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Abstract: The inter-comparison of different soil moisture (SM) products over the Tibetan Plateau (TP)
reveals the inconsistency among different SM products, when compared to in situ measurement. It
highlights the need to constrain the model simulated SM with the in situ measured data climatology.
In this study, the in situ soil moisture networks, combined with the classification of climate zones
over the TP, were used to produce the in situ measured SM climatology at the plateau scale. The
generated TP scale in situ SM climatology was then used to scale the model-simulated SM data,
which was subsequently used to scale the SM satellite observations. The climatology-scaled satellite
and model-simulated SM were then blended objectively, by applying the triple collocation and least
squares method. The final blended SM can replicate the SM dynamics across different climatic zones,
from sub-humid regions to semi-arid and arid regions over the TP. This demonstrates the need
to constrain the model-simulated SM estimates with the in situ measurements before their further
applications in scaling climatology of SM satellite products.

Keywords: Tibetan Plateau; soil moisture; climatic zones; Tibet-Obs; triple collocation; AMSRE;
ASCAT; ERA-Interim

1. Introduction

1.1. Background

The debates on the role of Tibetan Plateau (TP) in the Indian monsoon [1–3] have drawn attention
to the quantification of land-atmosphere exchanges of water and heat over TP [4]. A detailed
quantification can facilitate identifying imperfections in the current numerical weather prediction
models and may serve as a reference to which climate scenarios can be compared. Soil moisture
(hereafter as SM) is a crucial land surface state that modulates land-atmosphere interactions [5–10] and
imperative for quantifying trends and variability of feedbacks between climate and the water cycle of
TP [11,12].

In general, SM data can be obtained from three primary sources of, namely, satellite observations,
model simulations, and in situ measurements. Several global SM datasets are available from satellite
observations that were not originally designed for this purpose [13–16]. The particularly dedicated
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satellites include the Soil Moisture and Ocean Salinity (SMOS) [6] mission, from European Space
Agency (ESA), and the Soil Moisture Active/Passive (SMAP) mission, from the National Aeronautic
and Space Administration (NASA) [17]. On the other hand, the reanalysis provides SM datasets
through assimilating satellite/in situ observations, backboned with a land surface scheme and driven
by the outputs of the atmospheric model. Examples are the Global Land Data Assimilation System
(GLDAS) [18] and the European Centre for Medium-Range Weather Forecasts (ECMWF) interim
reanalysis (ERA-Interim) [19,20]. Ideally, both the satellite remote sensing data and reanalysis data
should be validated against in situ measurements collected under a variety of land surface conditions.
The currently existing SM observation networks over the Tibetan Plateau include the Tibetan Plateau
Observatory of plateau scale SM and soil temperature (Tibet-Obs) [11], the multi-scale SM and
temperature monitoring network on the central Tibetan Plateau (Tibet-Central) [21], and the Third
Pole Environment (TPE) in situ component [22].

It is always challenging to find a single satellite-derived SM product that has complete coverage
of the TP for an extended period of time and is suitable for climate change studies at sub-continental
scale [23]. Su et al. [11] found that over the TP AMSRE (Advanced Microwave Scanning Radiometer)
and ASCAT (the METOP Advanced Scatterometer) products overestimate the regionally-measured
SM by 0.2~0.3 m3¨m´3 in the monsoon periods over a cold semi-arid area. For the cold humid area
over TP, both data have comparable accuracy as reported in previous studies conducted across the
globe [24–30]. In the winter periods, however, the AMSRE overestimates, and ASCAT underestimates,
SM significantly [11].

Efforts were made to merge different satellite data into one superior SM dataset as undertaken
in the WACMOS (Water Cycle Multimission Observation Strategy) project [31,32], to address the
inconsistency between active and passive microwave SM products. The WACMOS SM product is the
precursor product of European Space Agency (ESA) Climate Change Initiative (CCI) SM product [33].
Although the approach increases the temporal density of the available data on a global scale, the
ESA-CCI SM product can cover the TP for only two months per year [34,35].

The limited availability of satellite-based SM estimates over TP within this merged product is
mainly due to the inherent difficulties in retrieving SM from even partially-frozen land surfaces (e.g.,
the signal of liquid water content is difficult to be retrieved over frozen ground) [13,14]. Both AMSRE
and ASCAT data have advisory flags for frozen soil, which partially leads to the sparse retrieval of SM
over TP that is underlain by permafrost and seasonally frozen ground [36]. The merging approach
itself contributes to another aspect of the low data availability. The blending strategy deploys AMSRE
and ASCAT data only over the sparsely and moderately vegetated regions of the globe and combines
them only when the CDF (cumulative distribution function) matched AMSRE and ASCAT data are
highly correlated (e.g., correlation coefficient is greater than 0.65) [32].

1.2. Motivation

The SM climatologies in satellite, LSM, and in situ datasets can be very different due to their
spatial scale contrasts and different sampling depths. In fact, there are strong biases between the
remotely-sensed satellite and the modeled SM [11,37,38]. Consequently, the statistical moments
between them differ significantly [39]. It is demonstrated that the relative accuracy between satellite
and LSM datasets cannot be objectively determined, and neither is clearly superior when compared
with the limited in situ observations [39]. Such systematic differences between the two datasets are
preventing a statistically-optimal analysis and, therefore, have to be corrected [40]. To tackle this issue,
Reichle and Koster [39] and Drusch et al. [41] use the concept of a cumulative distribution function
(CDF) matching to scale the satellite-based SM into SM consistent with the LSM results [39]. There
are also other scaling techniques, including linear regression correction, linear rescaling [32], and
Min/Max correction [42].

In previous studies, the scaling of satellite-derived SM data was implemented based on the
climatology of LSM-simulated SM data [32,39,41] without the constraint of in situ data. Such scaling
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means that the statistical moments of the scaled satellite data (e.g., based on LSM climatology) can
differ significantly when different LSMs were used, as every model has its SM climatology with a
dynamic range defined through the wilting point and field capacity [43,44].

Figure 1b shows clearly that, over the Tibet-Obs sites, obvious differences exist between the
GLDAS and the ERA-Interim SM products for the year 2010. Over the Maqu, Naqu, Ali, and Shiquanhe
networks (Figure 1a), ERA-Interim SM are systematically higher than GLDAS. When different satellite
data (e.g., active and passive microwave SM data) are scaled to the Noah LSM-based (e.g., GLDAS)
climatology to generate the ESA-CCI SM data [33], they are closely aligned with the GLDAS line (see
Maqu and Naqu plots in Figure 1b). For Ali and Shiquanhe networks, there are only a few ESA-CCI
SM data points between July and October. During the winter period, the satellite data over these
networks (i.e., in cold arid regions) are flagged out due to the presence of snow or frozen soil, which
leads to no data available for merging.
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Figure 1. (a) Tibet-Obs networks are distributed under the three different climatic zones. The climatic
zones over Tibetan Plateau were classified based on the FAO Aridity Index Map. The dark blue color
represents the area around Tibetan Plateau, with elevation lower than 3000 m above sea level (a.s.l.);
and (b) time series of satellite observed, LSM simulated and in situ measured SM for the Tibet-Obs
sites: Ali, Maqu, Naqu, and Ngari-Shiquanhe.
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It is expected that the ESA-CCI SM data would align with the ERA-Interim line if the satellite data
are scaled based on ERA-Interim’s climatology, which is different from the current ESA-CCI SM data.
However, no matter which model data is used as the base, the merged satellite data cannot adequately
capture the in situ observed SM dynamics, especially when the data climatology was not constrained
by in situ measurement.

In this study, we aim to merge different satellite datasets over TP, by using the model-simulated
SM product. The data climatology of the model simulated SM will be constrained by the in situ
measurements. It should, however, be noted that it is impossible to have in situ measurement
everywhere across the globe, to constrain the data climatology of model products. Nevertheless,
we want to demonstrate that the improvement can be made providing a consistent set of SM products
over TP, by using as much in situ information as possible. In the following Section 2, the methodologies
and the datasets are introduced. Section 3 presents the calibration, validation, and inter-comparison
results. The discussions, summary, and recommendations are drawn in Section 4.

2. Data and Methodology

2.1. SM Datasets

2.1.1. In Situ Datasets

As introduced, the Tibet-Obs crosses over three different climatic conditions and includes Maqu
(subhumid), Naqu (semiarid), Ali, and Shiquanhe (arid) observation networks (see Figure 1a). In
Figure 2a–d, the in situ SM observations at each network is plotted as grey lines, with the red line
representing the averaged SM value of the network, between 1 August 2010 and 31 October 2011. The
black bars on the red lines indicate the standard deviation of the daily averaged SM data, representing
the error may rise by averaging the 15 min-interval data for a daily value (e.g., temporal-error bars).
Su et al. [11] and van der Velde [45] had presented the detailed spatial variation analysis of the in situ
data. The area spanned by grey lines in Figure 2a–d indicates the spatial error range varies seasonally.
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between 1 August 2010 and 31 October 2011: (a) Maqu; (b) Naqu; (c) Ali; (d) Shiquanhe; and
(e) averaged soil moisture for different networks.

The averaged SM data over Maqu, Naqu, Ali, and Shiquanhe are plotted in Figure 2e. These
averaged data over different networks combined with the FAO aridity index map would produce the
daily SM reference data over TP with a spatial resolution of 0.25˝. Figure 2e shows the SM dynamic
under different climatic zones differs from each other. For example, many more responses of SM to
rainfall events can be seen at Maqu, when compared to other networks.

2.1.2. ERA-Interim SM

ERA-Interim SM product is generated by ECMWF Land Data Assimilation System, which is
performed separately from the main atmospheric analysis [19]. The ERA-Interim SM product covers
the period from 1 January 1979 onward and continues to be extended forward in near-real-time (with
a delay of approximately one month). In ERA-Interim, the SM simulations are performed by the Tiled
ECMWF Scheme for Surface Exchanges over Land (TESSEL) [46]. It contains four layers of volumetric
SM: first layer (0–7 cm), second layer (7–28 cm), third layer (28–100 cm), and fourth layer (100–189 cm)
below the ground surface. The daily average SM analysis of the first layer (0–7 cm) are used in this
study. Although the spatial resolution of the generated SM product is about 80 km (T255), ERA-Interim
includes the provision of interpolation to requested resolutions. In this study, the ERA-Interim SM
product is interpolated to a resolution of 25 km (e.g., 0.25˝).

2.1.3. Satellite Data

The VUA-NASA SM products were derived from C-band (6.9 GHz) AMSRE data using the
Land Parameter Retrieval Model (LPRM) described in Owe et al. [14]. LPRM is based on the use
of the microwave polarization difference index (of the H and V polarized brightness temperature)
and a nonlinear iterative optimization procedure to solve a radiative transfer equation, described
by Mo et al. [47], for both soil dielectric constant and vegetation optical depth. Surface temperature
is obtained from vertically-polarized Ka-band (37 GHz) observations [48], and surface roughness is
described using the model of Wang and Choudhury [49]. LPRM applies then the soil dielectric mixing
model by Wang and Schmugge [50] using a global database of soil physical properties [18] to solve
for surface SM. The data utilized for this study covers the entire TP for the period from May 2008 to
October 2011 and are provided on a regular grid with a 0.25˝ spacing. Only the products obtained from
the descending pass AMSRE data were used, which corresponds to an acquisition time of 3:00 a.m.
and 4:00 a.m. (local time) [51–53].

The second satellite-derived SM dataset used in this study is obtained from Metop’s
Advanced C-band (5.3 GHz) scatterometer data using the change detection method developed by
Wagner et al. [54]. The seasonal vegetation effect on the backscattered signal (σ˝) is taken into account
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and modelled by using the three different scatterometer antenna geometries and considering their
different responses to the vegetation. The σ˝ is then normalized to a reference incidence angle. The
highest and the lowest σ˝ values over the entire observation period are considered as reference values
of dry and saturated land surface conditions. By scaling the σ˝ observed at a given point in the time
between the reference values, an estimate of relative soil wetness (i.e., degree of saturation) in the
top few centimetres of the soil is obtained, which ranges between 0% (totally dry conditions) and
100% (total water capacity). The absolute volumetric SM is obtained by multiplying this index by the
soil porosity from Reynolds’s dataset [55]. The data used in this study covers the entire TP for the
period from May 2008 to October 2011 and are re-projected on a regular grid of 0.25˝ spacing. Only the
products obtained from ascending ASCAT passes are used, which corresponds to an acquisition time
between 9:45 p.m. and 10:45 p.m. (local time).

2.2. Scaling and Blending Methodology

2.2.1. Flowchart

Following the discussion in Section 1.2, we will first use the in situ measurements over TP to limit
the data climatology of reanalysis data. The climatology-scaled reanalysis data will be subsequently
used as the reference to constrain the climatology of satellite data. The scaled satellite and reanalysis
SM data, with consistent data climatology, will be blended to generate a consistent set of SM data
over TP.

Herein lies two major challenges: (1) the short record of in situ observed SM data has to be used
under the constraint that we do not have global estimates of the temporal statistical moments; (2) the
SM data over the sparsely distributed in situ networks has to be used under the constraint that global
estimates of the spatial statistical moments of the data over TP is unknown.

To tackle the first challenge, we will use the in situ SM for 12 months (1 November 2010–31 October
2011, calibration period) to determine scaling parameters for the reanalysis data. The ERA-Interim SM
product will be adopted as the reanalysis data for this study [12]. The 12-month in situ data is deemed
appropriate to capture the seasonal statistical moments, by using CDF matching technique [39,42].

These scaling parameters are then applied to the ERA-Interim SM data during the period 1 May
2008–31 October 2010 (blending period). The selection of the calibration and blending periods is limited
by the in situ data availability. Before May 2008, only thebNaqu network was equipped with five
observation stations. After that, 20 more stations were installed in the Maqu network. It was not until
August 2010 both Ali and Shiquanhe networks were equipped with an extra 20 stations, which leads
to the Tibet-Obs crossing over three different typical climate conditions over TP [11]. See Figure 1a for
geophysical locations of different networks.

To address the second challenge, we will use the FAO Aridity Index map [56,57]. The Aridity
Index (AI) is expressed as a generalized expression of precipitation, temperature, and potential
evapotranspiration (PET), to quantify precipitation availability concerning the atmospheric water
demand [58,59]. The global AI dataset was compared to the USGS (U.S. Geological Survey) Land
Characteristics Database [60], and the MODIS (Moderate Resolution Imaging Spectroradiometer) Tree
Cover Percentage [61] estimates, to obtain AI thresholds for classifying different climatic zones.

Based on the classification scheme, the TP has been categorized into three climatic zones: arid
zone (0.03 < AI < 0.2), semi-arid zone (0.2 < AI < 0.5) and sub-humid zone (0.5 < AI < 1.0) (Figure 1a).
The Tibet-Obs networks are distributed throughout the three climatic zones: Ali and Ngari-Shiquanhe
networks in the arid zone, Naqu network in the semi-arid zone, and Maqu network in the sub-humid
zone. The averaged SM fields of each network are assumed to be representative for the climatic zone
in which that network is located. For the arid zone, the averaged SM data over both the Ali and
Shiquanhe networks are used.

Figure 3 shows the flowchart on how the scaling and blending were carried out:
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(1) The first step is to generate the 0.25˝ spatial resolution in situ SM data climatology over TP. The
FAO Aridity Index map, combined with in situ measurement, is used to produce in situ SM data
climatology over TP, under the assumption mentioned above. For instance, the averaged SM
value of both Ali and Shiquanhe is taken as be representative for the arid zone, Naqu for the
semi-arid zone, and Maqu for the sub-humid zone (Figure 1a);

(2) The second step is to generate the scaled ERA-Interim SM data (0.25˝) over the calibration period
and the associated CDF matching parameters to capture the climatology of the in situ data. The
CDF matching parameters will be used in the blending period;

(3) The third step is to generate the scaled ERA-Interim SM data (0.25˝) over the blending period
using the CDF matching parameters derived from Step (2);

(4) The fourth step is to produce the scaled AMSRE and ASCAT SM data (0.25˝), with the scaled
ERA-Interim SM data generated from Step (3);

(5) The fifth step is to determine the relative errors among the three scaled SM data sets (i.e., AMSRE,
ASCAT, and ERA-Interim), by using the Triple Collocation (TC) method;

(6) The sixth step, the scaled AMSRE, ASCAT, and ERA-Interim SM data are blended using the least
squares method.
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2.2.2. CDF Matching

CDF matching technique has been widely used for bias reduction in satellite-retrieved surface
SM [32,39,41,42,62]. Technically, the reference in situ SM data and the to-be-scaled SM data
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(model-simulated/satellite-observed) have to be ranked. Consecutively, the differences between
the corresponding elements of each ranked dataset have to be calculated, which are subsequently
plotted against the satellite data. Then, a piece-wise linear CDF matching technique is used to derive
the bias-corrected SM datasets [25,32]. The piece-wise linear CDF matching approach divides the CDF
curve into a certain number of segments, performs linear regression analysis for each segment, and
uses the linear equations (slope and intercept) to scale data falling into different segments.

2.2.3. Objective Blending

Yilmaz et al. [63] introduced an objective methodology for blending satellite- and model-based
SM products in the least squares framework where uncertainty estimates for each product are obtained
using the TC method. This study will adopt the same methodology to blend the satellite and reanalysis
SM data mentioned in Section 2.1.

Least squares is an estimation theory and can be used to describe the basis of most modern data
assimilation techniques [64]. The desired estimate of SM, via blending different sources of data using
least squares framework, can be expressed as below:

SMblend “ ωAMSRESMAMSRE `ωASCATSMASCAT `ωERA´InterimSMERA´Interim (1)

where ωAMSRE, ωASCAT , and ωERA´Interim are the relative weights of the AMSRE, ASCAT. and
ERA-Interim SM products, respectively. To have an unbiased optimal merged estimation, it is
required that ωAMSRE `ωASCAT `ωERA´Interim “ 1. The relative weights of different SM products
are expressed as:

ωAMSRE “
σ2

ASCATσ2
ERA´Interim

σ2
AMSREσ2

ASCAT ` σ2
AMSREσ2

ERA´Interim ` σ2
ASCATσ2

ERA´Interim

ωASCAT “
σ2

AMSREσ2
ERA´Interim

σ2
AMSREσ2

ASCAT ` σ2
AMSREσ2

ERA´Interim ` σ2
ASCATσ2

ERA´Interim

ωERA´Interim “
σ2

AMSREσ2
ASCAT

σ2
AMSREσ2

ASCAT ` σ2
AMSREσ2

ERA´Interim ` σ2
ASCATσ2

ERA´Interim

(2)

where σ2
AMSRE, σ2

ASCAT, and σ2
ERA´Interim are the variance of AMSRE, ASCAT, and ERA-Interim SM

products, respectively. If only two SM estimations available, the least square method can be applied
similar, with weights:

ωProd1 “
σ2

Prod2
σ2

Prod1 ` σ2
Prod2

; ωProd2 “
σ2

Prod1
σ2

Prod1 ` σ2
Prod2

(3)

It is to be noted that the error variance in Equation (2) should not be regarded as the absolute
values of the error variances, but the relative accuracy of the three sets of SM products (e.g., three
independent realizations of true SM states) [63], which can be determined by using the TC method.
The relative accuracy of these realizations represents how the noisiness of one product compares
against that of another product. The TC method has been developed to use three collocated datasets
for jointly providing sufficient constraints determining the relative error variance to characterize the
uncertainties [65]. It can help to identify individual relative error structure of in situ, remote sensing,
and reanalysis datasets. For the detailed description of TC method, readers are referred to Vogelzang
and Stoffelen [66] and Yilmaz et al. [63]. When there are only two SM products, the variances of the
two available products will be used to derive, deterministically, the weight coefficients according to
Equation (3).
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3. Results

3.1. Calibration Results

As indicated in Section 2.2.1, the original ERA-Interim SM data will be scaled to the in situ data
climatology, which was generated by the combined use of the in situ observation (Figure 2) and the
FAO aridity index map (Figure 1a), for the calibration period between 1 November 2010 and 31 October
2011. This process involves the first two steps as indicated in the flowchart of scaling and blending
(Figure 3).

We used time-longitude diagrams to investigate the calibration results. The time-longitude
diagram shows the temporal evolution of the zonal average (e.g., latitude-wise) of SM data along the
longitude across the TP. Figure 4 displays the time-longitude diagram for the original ERA-Interim
and the scaled ERA-Interim SM products, based on in situ climatology.Remote Sens. 2016, 8, 268 9 of 22 
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The original ERA-Interim SM product (Figure 4c) shows a relatively smoother SM variation over
the TP than the in situ climatology (Figure 4a). This “smoothness” pattern of ERA-Interim data is
corresponding to the earlier reported results [12]. After being scaled by using the CDF matching
method, the scaled ERA-Interim product (Figure 4b) shows a similar pattern to the time-longitude
diagram of in situ climatology.

For example, the eastern TP (e.g., 94˝E–104˝E) is relatively dry with zonal averaged SM of
0.05–0.1 cm3¨ cm´3 during the winter season (e.g., 1 November 2010–20 March 2011), while it is
relatively wet (0.35–0.45 cm3¨ cm´3) during the monsoon season (e.g., 10 May 2011–10 October 2011)
(Figure 4a,b). However, such seasonal change of the eastern TP can be only weakly found in the
original ERA-Interim climatology (Figure 4c). Additionally, Figure 4a,b show that the western TP
(e.g., 74˝E–89˝E) is drier than the eastern TP, which is again only weakly and partially represented by
the non-scaled ERA-Interim SM product.

The ERA-Interim SM product was scaled to the in situ climatology, based on different seasons
across the calibration period. The calibration period was divided into four seasonal categories [67]:
the winter season (December–March), the transition 1 (April) from winter to the monsoon, the
monsoon season (May–October), and the transition 2 (November) from monsoon to winter. The
scaling parameters for these four seasonal categories will be used to generate the scaled ERA-Interim
SM product over the blending period between 1 May 2008 and 31 October 2010. This approach is
following Reichle and Koster [39], who applied the scaling parameters, generated from one year of the
SMMR (Scanning Multichannel Microwave Radiometer) SM record to the nine years of SMMR data.

3.2. Blending Results

This sub-section will present the scaled ERA-Interim and satellite SM products (i.e., Step 3 and 4
in Figure 3) and the blended SM data (i.e., step 5 and 6 in Figure 3), for the blending period. Figure 5
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shows that the scaled AMSRE (Figure 5b) and ASCAT (Figure 5c) SM products have the similar spatial
and temporal patterns of soil wetness over the TP, when compared with the scaled ERA-Interim SM
data (Figure 5a). All three scaled SM products show the seasonal variation of SM over the eastern TP,
and represent the relatively dry western TP.Remote Sens. 2016, 8, 268 10 of 22 
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products is calculated. Figure 6b shows that the minimum CCs with a value >0.15 (e.g., required for 
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be applied with TC method to identify the relative error. It is to be noted that the Figure 6c was 
plotted with (1−p-value). This was done to make the plot visible with p-values, most of which were 

Figure 5. Time-longitude diagram for scaled SM products: (a) scaled ERA-Interim; (b) scaled AMSRE;
(c) scaled ASCAT; (d) blended SM product; (e) original AMSRE; and (f) original ASCAT, for the blending
period (1 May 2008–31 October 2010); and the number of data for (g) ERA-Interim; (h) AMSRE; and
(i) ASCAT.

Figure 5e,f show the time-longitude diagram for the original satellite SM products. Although
both original AMSRE and ASCAT products capture roughly the spatiotemporal pattern, both products
are overestimating the SM over the TP. This overestimation is especially evident for AMSRE data. The
dark blue area in Figure 5b,e indicates AMSRE observation were flagged out. Compared to AMSRE
data, the original ASCAT data can represent more realistic the spatiotemporal SM pattern over TP,
except for the unrealistic overestimation over the western TP. Nevertheless, after scaling, both AMSRE
and ASCAT data have the similar climatology with the scaled ERA-Interim data.

With the consistent climatology, the scaled AMSRE, ASCAT, and ERA-Interim SM products were
blended into one set of SM data, using the objective blending method introduced in Section 2.2.3.
Figure 5d shows that the spatiotemporal pattern of the blended SM is close to that in Figure 5a. The
blending of the three scaled SM products was implemented with two sub-steps: (i) blending the three
collocated SM data (see Figure 6a–c); (ii) blending the rest of data, which means the two satellite SM
data collocate individually with the scaled ERA-Interim data, but not collocating with each other
(see Figure 6d,e).
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Figure 7 shows the weights and relative errors of scaled ERA-Interim, AMSRE and ASCAT, 
determined by least squares and TC, for the blended SM. It was as expected that the weights and 
relative errors were mainly calculated over the eastern TP, where the collocated observations 
concentrated (Figure 6). Among the three scaled SM products, the ERA-Interim has the smallest 
average relative error (0.0012 cm3·cm−3) while the greatest weight (0.4029) contributing to the blended 
SM. There are no significant differences in average weights between AMSRE (0.2930) and ASCAT 
(0.3005), indicating almost the same contribution to the blended SM over the TP. A closer look at the 
geographical distribution of higher weights (>0.9, yellowish parts in Figure 6a–c), the scaled AMSRE 
seems more reliable (i.e., higher weights while lower relative errors) over the southern TP (sparsely 
vegetated/semi-arid), while the scaled ASCAT more reliable over the eastern TP (moderate 
vegetated/sub-humid). 

Figure 6. The blending of the scaled AMSRE, ASCAT, and ERA-Interim SM products was implemented
with two sub-steps: (a–c) sub-step one is to blend the three collocated SM data, as identified by the
number of triplets, the minimum correlation coefficient among each other and the p-value. It is to
note that (c) was shown as (1—p-value) to make it more visible as most of p-value is close to zero;
(d,e) sub-step two is to blend the rest of data, of which the two satellite SM data collocate individually
with the scaled ERA-Interim data, but not collocating with each other; and (f) the final blended SM
product. (a–c) were plotted using the three SM data over the blending period; (d–f) are plotted using
data on 17 August 2008.

The collocated SM data among the three SM datasets over the blending period were identified in
Figure 6a. It shows that the triplet numbers greater than 100 were mainly distributed over the eastern
TP and partially over the southern TP. When more than 100 data points collocating with each other
between the three scaled SM products, the number of the triplet is then equal to 100. It is advised that
at least 100 observation triplets are required for a reliable estimation of the relative error among the
three SM products. Below 100 observations the limited sample size can lead to systematic effects of up
to 5% [68].

To check if the identified number of triplets is statistically significant to be applied with TC
method, the minimum correlation coefficient (hereafter as CC) among the three collocated SM products
is calculated. Figure 6b shows that the minimum CCs with a value >0.15 (e.g., required for statistical
significance at the 5% level for the sample size of 100) were corresponding to those regions with triplet
number >100. Figure 6c shows the significance level of the minimum CC over the TP and indicates
that the area with triplet number >100 are all statistically significant (e.g., p-value < 0.05) to be applied
with TC method to identify the relative error. It is to be noted that the Figure 6c was plotted with
(1´p-value). This was done to make the plot visible with p-values, most of which were close to zero.
The identified relative errors are then used as inputs for the least squares method to blend the three
scaled SM products, according to Equation (2).

The second sub-step is to blend the scaled satellite SM data collocating individually with the
scaled ERA-Interim data, but not collocating with each other by themselves (Figure 6d,e). The weights
for blending between the scaled AMSRE and ERA-Interim, or the scaled ASCAT and ERA-Interim,
were determined by using Equation (3). As can be seen from Figure 6d–f, both the scaled AMSRE and
ASCAT were blended into the final SM product.
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3.3. Weights and Relative Errors

Figure 7 shows the weights and relative errors of scaled ERA-Interim, AMSRE and ASCAT,
determined by least squares and TC, for the blended SM. It was as expected that the weights
and relative errors were mainly calculated over the eastern TP, where the collocated observations
concentrated (Figure 6). Among the three scaled SM products, the ERA-Interim has the smallest
average relative error (0.0012 cm3¨ cm´3) while the greatest weight (0.4029) contributing to the blended
SM. There are no significant differences in average weights between AMSRE (0.2930) and ASCAT
(0.3005), indicating almost the same contribution to the blended SM over the TP. A closer look at
the geographical distribution of higher weights (>0.9, yellowish parts in Figure 6a–c), the scaled
AMSRE seems more reliable (i.e., higher weights while lower relative errors) over the southern TP
(sparsely vegetated/semi-arid), while the scaled ASCAT more reliable over the eastern TP (moderate
vegetated/sub-humid).Remote Sens. 2016, 8, 268 12 of 22 
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(a,d) ERA-Interim; (b,e) AMSRE; and (c,f) ASCAT.

Figure 8 shows the weights and relative errors for those scaled AMSRE and ASCAT data, which
were not collocating with each other but collocated with the scaled ERA-Interim data. For ERA-Interim
vs. AMSRE results, the average weight of ERA-Interim is 0.7245, and the average weight of the
scaled AMSRE is 0.2755 (Figure 8a,b), corresponding with a relative error of 0.0022 cm3¨ cm´3 and
0.0063 cm3¨ cm´3, respectively. Figure 8a shows the weights with a value of >0.9 for ERA-Interim
were mainly distributed over the central and western TP, while only a small portion of the eastern TP
had a weight value of >0.9 for the scaled AMSRE (Figure 8b). This sparseness of AMSRE was mainly
due to the small SM retrieval rate of AMSRE over the central and western TP, where the permafrost
and seasonally-frozen ground were widespread (see Figure 5h). Such a limitation was inherent to
microwave theory, in regards to distinguishing if the soil is getting dry or frozen [13,14]. The current
solution to this difficulty is to have advisory flags for frozen soil, which leads immediately to the low
SM retrieval rate of AMSRE.

For ERA-Interim vs. ASCAT results, the average weight of ERA-Interim (0.5207) is very
close to that of the scaled ASCAT (0.4793), as well as for the relative errors (0.01 cm3¨ cm´3 and
0.0105 cm3¨ cm´3, respectively). Although the original ASCAT SM product can be noisy and not
reliable over the cold semi-arid and arid regions on the TP (results not shown), the scaled ASCAT
data are within the range of SM variation (see Section 3.5). It shares almost the same weight as the
ERA-Interim concerning the contribution to the blended SM (Figure 8e,f).



Remote Sens. 2016, 8, 268 13 of 22

Remote Sens. 2016, 8, 268 12 of 22 

 

 
Figure 7. Weights and relative errors of the three scaled SM products for the blended SM: (a,d) ERA-
Interim; (b,e) AMSRE; and (c,f) ASCAT. 

Figure 8 shows the weights and relative errors for those scaled AMSRE and ASCAT data, which 
were not collocating with each other but collocated with the scaled ERA-Interim data. For ERA-
Interim vs. AMSRE results, the average weight of ERA-Interim is 0.7245, and the average weight of 
the scaled AMSRE is 0.2755 (Figure 8a,b), corresponding with a relative error of 0.0022 cm3·cm−3 and 
0.0063 cm3·cm−3, respectively. Figure 8a shows the weights with a value of >0.9 for ERA-Interim were 
mainly distributed over the central and western TP, while only a small portion of the eastern TP had 
a weight value of >0.9 for the scaled AMSRE (Figure 8b). This sparseness of AMSRE was mainly due 
to the small SM retrieval rate of AMSRE over the central and western TP, where the permafrost and 
seasonally-frozen ground were widespread (see Figure 5h). Such a limitation was inherent to 
microwave theory, in regards to distinguishing if the soil is getting dry or frozen [13,14]. The current 
solution to this difficulty is to have advisory flags for frozen soil, which leads immediately to the low 
SM retrieval rate of AMSRE. 

 

Figure 8. Cont. 

Remote Sens. 2016, 8, 268 13 of 22 

 

 
Figure 8. Weights and relative errors for those scaled AMSRE and ASCAT data, not collocating with 
each other, but with the scaled ERA-Interim data: (a–d) ERA-Interim vs. AMSRE; (e–h) ERA-Interim 
vs. ASCAT. 

For ERA-Interim vs. ASCAT results, the average weight of ERA-Interim (0.5207) is very close to 
that of the scaled ASCAT (0.4793), as well as for the relative errors (0.01 cm3·cm−3 and 0.0105 cm3·cm−3, 
respectively). Although the original ASCAT SM product can be noisy and not reliable over the cold 
semi-arid and arid regions on the TP (results not shown), the scaled ASCAT data are within the range 
of SM variation (see Section 3.5). It shares almost the same weight as the ERA-Interim concerning the 
contribution to the blended SM (Figure 8e,f). 

3.4. Anomalies of Blended SM 

Figure 9 shows how the anomalies of the blended SM product varies seasonally, according to 
the definition of different seasonal phases mentioned in Section 3.1. The anomalies were calculated 
considering the blending period as the reference period, following the equation shown as below [69]: ݊ܣ(݅) = (݅)ܯܵ − (ோ_ௗܯܵ)݀ݐோ_పௗതതതതതതതതതതതതതതതതܵܯܵ  (4) 

where Ano(i) is an anomaly of the blended SM estimate (ܵܯ(݅)) at day i, while ܵܯோ_పௗതതതതതതതതതതതതതതതത and ܵ݀ݐ(ܵܯோ_ௗ)  are the averaged SM value and the standard deviation (hereafter as Stdev), 
respectively. The anomaly is normalized to the Stdev and is dimensionless. 

During the Transition 1 period, the SM anomalies become positive, starting from the eastern and 
southern part of the TP, especially for 2009 (Figure 9a). While, for 2010, the positive anomalies can 
also be seen from marginal areas of the TP (Figure 9b). This positive anomaly, perhaps, corresponds 
to the wetter summer monsoon in 2010 than in 2009, as indicated by the Indian monsoon index [70]. 
The positive anomalies spread over the whole TP during the monsoon season (Figure 9c–e) for the 
blending period between 1 May 2008 and 31 October 2010. 

After that, the TP starts the drying process (with negative SM anomalies) throughout the 
transition two period and the winter period. From the drying pattern during the transition two period 
in 2008 and 2009, it seems the drying starts from the northern and southern TP, and then to the central 
TP (Figure 9f,g). While, for 2010, the drying is much stronger over the eastern TP than other regions 
(Figure 9h). In general, the drying in 2010 is more substantial than that in 2008 and 2009, which can 
be seen from Figure 9i–k as well. It is noticed that the SM over the central TP (ca. 31°N, 90°E) in 2008 
and 2009 are not decreasing during the winter period. The SM anomalies over the central TP are close 
to zero or even positive (Figure 9i–k). This SM anomaly may contribute to the recently-identified 
increasing trend of SM over the central TP [71,72]. While, in 2010, such a zone of positive anomalies 
was pushed from the central TP to the northwestern TP. 

Figure 8. Weights and relative errors for those scaled AMSRE and ASCAT data, not collocating with
each other, but with the scaled ERA-Interim data: (a–d) ERA-Interim vs. AMSRE; (e–h) ERA-Interim
vs. ASCAT.

3.4. Anomalies of Blended SM

Figure 9 shows how the anomalies of the blended SM product varies seasonally, according to
the definition of different seasonal phases mentioned in Section 3.1. The anomalies were calculated
considering the blending period as the reference period, following the equation shown as below [69]:

Ano piq “
SM piq ´ SMRe f _Period

Std
´

SMRe f _Period

¯ (4)

where Ano(i) is an anomaly of the blended SM estimate (SM piq) at day i, while SMRe f _Period and

Std
´

SMRe f _Period

¯

are the averaged SM value and the standard deviation (hereafter as Stdev),
respectively. The anomaly is normalized to the Stdev and is dimensionless.
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Figure 9. Seasonal variations of anomalies of the blended SM product over the TP for the blending
period (1 May 2008–31 October 2010). (a,b) Transition 1 (April); (c–e) monsoon season (May–October);
(f,h) Transition 2 (November); and (i–k) winter season (December–March).

During the Transition 1 period, the SM anomalies become positive, starting from the eastern and
southern part of the TP, especially for 2009 (Figure 9a). While, for 2010, the positive anomalies can
also be seen from marginal areas of the TP (Figure 9b). This positive anomaly, perhaps, corresponds
to the wetter summer monsoon in 2010 than in 2009, as indicated by the Indian monsoon index [70].
The positive anomalies spread over the whole TP during the monsoon season (Figure 9c–e) for the
blending period between 1 May 2008 and 31 October 2010.

After that, the TP starts the drying process (with negative SM anomalies) throughout the transition
two period and the winter period. From the drying pattern during the transition two period in 2008
and 2009, it seems the drying starts from the northern and southern TP, and then to the central TP
(Figure 9f,g). While, for 2010, the drying is much stronger over the eastern TP than other regions
(Figure 9h). In general, the drying in 2010 is more substantial than that in 2008 and 2009, which can be
seen from Figure 9i–k as well. It is noticed that the SM over the central TP (ca. 31˝N, 90˝E) in 2008
and 2009 are not decreasing during the winter period. The SM anomalies over the central TP are close
to zero or even positive (Figure 9i–k). This SM anomaly may contribute to the recently-identified
increasing trend of SM over the central TP [71,72]. While, in 2010, such a zone of positive anomalies
was pushed from the central TP to the northwestern TP.
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3.5. Inter-Comparison

In this section, the blended SM was compared with different SM products for the period between
1 January 2010 and 31 October 2010, against with the in situ measurements over Tibet-Obs networks
(Naqu, Maqu, Ali, and Shiquanhe). The SM products include AMSRE, ASCAT, SMOS ascending
and descending data, GLDAS, ERA-Interim, and their corresponding scaled SM data. Additionally,
the equal weighting average of multisource original SM data and their scaled SM data were also
inter-compared in Figure 10.Remote Sens. 2016, 8, 268 15 of 22 
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Figure 10. Taylor diagram illustrating the statistics of the inter-comparison between the in situ
measurement and the 13 sets of different satellite SM products, over (a) Naqu; (b) Maqu; (c) Ali;
and (d) Shiquanhe. The original SM data were represented by the blue markers; the scaled and equal
weighting average of the SM datasets were represented by the red markers; the blended SM was
represented by the green marker. The original SM data were symbolled with the bold BCDEFG, while
the scaled SM were with the italic bold BCDEFG.

Without being scaled to the climatology constrained by in situ data, the AMSRE and ASCAT SM
data (F and G in Figure 10) have larger Stdevs (standard deviation) than the measurements. This larger
Stdevs indicates that their variability is greater than that of the in situ measurements. After scaling,
the variation range of both scaled AMSRE and ASCAT data (F and G in Figure 10) are brought closer
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to that of in situ observation. For example, at Naqu network, the Stdevs of F and G are 0.084 and
0.092 cm3¨ cm´3, and after scaling, the Stdevs of F and G are 0.056 and 0.053 cm3¨ cm´3, which are
much closer to the Stdev of the in situ data (0.024 cm3¨ cm´3). Such an effect of scaling can also be seen
in Figure 5 at the plateau scale.

From Figure 10a–d, one can also see that the scaled ASCAT (G) is much closer to the blended
SM data (A) than the scaled AMSRE data (F). This closeness shows that the scaled ASCAT SM data
accounts for a bigger weight than the scaled AMSRE data in the blended SM. It is to be noted that
for the Ali and Shiquanhe networks over arid regions, both the original and scaled AMSRE and
ASCAT SM data cannot capture the in situ measured SM dynamics. All four points are on the lines of
correlation coefficient being close to zero or being negative. On the contrary, the scaled SMOS ASC and
DEC SM data (C and D in Figure 10) can capture quite well the SM dynamics over Ali and Shiquanhe
networks, and perform similarly as the blended SM does. Across the TP, the scaled SMOS SM data
perform better under arid conditions (C and D in Figure 10c,d) than under semi-arid and sub-humid
conditions (C and D in Figure 10a,b).

At the Maqu network, under the sub-humid environment, the blended SM shows a match with
the in situ data concerning the variability, but underestimates the observation, especially during the
monsoon period (time series resulst not shown). On the contrary, the original ERA-Interim data
overestimates the observation during the winter period and underestimates it during the monsoon
period, which may be induced by the treatment of freezing-thawing process in the land surface scheme
used [12,73,74]. The original GLDAS data underestimates the observation almost throughout the whole
year, except for during January and December. This underestimation can be seen from B (original
GLADA) and E (original ERA-Interim) in Figure 10b, where the Stdevs of both B and E are much
smaller than the in situ measurement. At the Naqu network (Figure 10a), other than the original
GLDAS (B) and ERA-Interim (E) data, most of SM data have much larger Stdevs than the in situ data.
Over the arid regions, at the Ali and Shiquanhe networks (Figure 10c,d), the blended SM (A) keeps
relatively stable in a range of 0.05–0.2 m3¨m´3.

The equal weighting average of multisource original SM data (H in Figure 10) was underestimating
in situ observations in the Maqu network while overestimating in other networks. The equal weighting
average of scaled SM data (I in Figure 10) was not performing similarly with the blended SM (A)
at sub-humid and semi-arid networks (Figure 10a,b), but at arid networks over Ali and Shiquanhe
(Figure 10c,d). The performance of equal weighting averages indicates that the least square weighting
approach deployed in this study (see Section 2) is necessary for the central and eastern TP (e.g., cold
sub-humid and semi-arid regions), while not necessary for the western TP (e.g., cold arid regions).

4. Conclusions

4.1. Controlling Factors for SM Blending over TP

The analysis in the previous section shows that the proposed scaling and blending approach
has the promising potential of utilizing sparse local in situ networks (Figure 1a) for generating a
consistently-blended satellite SM product over TP. The blended SM over TP replicates the SM dynamics
across different climatic zones, from sub-humid regions to semi-arid and arid regions. Its performance
is, however, determined by three major factors: in situ measurements, satellite observations, and the
classification of climatic zones.

The model simulated SM product will affect the blended SM result. However, if the model
simulated SM results are not constrained by the in situ data climatology, the blended SM data will
have different climatology when different models used, which cannot capture the in situ observed
SM dynamics (Figure 1b). This highlights, on one hand, the use of in situ data, constraining
the model-simulated SM results, can partially ensure that the in situ measured climatology is
used as the base for scaling; on the other hand, the further development of model physics
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(e.g., freezing-thawing process considering vapor transport) [12,75–77] should be investigated towards
a consistent representation of the physical processes in LSMs over the TP.

On the other hand, the quality of satellite data plays another crucial role in producing a sound,
blended SM product. When the satellite SM data shows certain correlation with the in situ data, the
blended SM can correct its systematic bias as showed in Figure 5. The Figure 10c,d show that the lack
of good quality satellite data leads to a poor performance of the blended SM product, even though the
blended SM product has the improved statistic scores compared to that of the original satellite data.

By the nature of the scaling and blending strategy (Section 2.2), it is anticipated that different
climate classification schemes will result in different SM products [78]. The climate classification used
in this study is based on the aridity index [59], which is expressed as a generalized expression
of precipitation, temperature, and potential evapotranspiration (PET), to quantify precipitation
availability over atmospheric water demand. It is also expected that different calculation schemes
for the aridity index will alter the blended SM product [79,80]. However, a detailed examination of
the effect of various schemes of climate classification and aridity index on the blended SM product is
beyond the objectives of this paper. As discussed, this study tries to demonstrate if we can generate a
consistently-blended satellite SM data, constrained by the observed in situ climatology.

4.2. Brief Summary

In this study, the in situ SM measurement from the Tibet-Obs is used to scale the model-simulated
SM climatology of ERA-Interim. With the utilization of the FAO aridity index map, the TP is classified
into sub-humid, semi-arid, and arid climatic zones. There are three regional-scale networks operated
accordingly in these three classified climatic zones. It is assumed that SM climatology measured by
each network is representative for the SM climatology of the climatic zone, where this network is
located. As such, the in situ SM climatology over the TP is produced to scale ERA-Interim SM data.
Subsequently, the climatology-scaled ERA-Interim SM product is deployed as the reference to scale
satellite observed SM products. By using the TC and the least squares method, the scaled AMSRE,
ASCAT, and ERA-Interim SM products are blended to generate a consistent set of SM products for the
whole TP (Figure 6).

The results show that the scaling and blending strategy help constraining the exaggerated
variation of satellite SM over the TP, especially the unrealistically high SM content over the western TP.
The unrealistic high SM over the west TP persists throughout the whole year and can be even higher
in the winter period than in monsoon period. This is mainly due to the overestimation of AMSRE data
over semi-arid and arid regions in the winter period as reported in [11,12]. It is, however, to be noted
that the availability of AMSRE data over the plateau is little, especially during winter periods. After
implementing the scaling and the blending steps (Figure 3), the overestimation was eliminated in the
blended SM products (Figure 5), which shows clear seasonal variations and has a good match with the
in situ measurements (Figure 10).

The inter-comparison results indicated that an equal weighting average of multi-sources of scaled
SM data can perform similarly as the blended SM data over the cold arid regions, but not over the cold
sub-humid areas on the TP (see I in Figure 10). The simple average of multi-sources of original SM
data cannot capture the in situ SM dynamics as the blended SM does (see H in Figure 10). The results
suggest that the equal weighting would penalize the contribution from those scaled SM datasets with
relative lower noise while falsely enlarging the contribution from those SM datasets with greater noise.
Such false enlargement of noise SM data is especially the case for the cold sub-humid areas on the TP
(see I and A in Figure 10a).

4.3. Recommendations

As summarized above, this study analyzes the inconsistency among different SM products over
the TP and highlights the challenges in generating a consistent SM product over the TP. Such a
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challenge needs a deeper investigation into the data generation algorithm of each data product (e.g.,
satellite, in situ, or reanalysis).

From the satellite product viewpoint, these challenges spread from prelaunch calibration,
post-launch calibration, on-board calibration, on-ground calibration, and inter-sensor calibration
to retrieval algorithms [13,81]. From the in situ measurement perspective, the challenges exist and
are not limited to the harmonization of measurement techniques, implementation of in situ networks,
sensor calibration, quality control, characterization of representativeness, long-term stability, and
reference procedures [13,82–85]. For the reanalysis products, apart from getting benefit from the
improvement of the observation (e.g., both satellite and in situ) in dealing with the challenges as
mentioned, the development of model physics and data assimilation schemes will undoubtedly
contribute to producing a more consistent SM product [12,86–88]. Fortunately, the urgent need for such
efforts has been given high and continuous attentions by the scientific and the end-user communities
(e.g., space agencies, climate working groups, insurance companies, local governments, etc.). For
example, the recently accomplished FP7 project CORE-CLIMAX (http://www.coreclimax.eu/) has
made efforts in coordinating earth observation data validation (both satellite and in situ) for reanalysis
for climate services.

Last, but not least, the in situ SM and soil temperature measurements are valuable references
in this particular environment and shall be maintained and updated whenever possible. The
network, Tibet-Obs, used in this study and the one established by Yang et al. [21] possess more than
100 stations on the TP. There are many more SM stations installed by the Third Pole Environment
in situ component [22]. These networks provide a representative coverage of the different climate and
land surface hydro-meteorological conditions over the TP. The obtained observation data can help to
ensure the consistency in classifying the regional climatic conditions and for the purpose of validating
or assessing coarse resolution satellite and model-simulated SM products.
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