sycamore maple, and other minority
broadleaves). The field statistics for the total and species-specific volumes are represented in Table 2.

2.1.3. ALS and Hyperspectral Data and Pre-Processing

ALS data were acquired with a Riegl LMS-Q680i sensor between the 7th and 9th of September
2012. The flying speed was approximately 51 m s−1 at the altitude of 660 m above ground level with
the pulse repetition frequency of 400 kHz. For each emitted pulse, up to seven returns were recorded
and the mean point density was 48 points m−2. A digital terrain model (DTM) was extracted from the
ALS points with a grid of 0.5 m by the vendor. In the preprocessing, underlying DTM elevations were
subtracted from the ALS point elevations to convert ALS point elevations to heights above ground.
From these ALS points, a raster canopy height model (CHM) of the area was created with the resolution
of 0.5 m.
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Table 1. Statistics of the field-observed biophysical attributes at the tree and plot level (SD = standard
deviation, DBH = diameter at breast height, H = height, BA = basal area, V = volume).

Biophysical Attributes Range (Min-Max) Mean SD

Tree level

DBH (cm) 8.0–89.0 33.7 19.7
H (m) 3.50–42.60 22.37 9.90

BA (m2) 0.01–0.62 0.08 0.12
V (m3) 0.01–9.21 1.54 1.72

Plot level

Mean DBH (cm) 13.5–71.8 38.0 12.8
Mean H (m) 7.93–37.90 23.92 7.12

Stem number (ha) 14–1132 386 228
BA (m2 ha−1) 0.63–85.73 46.26 21.22
V (m3 ha−1) 2.47–1363.35 590.28 321.76

Table 2. Statistics of the field-observed total and species-specific volumes for five species classes at the
plot level.

Field Volume Mean (m3 ha−1) SD (m3 ha−1) Relative SD (m3 ha−1)

Total 590.28 321.76 54.51
Silver fir 34.88 24.85 71.25

Larch 102.37 114.16 111.51
Other broadleaves 9.64 14.47 150.21

Norway spruce 513.40 318.50 62.04
Rowan 3.36 6.98 207.34

Twenty-one hyperspectral images were acquired on the 13th of June 2013 by an AISA Eagle II
sensor with a spatial resolution of 1 m. The minimum overlap among the images was 20%. The images
consisted of 65 spectral bands between 403.09 nm and 995.31 nm. The hyperspectral strips were
mosaicked into one image. For each pixel, the normalized difference vegetation index (NDVI) was
computed based on the red and infrared wavelengths of 646.72 nm and 815.27 nm, respectively, and
pixels with NDVI below 0.5 were removed in order to reduce noise and shadowing effects. Afterwards,
the value of each pixel was normalized with respect to the sum of the values of the same pixel in all
the bands to reduce the minor differences in radiance occurring between the different images [42].
The hyperspectral images were orthorectified using ALS data by the data vendor.

2.2. Methodology

2.2.1. Overview

The flowchart for the species-specific volume prediction for the three remote sensing inventory
approaches using ALS and hyperspectral data is presented in Figure 1. For the ITC approach, the
predicted volumes were summed per plot and scaled to m3 per hectare, and for the semi-ITC and
ABA approaches, the volumes were scaled to per-hectare values before modelling. In the case of
the ITC and semi-ITC approaches, ALS and hyperspectral variables were calculated for each crown
segment, whereas for the ABA variables, they were calculated for each subsample plot (sample plot
halves). In the ITC approach, the tree species and DBH were predicted per segment. Subsequently, the
allometric models were applied to predict species-specific volumes, which were summed up to have
the total volume. For the semi-ITC approach and the ABA, the total and species-specific volumes were
predicted simultaneously by a non-parametric multivariate kNN method using leave-one-out (LOO)
cross-validation at the plot level.

The basic idea of the kNN method is that biophysical attributes within the target data are predicted
by imputing them from the k nearest neighbors within the reference data. The nearness of neighbors is
measured with the distance matrix between predictors (e.g., ALS and hyperspectral variables), which
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are known in the reference and target data sets [43]. For the distance matrix, the most similar neighbor
(MSN) method was applied, where the nearness of the k-nearest neighbors was defined in terms of
weighted Euclidean distance in a conical search space. We chose this distance as from some preliminary
analysis it appeared to be the most suitable among the random forest proximity, Euclidean distance,
Euclidean distance without normalization, and Mahalanobis distance for this specific problem. Thus,
we applied the kMSN, which is a particular type of the kNN methods. One property of the kMSN
method is that the predictions are always within the range of the observed distribution. The main
advantages of the kMSN approach are that the multivariate responses include the simultaneous
predictions of the volumes and preserve their complex variance-covariance structure [39], along with
their robustness to handle the outliers or extreme values in the data. The main disadvantage is that
the kMSN approaches normally require a larger number of observations, although some studies have
shown that reasonable results can be obtained also with a limited number of sample plots [37,44,45].

Remote Sens. 2017, 9, 400  6 of 19 

 

distribution. The main advantages of the kMSN approach are that the multivariate responses include 
the simultaneous predictions of the volumes and preserve their complex variance-covariance 
structure [39], along with their robustness to handle the outliers or extreme values in the data. The 
main disadvantage is that the kMSN approaches normally require a larger number of observations, 
although some studies have shown that reasonable results can be obtained also with a limited number 
of sample plots [37,44,45]. 

 
Figure 1. Flowchart of the procedure for predicting total and species-specific volumes. 

2.2.2. ITC Delineation Method 

To avoid ground hits and effects of rocks and small vegetation, all echoes with the height below 
2 m were removed from the point cloud in the preprocessing step. The ITC delineation for the ITC 
and semi-ITC approaches was conducted with the algorithm implemented in the “itcSegment”-
package in the R software [46] based on ALS data. For each crown segment, position, height (ℎ௫), 
and crown area (ܣܥ) were calculated. The position and height were determined from the highest ALS 
point within a crown segment. The crown area (ܣܥ) was extracted with the convex hull. The height 
and crown area were used as ALS variables. The hyperspectral variables were computed for each 
crown segment as the average value of pixels for all 65 bands, and they are referred to as band means 
(from 1ܤ to 65ܤ). This step was the same for both the ITC and the semi-ITC approach. 

2.2.3. ITC Approach 

The ITC approach assumes that each delineated crown segment contains one field tree. The 
matching procedure of the crown segments and field trees was different from the classical methods 
[34,47]. An empirical threshold for the permitted distance (horizontal or vertical) between the 

Figure 1. Flowchart of the procedure for predicting total and species-specific volumes.

2.2.2. ITC Delineation Method

To avoid ground hits and effects of rocks and small vegetation, all echoes with the height below
2 m were removed from the point cloud in the preprocessing step. The ITC delineation for the ITC and
semi-ITC approaches was conducted with the algorithm implemented in the “itcSegment”-package in
the R software [46] based on ALS data. For each crown segment, position, height (hmax), and crown
area (CA) were calculated. The position and height were determined from the highest ALS point
within a crown segment. The crown area (CA) was extracted with the convex hull. The height and
crown area were used as ALS variables. The hyperspectral variables were computed for each crown
segment as the average value of pixels for all 65 bands, and they are referred to as band means (from B1
to B65). This step was the same for both the ITC and the semi-ITC approach.
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2.2.3. ITC Approach

The ITC approach assumes that each delineated crown segment contains one field tree.
The matching procedure of the crown segments and field trees was different from the classical
methods [34,47]. An empirical threshold for the permitted distance (horizontal or vertical) between
the “matched” crown segment and field tree was avoided. In particular, each segment was matched
to the closest field tree according to a 3D distance. To confirm a good match, we fitted a simple
linear regression with the field tree height as response (h) and crown segment maximum height as
predictor (hmax):

hi = b0 + b1 × hmaxi + εi, (1)

where i corresponds to a crown segment, b0 and b1 are fixed parameters, εi is the error of tree i
( εi ∼ N(0, σ2)), and σ2 is the model variance. The prediction interval was defined as:

hi ± t
0.95

2
n−pσ̂

√
1 + hmaxi (X′X)−1 h′maxi

, (2)

where t stands for the t-distribution, n means a number of segments, p represents a number of model
parameters, and X is a design matrix. Out of 629 segments, 25 segments’ fitted heights were not
within the prediction interval (Figure 2). These 25 segments were excluded from the tree species and
stem diameter modeling but not from the accuracy analysis. Breidenbach et al. [37] applied the same
procedure to exclude segments with incorrect field trees from modeling. After matching, the ALS and
hyperspectral variables were merged for each crown segment.
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Figure 2. The field-derived tree height of the matched field trees and the respective maximum airborne
laser scanning (ALS) height of crown segments.

The tree species were classified at the pixel level with a support vector machine (SVM) classifier
using hyperspectral variables. We used the SVM implementation in the R package “kernlab” [48]. The
penalty factor (C) was selected with a grid search strategy, testing values of 1, 10, 100, and 1000. The
value of 10 turned out to reach the highest classification accuracy. The weights for different species
classes were set as a ratio between the number of trees of the most frequent species and the number of
trees of each species. The predicted species for each pixel were aggregated within each crown segment
according to a majority rule.

The stem diameter at breast height (cm) was predicted for each crown segment using a nonlinear
regression model, taken from the study of Dalponte and Coomes [49] conducted on the same dataset.
The fitted species-specific nonlinear model was:
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DBHij = ε j × hmaxij
ρj ×

(
1 + ϑjCAij

)
(3)

where hmaxij is the maximum crown segment height (m), CAij is the crown area (m), and ε j, ρj and ϑj
are parameters determined in [49]. Indices i and j correspond to segment and species, respectively.
Knowing the predicted species and stem diameter, the species-specific volumes were predicted based
on allometric models for temperate species of Scrinzi et al. [1]:

V̂ij = aj × ( ˆDBHij − dj)
bj ×

(
hmaxij

)cj
, (4)

where aj, bj, cj, and dj are parameters taken from species-specific tables derived from trees in the
Trentino province [1]. Finally, the volume was summarized for each species at the plot level.

2.2.4. Semi-ITC Approach

The semi-ITC approach presumes that a crown segment can contain none, one, or more field trees.
Thus, each field tree was matched to the closest segment according to a 3D distance. The field derived
values of the total and species-specific volumes were assigned to each segment. For the segments
that were matched with more than one field tree, the tree volumes were summed up over the total
and species-specific volumes. The segments with no match had zero values for all volumes. In the
following analysis, all the segments were used for the modelling and accuracy analysis.

The kMSN prediction method, implemented in the R package “yaimpute” [50], was applied
using the total and species-specific volumes per segment derived from the field observations as
response variables and the selected predictor variables per segment derived from the ALS and
hyperspectral variables as covariates. The predictor variables were selected with the variable selection
method varSelection implemented in the R package “yaimpute” [50]. For the selection, the remotely
sensed variables were added to the kMSN model based on the computed generalized root mean
square distance (grmsd) between the predicted and observed response variables among the field
observations. The grmsd computes the root mean square distance between the observed and predicted
volumes over several variables simultaneously. The variable that was related to the largest grmsd was
removed. Finally, the selected predictor variables were: CA, hmax, B4 (428.96 nm), B13 (509.16 nm),
B14 (518.10 nm), B29 (655.98 nm), B31 (674.49 nm), B33 (693.00 nm), and B43 (786.82 nm). The number
of the nearest neighbors was selected empirically and the distance to the nearest neighbors, i.e., crown
segments, was defined by the MSN distance matrix based on the predictor variables.

2.2.5. ABA

In order to increase the number of plots, i.e., neighbors, important for the kMSN method, we
subdivided the 47 sample plots into halves, resulting in 94 subsample plots with a size of 350 m2. The
same procedure was applied by Breidenbach et al. [37]. The ALS canopy height- and density-related
variables calculated for each subsample plot were the ones also used in other studies [9,23], using
the lower limit of the canopy defined by a threshold value of 2 m [9,51,52]. The ALS variables
were computed for the first, intermediates, and last returned laser pulses, denoted x, from 1 to 3,
respectively: maximum (hmax_x), mean (hmean_x), skewness (hsk_x), kurtosis (hku_x), and coefficient of
variation (hcv_x) of the ALS heights (m) and quantiles corresponding to the 0, 10, 20,...,90 percentiles
of the ALS heights (hq10_x − hq90_x). Furthermore, 10 vertical slices of equal height were defined as a
range between the lowest laser canopy height (2 m) and the 90th percentile of the canopy height. Then,
the canopy density variables (d1_x − d10_x) were calculated as the proportions of laser pulses above
each vertical slice to the total number of pulses. Additionally, the canopy volume (CVol) was calculated
as the cell-wise difference between rasterized height values (m) of the first (Fij) and last (Lij) returned

pulses of the i-th pixel in the j-th sample plot as CVol = ∑J
j (Fij − Lij)× length

(
Fij
)
. The hyperspectral

variables were the same as for the semi-ITC. Additionally, the NDVI and the difference vegetation
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index (DVI) were computed for each plot as both indices can be potentially good explanatory variables
for the volume prediction [53,54].

The variable selection and prediction method employed were the same as for the semi-ITC
approach. For the simultaneous volumes prediction, 18 variables were selected: hCV_2, hmax_1, hq20_1,
hq50_1, hq10_2, hq40_2, hq20_3, hq30_3, d10_2, d4_3, B3 (420.34 nm), B14 (518.10 nm), B16 (535.98 nm), B20
(572.65 nm), B27 (637.47 nm), B35 (711.62 nm), B38 (739.59 nm), and B54 (891.00 nm). To avoid
overfitting, the number of variables should be smaller than the number of samples. In addition, adding
more predictor variables in the training data does not always improve the kNN model accuracy [55].
Then, we applied the kMSN distance metric to find the reference plots for the target plots based on the
selected variables above. The number of the nearest neighbors used was based on preliminary tests
according to the balance between the highest accuracy and the smallest systematic error.

2.2.6. Accuracy Assessment

For the ITC approach, the tree species classification accuracy was validated at the ITC-level with
a 3-fold cross-validation using the overall accuracy (OA), kappa coefficient (KA), the producer’s and
user’s accuracies derived from the confusion matrix. The accuracy of the predicted stem diameter at
the ITC-level was assessed with the root mean square error (RMSE), and the mean differences (MD) as
an indicator of the systematic error were calculated as

RMSE =

√
∑n

i=1
(
observedij − predictedij

)2

n
, (5)

MD =
∑n

i=1
(
observedij − predictedij

)
n

(6)

where n is the sample size (number of segments) and i denotes a segment for which the observed
and predicted attributes for the j-th species class were calculated. The relative RMSE and MD were
calculated by dividing with the mean of the observed values. Additionally, the squared correlation (r2)
was computed as the Pearson’s correlation coefficient of observed and predicted values. The accuracy
and the systematic error of the total and species-specific volume models at the plot level were calculated
with the same statistics as above, where the sample size represented the number of sample plots and i
denoted the plot.

The reliability of the predicted volumes by the semi-ITC and ABA was tested by means of LOO
cross-validation. For the semi-ITC and ABA approaches, the crown segments and subsample plots,
respectively, belonging to the same sample plot, were subsequently left out in the cross-validation
process. The accuracies of the predicted total and species-specific volumes at the plot level by both
approaches were evaluated with the same measures as for the ITC approach. We performed the
Wilcoxon signed rank test to test if the differences between the observed and predicted volumes for all
inventory approaches were significantly different at a significance level of 0.05. The Friedman test at
the same significance level was applied to check the significance of the differences in the distribution
of the differences between the observed and predicted species-specific volumes among sample plots
for the three inventory approaches. In addition, we conducted Conover post-hoc analysis in order to
decide which pairs of the three inventory approaches were significantly different from each other for
each species class volume.

3. Results

3.1. ITC Approach

The ITC segmentation method delineated 629 segments within the 47 plots. The omission and
commission errors were 51% and 4%, respectively. When calculating hyperspectral variables per crown,
one crown was removed due to the effects from shadowing. Thus, the following analysis comprised



Remote Sens. 2017, 9, 400 10 of 19

628 crown segments. The tree species overall and kappa accuracies were 85.2% and 0.57, respectively,
where the producer’s and user’s accuracies are shown in Table 3. The predicted stem diameter per
each crown segment resulted in an RMSE of 11.0 cm (relative RMSE = 23.40%) and MD of 0.43 cm
(relative MD = 0.92%) with the explained proportion of the variance of 0.61. Knowing the predicted
species, the species-specific volumes were predicted and aggregated at the plot level (Table 4 and
Figure 3). We also checked if the RMSE of the predicted volumes were within the standard deviation
of the field volumes (Table 2). In this regard, the RMSEs of the volumes for larch, Norway spruce,
and rowan classes were within the standard deviation of the observed volumes while the volumes
of the species classes other broadleaves and silver fir were not. Moreover, the Wilcoxon signed rank
test showed that the volume differences between the observations and predictions were statistically
different for all species classes (p ≤ 0.05), except for the larch and rowan classes.

Remote Sens. 2017, 9, 400  10 of 19 

 

deviation of the field volumes (Table 1). In this regard, the RMSEs of the volumes for larch, Norway 
spruce, and rowan classes were within the standard deviation of the observed volumes while the 
volumes of the species classes other broadleaves and silver fir were not. Moreover, the Wilcoxon 
signed rank test showed that the volume differences between the observations and predictions were 
statistically different for all species classes (p ≤ 0.05), except for the larch and rowan classes. 

 

Figure 3. Observed versus predicted total and species-specific volumes at the plot level derived from 
the individual tree crown (ITC) method.  

  

Figure 3. Observed versus predicted total and species-specific volumes at the plot level derived from
the individual tree crown (ITC) method.



Remote Sens. 2017, 9, 400 11 of 19

Table 3. Producer’s and user’s accuracies of tree species classification at the ITC level.

Silver Fir Larch Other Broad Leaves Norway Spruce Rowan

Producer’s accuracy (%) 16.7 71.6 14.3 90.1 75.0
User’s accuracy (%) 100 58.1 50.0 92.2 81.8

Table 4. Results of the predicted volumes derived from the ITC approach, aggregated to the plot level
(* = differences between the predicted and observed volumes are significantly different from zero
(p ≤ 0.05), RMSE = root mean square error, and MD = mean differences).

Volume RMSE (m3 ha−1) Relative RMSE (%) MD (m3 ha−1) Relative MD (%) r2

Total 152.18 25.78 132.37 22.43 * 0.95
Silver fir 40.53 116.2 33.98 97.41 * 0.27

Larch 48.7 47.57 −5.29 −5.17 0.90
Other broadleaves 14.71 152.67 8.77 91.02 * 0.58

Norway spruce 151.26 29.46 130.34 25.39 * 0.95
Rowan 6.21 184.71 2.77 82.25 0.76

3.2. Semi-ITC Approach

For the semi-ITC approach, the same segmentation method was employed as for the ITC approach,
but with different matching procedures where every field tree was matched to the closest segments.
Fifty-four segments out of 628 remained without any field match. The number of nearest neighbors
was selected empirically, according to the smallest RMSE and MD values. We choose three neighbors,
even if two or four revealed similar results. The predicted volumes were aggregated at the plot level
(Table 5) and displayed in Figure 4. The highest accuracies were reached for total, Norway spruce, and
larch volumes, while the lowest accuracies were obtained for silver fir, other broadleaves, and rowan
volumes. The relative RMSE of the predicted silver fir, other broadleaves, and rowan volumes were
also greater than the relative standard deviations of the corresponding observed volumes (Table 2).
The predicted volumes for total, larch, and Norway spruce resulted in minor systematic errors with
relatively high r square correlations, except for larch. All the predicted volumes were underpredicted
except for the total and Norway spruce volumes. Regarding the Wilcoxon signed rank statistic, the
differences between the observed and predicted volumes were not statistically significant (p > 0.05) for
all species classes.

Table 5. Results of the predicted volumes derived from the semi-ITC approach extended to the
plot level.

Volume RMSE (m3 ha−1) Relative RMSE (%) MD (m3 ha−1) Relative MD (%) r2

Total 102.78 17.41 –1.59 –0.27 0.90
Silver fir 15.35 258.48 1.04 17.5 0.16

Larch 76.02 96.95 5.91 7.54 0.51
Other broadleaves 8.82 330.74 0.41 15.57 0.03

Norway spruce 124.25 24.73 –9.07 –1.81 0.85
Rowan 2.69 341.02 0.11 14.53 0.50

3.3. ABA

The number of nearest neighbors was set to three, although the volumes of the majority species
did not substantially change using one or two neighbors. The accuracy assessment and visualization
of the volume predictions using the kMSN approach appear in Table 6 and Figure 5. The RMSE of the
total volume (Table 6) was within the standard deviation of the observed volumes except for the other
broadleaves volume. The Wilcoxon signed rank test showed that the differences between the predicted
and observed volumes were not statistically significant (p > 0.05).
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Table 6. Results of the predicted volumes using the k-nearest neighbor approach derived from ABA at
the plot level.

Volume RMSE (m3 ha−1) Relative RMSE (%) MD (m3 ha−1) Relative MD (%) r2

Total 182.75 30.95 −15.88 −2.69 0.67
Silver fir 18.01 303.25 −0.49 −8.26 0.01

Larch 69.36 88.44 10.00 12.76 0.60
Other broadleaves 8.20 306.02 1.74 65.02 0.12

Norway spruce 183.54 36.52 −27.77 −5.53 0.68
Rowan 3.76 465.42 0.63 78.56 0
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3.4. Comparison of the Different Inventory Approaches

For all three inventory approaches, the RMSEs and MDs of the total and five species-specific
volumes were compared (Figure 6). The lowest relative RMSEs of the volumes were achieved by the
ITC approach, except for the total and Norway spruce volumes where the semi-ITC resulted in the
greatest accuracies. The ABA and semi-ITC approaches resulted in quite large RMSEs for the minority
species, like silver fir, rowan, and other broadleaves. The accuracies for the total volume and majority
species (Norway spruce) were in the same range for all three inventory approaches. Regarding the
relative MDs, the smallest values were obtained by the semi-ITC approach, except for the silver fir
which resulted in smaller systematic error by ABA. The ITC approach resulted in the largest MDs,
except for the rowan where the ABA resulted in a larger MD. The Friedman test showed that the
three inventory approaches had statistically significant different median of the differences between
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the observed and predicted volumes per plot for all species classes, except for the larch. Furthermore,
we performed post-hoc analysis for the Friedman’s Test, which demonstrated that the pairs of the
inventory approaches (ITC vs. semi-ITC, ITC vs. ABA, semi-ITC vs. ABA) were significantly different
(p ≤ 0.05) from each other for the total, silver fir, other broadleaves, and rowan volumes. For the pairs
of ITC vs. semi-ITC and ITC vs. ABA, the differences between the larch and Norway spruce volumes
were also statistically significant but not for the pair of semi-ITC vs. ABA (p > 0.05). Overall, the
greatest balance between the RMSEs and MDs for all volumes was achieved by the semi-ITC approach.
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4. Discussion

Many methods have been proposed for fusing ALS data with stereo or airborne multispectral
or hyperspectral images in order to achieve a more accurate species recognition [23,56,57]. In this
study, we showed that the fusion of ALS and hyperspectral data enabled the prediction of volumes at
good accuracy levels. Moreover, hyperspectral variables were not only used for species classification,
but they were also incorporated in the common ALS framework as they were selected as important
variables for volume modeling. At the moment, hyperspectral data are the most powerful tool for
species identification [6] and consequently they can improve the accuracy of the predicted biophysical
attributes [31]. Forest inventories can be improved by the use of these combined data as they can
increase the spatial detail, coverage, and accuracy of forest biophysical attributes. Thus, the combined
data also helps forest managers to develop a broad and detailed database of forestry information to be
coupled with a decision support system [58].

The accuracies of the species-specific volumes of the minority species obtained by the ITC
approach were relatively higher compared to the semi-ITC and ABA approaches, but the accuracies of
the more frequent species, i.e., the Norway spruce, were very much alike. The semi-ITC approach had
slightly smaller RMSEs compared to the ABA, except for the larch and other broadleaves where the
RMSEs were similar for both approaches. The largest systematic errors occurred in the ITC approach,
caused by non-detected trees. Although all delineated crown segments were used for the volume
modeling, a large underprediction due to omission errors of the ITC delineation still appeared in the
ITC approach, mainly due to the forest structure [14]. The semi-ITC approach underpredicted all
volumes, except for the Norway spruce volume, which was negligibly overpredicted. Even though,
the semi-ITC is compensating the problem related to the omission error, it is not able to eliminate it
completely. On average, the species-specific volumes were achieved with the smallest systematic errors
with the semi-ITC approach. The ABA approach also underpredicted all volumes, but overpredicted
the Norway spruce and silver fir volumes. The overprediction in ABA can be the result of species
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presence of the nearest sample plots. As the volumes were predicted based on selected nearest
neighbors, the kMSN method can predict small volumes for tree species classes that do not really occur
in a sample plot. Since the kNN method was used, the predicted values will have a smaller range
than the observed because of an averaging effect, which can caused the underprediction for the ABA
and semi-ITC approach. We have to consider that the systematic error of the semi-ITC approach is
the result of the combination of the delineation and kNN method’s characteristics. In most cases, the
systematic errors obtained with the semi-ITC approach were smaller compared to the ABA. A similar
observation was also found in the study of Breidenbach et al. [37].

In the literature, there are no similar studies comparing the species-specific attributes obtained
by the ITC and semi-ITC approaches, except for Ørka et al. [23]. In general, the main problem of
the ITC methods is the quite large omission error, caused by undetected understory and suppressed
trees [59], mostly resulting in underprediction [12] of biophysical attributes when aggregated at the
plot level [60]. This systematic error can be considerably reduced with the semi-ITC approach as
demonstrated in our study. Comparing the semi-ITC and ABA inventory approaches, Breidenbach et al.
and Rahlf et al. [37,61] showed that the semi-ITC approach provided prediction accuracies that were
higher or similar to the ABA, while in the study of Ørka et al. [23], the ABA performed better than
the semi-ITC approach. Based on a trade-off between the goodness of fit and the systematic error, the
compared total and species-specific results suggest that the semi-ITC approach in total outperformed
the other approaches.

For the kNN methods, a sufficient number of sample plots is required for the ABA in order to
have a sufficient number of neighbors available for the calculation of the distance matrix. For example,
300–500 sample plots are usually applied in operational forest inventories. On the other hand, many
studies showed that nonparametric models were in line with parametric models also with a lower
number of observations (e.g., 200 sample plots) [44,62]. However, we assumed that 94 subsample
plots using three nearest neighbors were sufficient to achieve good results. The reason to not apply
a parametric method was that the field-observed species-specific volumes contained many values
close to zero or zeros due to the absence of minority tree species in the sample plots. Moreover, in
complex stands with a wide variety of tree sizes and species, the nonparametric methods might be
preferred to avoid implausible (e.g., negative) predictions and to obtain a reasonable extrapolation
beyond the range of calibration data. In fact, among the nonparametric methods, the kNN, in particular
the kMSN method, have been shown to be efficient in providing simultaneous multivariate predictions
at a satisfactory accuracy level [17,37,54,63,64].

The volumes of the minor species were always predicted with smaller accuracies than the volumes
of the majority species. The reason could be the small share of some tree species, especially broadleaves,
and thus it was difficult to obtain accurate results. Moreover, a large share of only one species is the
typical situation of the European forests. This phenomenon of small accuracy of the minor species is
typical also for other studies [23,37], but despite the small RMSEs, the information on the existence of
the minority species in stands can be valuable information, for example in tree-oriented silvicultural
practices. Looking at the problem from an economical perspective, minority species are of secondary
interest as the majority of the harvested volume is coming from Norway spruce and larch. Other
species are mainly used for energy wood, as is the case of the broadleaves volume, or for very specific
uses (e.g., high quality furniture). Minority species are important from the ecological perspective
and thus, the use of ITC or semi-ITCs approaches is essential in this case as it is difficult to monitor
such species with the ABA approach [23]. The ITC and semi-ITC approaches can also be used to
detect and report the presence and spread of non-native invasive species that can irreversibly alter the
productivity of the systems they invade. The semi-ITC approach is overall quite good for predicting
volumes of the minority and majority species. However, in studies where the volume of majority
species is of high interest, the ABA is recommended, as the field data collection (e.g., tree positions) is
less demanding and less costly compared to what is required for the semi-ITC approach.
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5. Conclusions

The ITC approach reached high accuracies for the volumes of minority species but in general
large systematic errors and the ABA approach resulted in small systematic errors and relatively high
accuracies for the dominant species. Considering the systematic errors and accuracies for the total and
species-specific volumes, the semi-ITC approach achieved the greatest balance. Eventually, we found
that the ITC approach is important for applications in which information on the minority species is
needed, such as for biodiversity studies and silviculture treatments. The ABA is recommended where
the dominant species are a key value for management purposes, due to a less demanding collection of
field data, relatively high accuracy, and minor systematic error for the dominant species. Overall, the
semi-ITC approach has the potential to become competitive with the ABA, as it achieved more accurate
results with negligible systematic error for the dominant species. Additionally, when the minor species
volumes are requested, the semi-ITC approach might be preferred over the ITC approach as it resulted
in small differences with the field measured values. In addition, when the ITC or semi-ITC approaches
are applied, they could always be supplemented with the results of the ABA as its computation time
is fast. We also suggest selecting the approach according to the application’s tolerance to systematic
errors. To conclude, the results of the semi-ITC approach are promising in providing accurate total and
species-specific volumes. Further studies are needed to examine the accuracies of such an approach
for other biophysical attributes and its use at the operational level over larger areas.

Acknowledgments: This work was mainly supported by the Edmund Mach Foundation. The acquisition of the
remote sensing data and the collection of part of the field data were funded by the European Commission (project
Alpine Space 2-3-2-FR NEWFOR) within the European Territorial Cooperation program “Alpine Space.” This
work was also partially supported by the hyperBio project (project 244599), financed by the BIONÆR program of
the Research Council of Norway and TerraTec AS, Norway.

Author Contributions: K.K. as the main author processed the remote sensing data, performed the experiments
and data analysis, and wrote the manuscript. K.K., M.D., and H.O.Ø. conceived and designed the experiments.
L.F. planned, collected, and prepared the field data. M.D. and H.O.Ø. supervised and advised all the research
work that led to this paper. M.D., H.O.Ø., and E.N. reviewed the manuscript and conducted the English editing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Scrinzi, G.; Galvagni, D.; Marzullo, L. I Nuovi Modelli Dendrometrici Per La Stima Delle Masse Assestamentali in
Provincia di Trento; Provincia Autonoma di Trento-Servizio Foreste e Fauna: Trento, Italy, 2010.

2. Næsset, E.; Gobakken, T.; Holmgren, J.; Hyyppä, H.; Hyyppä, J.; Maltamo, M.; Nilsson, M.; Olsson, H.;
Persson, Å.; Söderman, U. Laser scanning of forest resources: The nordic experience. Scand. J. For. Res. 2004,
19, 482–499. [CrossRef]

3. Tomppo, E. The Finish multi-Source National Forest Inventory-Small area estimation and map production.
In Forest Inventory: Methodology and Applications; Managing Forest Ecosystems; Kangas, A., Maltamo, M.,
Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 10, pp. 195–224.

4. Eid, T.; Gobakken, T.; Næsset, E. Comparing stand inventories for large areas based on photo-Interpretation
and laser scanning by means of cost-Plus-Loss analyses. Scand. J. For. Res. 2004, 19, 512–523. [CrossRef]

5. Holmgren, J.; Persson, Å. Identifying species of individual trees using airborne laser scanner. Remote Sens.
Environ. 2004, 90, 415–423. [CrossRef]

6. Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the southern Alps based on the fusion of
very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ.
2012, 123, 258–270. [CrossRef]

7. Baltsavias, E.P. Airborne laser scanning: Basic relations and formulas. ISPRS J. Photogramm. Remote Sens.
1999, 54, 199–214. [CrossRef]

8. Wehr, A.; Lohr, U. Airborne laser scanning–An introduction and overview. ISPRS J. Photogramm. Remote Sens.
1999, 54, 68–82. [CrossRef]

9. Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-Stage
procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [CrossRef]

http://dx.doi.org/10.1080/02827580410019553
http://dx.doi.org/10.1080/02827580410019463
http://dx.doi.org/10.1016/S0034-4257(03)00140-8
http://dx.doi.org/10.1016/j.rse.2012.03.013
http://dx.doi.org/10.1016/S0924-2716(99)00015-5
http://dx.doi.org/10.1016/S0924-2716(99)00011-8
http://dx.doi.org/10.1016/S0034-4257(01)00290-5


Remote Sens. 2017, 9, 400 17 of 19

10. Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Estimating plot-Level tree heights with lidar: Local filtering with a
canopy-Height based variable window size. Comput. Electron. Agric. 2002, 37, 71–95. [CrossRef]

11. Maltamo, M.; Suvanto, A.; Packalén, P. Comparison of basal area and stem frequency diameter distribution
modelling using airborne laser scanner data and calibration estimation. For. Ecol. Manag. 2007, 247, 26–34.
[CrossRef]

12. Peuhkurinen, J.; Mehtätalo, L.; Maltamo, M. Comparing individual tree detection and the area-based
statistical approach for the retrieval of forest stand characteristics using airborne laser scanning in Scots pine
stands. Can. J. For. Res. 2011, 41, 583–598. [CrossRef]

13. Vauhkonen, J.; Ene, L.; Gupta, S.; Heinzel, J.; Holmgren, J.; Pitkanen, J.; Solberg, S.; Wang, Y.; Weinacker, H.;
Hauglin, K.M.; et al. Comparative testing of single-tree detection algorithms under different types of forest.
Forestry 2011, 85, 27–40. [CrossRef]

14. Kandare, K.; Ørka, H.O.; Chan, J.C.; Dalponte, M. Effects of forest structure and airborne laser scanning point
cloud density on 3D delineation of individual tree crowns. Eur. J. Remote Sens. 2016, 49, 337–359. [CrossRef]

15. Ørka, H.O.; Næsset, E.; Bollandsås, O.M. Classifying species of individual trees by intensity and structure
features derived from airborne laser scanner data. Remote Sens. Environ. 2009, 113, 1163–1174. [CrossRef]

16. Packalén, P.; Maltamo, M. Predicting the plot volume by tree species using airborne laser scanning and aerial
photographs. For. Sci. 2006, 52, 611–622.

17. Packalén, P.; Maltamo, M. The k-MSN method for the prediction of species-specific stand attributes using
airborne laser scanning and aerial photographs. Remote Sens. Environ. 2007, 109, 328–341. [CrossRef]

18. Niska, H.; Skon, J.-P.; Packalen, P.; Tokola, T.; Maltamo, M.; Kolehmainen, M. Neural networks for the
prediction of species-Specific plot volumes using airborne laser scanning and aerial photographs. IEEE Trans.
Geosci. Remote Sens. 2010, 48, 1076–1085. [CrossRef]

19. Popescu, S.C.; Wynne, R.H.; Scrivani, J.A. Fusion of small-Footprint lidar and multispectral data to estimate
plot-Level volume and biomass in deciduous and pine forests in Virginia, USA. For. Sci. 2004, 50, 551–565.

20. Tonolli, S.; Dalponte, M.; Neteler, M.; Rodeghiero, M.; Vescovo, L.; Gianelle, D. Fusion of airborne LiDAR and
satellite multispectral data for the estimation of timber volume in the Southern Alps. Remote Sens. Environ.
2011, 115, 2486–2498. [CrossRef]

21. Dalponte, M.; Ørka, H.O.; Gobakken, T.; Gianelle, D.; Næsset, E. Tree species classification in boreal forests
with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2632–2645. [CrossRef]

22. Hill, R.A.; Thomson, A.G. Mapping woodland species composition and structure using airborne spectral
and LiDAR data. Int. J. Remote Sens. 2005, 26, 3763–3779. [CrossRef]

23. Ørka, H.O.; Dalponte, M.; Gobakken, T.; Næsset, E.; Ene, L.T. Characterizing forest species composition
using multiple remote sensing data sources and inventory approaches. Scand. J. For. Res. 2013, 28, 677–688.
[CrossRef]

24. Sarrazin, M.J.D.; Van Aardt, J.A.N.; Asner, G.P.; Mcglinchy, J.; Messinger, D.W.; Wu, J. Fusing small-Footprint
waveform LiDAR and hyper spectral data for canopy-Level species classification and herbaceous biomass
modeling in savanna ecosystems. Can. J. Remote Sens. 2011, 37, 653–665. [CrossRef]

25. Ahokas, E.; Hyyppä, J.; Yu, X.; Liang, X.; Matikainen, L.; Karila, K.; Litkey, P.; Kukko, A.; Jaakkola, A.;
Kaartinen, H.; et al. Towards automatic single-Sensor mapping by multispectral airborne laser scanning.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 155–162. [CrossRef]

26. Yu, X.; Hyyppä, J.; Litkey, P.; Kaartinen, H.; Vastaranta, M.; Holopainen, M. Single-Sensor Solution to Tree
Species Classification Using Multispectral Airborne Laser Scanning. Remote Sens. 2017, 9, 108. [CrossRef]

27. Junttila, S.; Kaasalainen, S.; Vastaranta, M.; Hakala, T.; Nevalainen, O.; Holopainen, M. Investigating
bi-temporal hyperspectral lidar measurements from declined trees-Experiences from laboratory test.
Remote Sens. 2015, 7, 13863–13877. [CrossRef]

28. Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf
to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [CrossRef]

29. Ferreira, M.P.; Zortea, M.; Zanotta, D.C.; Shimabukuro, Y.E.; De Souza Filho, C.R. Mapping tree species in
tropical seasonal semi-Deciduous forests with hyperspectral and multispectral data. Remote Sens. Environ.
2016, 179, 66–78. [CrossRef]

30. Asner, G.P.; Knapp, D.E.; Boardman, J.; Green, R.O.; Kennedy-Bowdoin, T.; Eastwood, M.; Martin, R.E.;
Anderson, C.; Field, C.B. Carnegie Airborne Observatory-2: Increasing science data dimensionality via
high-Fidelity multi-Sensor fusion. Remote Sens. Environ. 2012, 124, 454–465. [CrossRef]

http://dx.doi.org/10.1016/S0168-1699(02)00121-7
http://dx.doi.org/10.1016/j.foreco.2007.04.031
http://dx.doi.org/10.1139/X10-223
http://dx.doi.org/10.1093/forestry/cpr051
http://dx.doi.org/10.5721/EuJRS20164919
http://dx.doi.org/10.1016/j.rse.2009.02.002
http://dx.doi.org/10.1016/j.rse.2007.01.005
http://dx.doi.org/10.1109/TGRS.2009.2029864
http://dx.doi.org/10.1016/j.rse.2011.05.009
http://dx.doi.org/10.1109/TGRS.2012.2216272
http://dx.doi.org/10.1080/01431160500114706
http://dx.doi.org/10.1080/02827581.2013.793386
http://dx.doi.org/10.5589/m12-007
http://dx.doi.org/10.5194/isprsarchives-XLI-B3-155-2016
http://dx.doi.org/10.3390/rs9020108
http://dx.doi.org/10.3390/rs71013863
http://dx.doi.org/10.1016/j.rse.2005.03.009
http://dx.doi.org/10.1016/j.rse.2016.03.021
http://dx.doi.org/10.1016/j.rse.2012.06.012


Remote Sens. 2017, 9, 400 18 of 19

31. Luo, S.; Wang, C.; Xi, X.; Pan, F.; Peng, D.; Zou, J.; Nie, S.; Qin, H. Fusion of airborne LiDAR data and
hyperspectral imagery for aboveground and belowground forest biomass estimation. Ecol. Indic. 2017, 73,
378–387. [CrossRef]

32. Næsset, E. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ.
1997, 61, 246–253. [CrossRef]

33. Hyyppä, J.; Inkinen, M. Detecting and estimating attributes for single trees using laser scanner.
Photogramm. J. Finl. 1999, 16, 27–42.

34. Wang, Y.; Hyyppä, J.; Liang, X.; Kaartinen, H.; Yu, X.; Lindberg, E.; Holmgren, J.; Qin, Y.; Mallet, C.; Ferraz, A.;
et al. International benchmarking of the individual tree detection methods for modeling 3-D canopy structure
for silviculture and forest ecology using airborne laser scanning. IEEE Trans. Geosci. Remote Sens. 2016, 54,
5011–5027. [CrossRef]

35. Hyyppä, J.; Kelle, O.; Lehikoinen, M.; Inkinen, M. A segmentation-Based method to retrieve stem volume
estimates from 3-D tree height models produced by laser scanners. IEEE Trans. Geosci. Remote Sens. 2001, 39,
969–975. [CrossRef]

36. Persson, Å.; Holmgren, J.; Soderman, U. Detecting and measuring individual trees using an airborne laser
scanner. Photogramm. Eng. Remote Sens. 2002, 68, 925–932.

37. Breidenbach, J.; Næsset, E.; Lien, V.; Gobakken, T.; Solberg, S. Prediction of species specific forest inventory
attributes using a nonparametric semi-Individual tree crown approach based on fused airborne laser scanning
and multispectral data. Remote Sens. Environ. 2010, 114, 911–924. [CrossRef]

38. Vauhkonen, J.; Seppänen, A.; Packalén, P.; Tokola, T. Improving species-Specific plot volume estimates based
on airborne laser scanning and image data using alpha shape metrics and balanced field data. Remote Sens.
Environ. 2012, 124, 534–541. [CrossRef]

39. Moeur, M.; Stage, A.R. Most similar neighbor: An improved sampling inference procedure for natural
resource planning. For. Sci. 1995, 41, 337–359.

40. Ørka, H.O.; Gobakken, T.; Næsset, E.; Ene, L.; Lien, V. Simultaneously acquired airborne laser scanning
and multispectral imagery for individual tree species identification. Can. J. Remote Sens. 2012, 38, 125–138.
[CrossRef]

41. McRoberts, R.; Nelson, M.; Wendt, D. Stratified estimation of forest area using satellite imagery, inventory
data, and the k-Nearest Neighbors technique. Remote Sens. Environ. 2002, 82, 457–468. [CrossRef]

42. Yu, B.; Ostland, I.M.; Gong, P.; Pu, R.L. Penalized discriminant analysis of in situ hyperspectral data for
conifer species recognition. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2569–2577. [CrossRef]

43. Falkowski, M.J.; Hudak, A.T.; Crookston, N.L.; Gessler, P.E.; Uebler, E.H.; Smith, A.M.S. Landscape-Scale
parameterization of a tree-Level forest growth model: A k-Nearest neighbor imputation approach
incorporating LiDAR data. Can. J. For. Res. 2010, 40, 184–199. [CrossRef]

44. Pippuri, I.; Maltamo, M.; Packalen, P.; Mäkitalo, J. Predicting species-Specific basal areas in urban forests
using airborne laser scanning and existing stand register data. Eur. J. For. Res. 2013, 132, 999–1012. [CrossRef]

45. Räty, J.; Vauhkonen, J.; Maltamo, M.; Tokola, T. On the potential to predetermine dominant tree species based
on sparse-Density airborne laser scanning data for improving subsequent predictions of species-Specific
timber volumes. For. Ecosyst. 2016, 3, 1–17. [CrossRef]

46. R Development Core Team R: A Language and Environment for Statistical Computing. Available online:
http://www.r-project.org (accessed on 22 September 2016).

47. Kaartinen, H.; Hyyppä, J.; Yu, X.; Vastaranta, M.; Hyyppä, H.; Kukko, A.; Holopainen, M.; Heipke, C.;
Hirschmugl, M.; Morsdorf, F.; et al. An international comparison of individual tree detection and extraction
using airborne laser scanning. Remote Sens. 2012, 4, 950–974. [CrossRef]

48. Karatzoglou, A.; Smola, A.; Hornik, K. The Kernlab Package. Available online: https://cran.r-project.org/
web/packages/kernlab/index.html (accessed on 16 February 2017).

49. Dalponte, M.; Coomes, D.A. Tree-Centric mapping of forest carbon density from airborne laser scanning and
hyperspectral data. Methods Ecol. Evol. 2016, 7, 1236–1245. [CrossRef]

50. Crookston, N.L.; Finley, A.O. YaImpute: An R Package for kNN Imputation. J. Stat. Softw. 2008, 23, 1–16.
[CrossRef]

51. McRoberts, R.E.; Gobakken, T.; Næsset, E. Post-Stratified estimation of forest area and growing stock volume
using lidar-Based stratifications. Remote Sens. Environ. 2012, 125, 157–166. [CrossRef]

http://dx.doi.org/10.1016/j.ecolind.2016.10.001
http://dx.doi.org/10.1016/S0034-4257(97)00041-2
http://dx.doi.org/10.1109/TGRS.2016.2543225
http://dx.doi.org/10.1109/36.921414
http://dx.doi.org/10.1016/j.rse.2009.12.004
http://dx.doi.org/10.1016/j.rse.2012.06.002
http://dx.doi.org/10.5589/m12-021
http://dx.doi.org/10.1016/S0034-4257(02)00064-0
http://dx.doi.org/10.1109/36.789651
http://dx.doi.org/10.1139/X09-183
http://dx.doi.org/10.1007/s10342-013-0736-8
http://dx.doi.org/10.1186/s40663-016-0060-0
http://www.r-project.org
http://dx.doi.org/10.3390/rs4040950
https://cran.r-project.org/web/packages/kernlab/index.html
https://cran.r-project.org/web/packages/kernlab/index.html
http://dx.doi.org/10.1111/2041-210X.12575
http://dx.doi.org/10.18637/jss.v023.i10
http://dx.doi.org/10.1016/j.rse.2012.07.002


Remote Sens. 2017, 9, 400 19 of 19

52. Nilsson, M. Estimation of tree heights and stand volume using an airborne lidar system. Remote Sens. Environ.
1996, 56, 1–7. [CrossRef]

53. Mohammadi, J.; Joibary, S.S.; Yaghmaee, F.; Mahiny, A.S. Modelling forest stand volume and tree density
using Landsat ETM+data. Int. J. Remote Sens. 2010, 31, 2959–2975. [CrossRef]

54. Mäkelä, H.; Pekkarinen, A. Estimation of forest stand volumes by Landsat TM imagery and stand-Level
field-Inventory data. For. Ecol. Manag. 2004, 196, 245–255. [CrossRef]

55. Packalén, P.; Temesgen, H.; Maltamo, M. Variable selection strategies for nearest neighbor imputation
methods used in remote sensing based forest inventory. Can. J. Remote Sens. 2012, 38, 557–569. [CrossRef]

56. Packalén, P.; Suvanto, A.; Maltamo, M. A two stage method to estimate species-specific growing stock.
Photogramm. Eng. Remote Sens. 2009, 75, 1451–1460. [CrossRef]

57. Puliti, S.; Gobakken, T.; Ørka, H.O.; Næsset, E. Assessing 3D point clouds from aerial photographs for
species-Specific forest inventories. Scand. J. For. Res. 2017, 32, 68–79. [CrossRef]

58. Wikström, P.; Edenius, L.; Elfving, B.; Eriksson, L.O.; LäMåS, T.; Sonesson, J.; ÖHMAN, K.; Wallerman, J.;
Waller, C.; Klintebäck, F. The Heureka forestry decision support system: An overview. Math. Comput. For.
Nat. Sci. 2011, 3, 87–95.

59. Latifi, H.; Fassnacht, F.E.; Müller, J.; Tharani, A.; Dech, S.; Heurich, M. Forest inventories by LiDAR data:
A comparison of single tree segmentation and metric-Based methods for inventories of a heterogeneous
temperate forest. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 162–174. [CrossRef]

60. Yu, X.; Hyyppä, J.; Holopainen, M.; Vastaranta, M. Comparison of area-Based and individual tree-Based
methods for predicting plot-Level forest attributes. Remote Sens. 2010, 2, 1481–1495. [CrossRef]

61. Rahlf, J.; Breidenbach, J.; Solberg, S.; Astrup, R. Forest parameter prediction using an image-Based point
cloud: A comparison of semi-ITC with ABA. Forests 2015, 6, 4059–4071. [CrossRef]

62. Bollandsås, O.M.; Maltamo, M.; Gobakken, T.; Næsset, E. Comparing parametric and non-Parametric
modelling of diameter distributions on independent data using airborne laser scanning in a boreal conifer
forest. Forestry 2013, 86, 493–501. [CrossRef]

63. Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Hall, D.E.; Falkowski, M.J. Nearest neighbor imputation of
species-Level, plot-Scale forest structure attributes from LiDAR data. Remote Sens. Environ. 2008, 112,
2232–2245. [CrossRef]

64. Penner, M.; Pitt, D.G.; Woods, M.E. Parametric vs. nonparametric LiDAR models for operational forest
inventory in boreal Ontario. Can. J. Remote Sens. 2013, 39, 426–443.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0034-4257(95)00224-3
http://dx.doi.org/10.1080/01431160903140811
http://dx.doi.org/10.1016/j.foreco.2004.02.049
http://dx.doi.org/10.5589/m12-046
http://dx.doi.org/10.14358/PERS.75.12.1451
http://dx.doi.org/10.1080/02827581.2016.1186727
http://dx.doi.org/10.1016/j.jag.2015.06.008
http://dx.doi.org/10.3390/rs2061481
http://dx.doi.org/10.3390/f6114059
http://dx.doi.org/10.1093/forestry/cpt020
http://dx.doi.org/10.1016/j.rse.2007.10.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data Set Description 
	Study Area 
	Field Data 
	ALS and Hyperspectral Data and Pre-Processing 

	Methodology 
	Overview 
	ITC Delineation Method 
	ITC Approach 
	Semi-ITC Approach 
	ABA 
	Accuracy Assessment 


	Results 
	ITC Approach 
	Semi-ITC Approach 
	ABA 
	Comparison of the Different Inventory Approaches 

	Discussion 
	Conclusions 

