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Abstract: Thermal remote sensing of soil moisture in vineyards is a challenge. The  

grass-covered soil, in addition to a standing grape canopy, create complex patterns of 

heating and cooling and increase the surface temperature variability between vine rows. In 

this study, we evaluate the strength of relationships between soil moisture, mechanical 

resistance and thermal inertia calculated from the drop of surface temperature during a clear 

sky night over a vineyard in the Niagara region. We utilized data from two sensors, an airborne 
thermal camera (height ≈ 500 m a.g.l.) and a handheld thermal gun (height ≈ 1 m a.g.l.), to 

explore the effects of different field of views and the high inter-row temperature 

variability. Spatial patterns of soil moisture correlated more with estimated thermal inertia 

than with surface temperature recorded at sunrise or sunset. Despite the coarse resolution 

of airborne thermal inertia images, it performed better than estimates from the handheld 

thermal gun. Between-row variation was further analyzed using a linear mixed-effects 

model. Despite the limited spatial variability of soil properties within a single vineyard, the 

magnitudes of the model coefficients for soil moisture and mechanical resistance are 

encouraging indicators of the utility of thermal inertia in vineyard management. 
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1. Introduction 

The quality and quantity of grapevine production is controlled by many factors, such as soil 

characteristics, climate, management system and the frequency of exposure to pests and diseases. 

Recent studies [1,2] show that productivity within a single vineyard could vary as much as eight-fold. 

Precision viticulture takes advantage of remote sensing and geomatics to model this variation and 

estimate yield quality and quantity at the vineyard level [3]. 

Soil particularly is an important factor in determining the productivity of vineyards. Observations 

show that high and low production regions within a vineyard tend to be stable over a longer time [4], 

and these patterns relate to soil spatial distribution, micro-climate patterns and topography variations [5]. 

Identifying zones with similar soil type helps in the planning of a vineyard, by selecting the suitable 

grape varieties to soil type and allocating vineyards with homogenous soil to allow easy management [6]. 

In addition, soil information explains the interplay between year-to-year rainfall and production. 

Therefore, “considerable effort in precision viticulture research aims at measuring and mapping spatial 

variability in soils at the single vineyard scale” [7]. 

Remote sensing provides high quality spatial data for vineyard management. However, it is not 

applied widely in viticulture [7]. Optical remote sensing is used to sense changes in properties of the 

few millimeters of the soil surface [8]. Alternatively, researchers apply non-contact electromagnetic 

survey to map soil variability within a vineyard [4,9]. Measured apparent electric conductivity is used 

as a proxy for soil moisture content, soil texture and salinity of the soil solution [2,10]. 

The utility of thermal remote sensing in detecting energy and moisture fluxes at the land surface is 

well documented [11–15]. For the purpose of monitoring soil moisture content, the common scheme is 

to decouple the surface thermal properties from ambient temperature (daily temperature cycle) by 

calculating the thermal inertia (TI), which is a physical property that characterizes the surface 

resistance to ambient temperature change [16–19]. Various studies report a strong relation between soil 

moisture content and TI [17,20,21]. However, the thermal inertia method is mostly conducted over 

bare and dry ground, to avoid complexity added by variations in evapotranspiration patterns [22]. 

Nevertheless, recent studies [23,24] showed that soil moisture could be estimated over partially 

vegetated soil if a linear relation between ground flux and surface temperature is maintained. 

Verhoef [17] calculated TI using the surface temperature drop, during nights with clear sky and still 

conditions, to avoid the complex surface energy exchange that occurs during the day. The author found 

a significant relation between TI calculated over bare soil and volumetric soil moisture content. 

However, remote thermal inertia techniques were not applied to vineyards. The previous method [17] 

has a potential in vineyard application, because it avoids the complex heating and evapotranspiration 

during the day time. However, a careful test of the method is needed to establish the validity of this 

method over vegetated surfaces [25,26]. 

In this study, we evaluate a technique for estimating thermal inertia using airborne thermal images 

acquired over a grass covered soil in a vineyard in the Niagara Region, Ontario, Canada. The technique 
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is based on the drop of surface temperature during the night and has not been tested over grass covered 

soil. We further explore the functional relationships between estimated thermal inertia in the presence 

of grass sod (we will refer to it subsequently as TIc) and subsurface soil properties (moisture and 

mechanical resistance). Finally, we provide suggestions for improving soil moisture retrieval using the 

nocturnal thermal inertia method. 

2. Background 

2.1. Thermal Inertia: Theoretical Background  

TI [J·m−2·K−1·s−1/2] of a bare soil is a physical property that describes the response of soil to an 

ambient temperature change: ܶܫ = ඥ(1) ݇ܿߩ 

where ρ is the soil density [kg·m−3], c is soil specific heat capacity [J·kg−1·K−1] and k is soil thermal 

conductivity [W·m−1·K−1]. TI can be calculated from the night cooling of land surface assuming a 

constant rate of surface cooling [17,27,28]: ܶܫ = 2|ܴതതതത|√ߨ√ܶ߂ݐ߂  (2)

where |ܴതതതത| [Wm−2] is the average net radiation during the night, ΔT [K] is the night temperature drop 

and Δt [s] is the cooling period in seconds. The common method for calculating thermal inertia 

depends on the periodic daily heating [29]; in contrast, Equation (2) depends on the non-periodic 

cooling of the surface under still and clear sky conditions. Theoretically, if one estimated thermal 

inertia over the same area using both methods, the results should be similar. However, the absence of 

turbulent heat fluxes (i.e., sensible heat flux and latent heat) during the night simplify the relation 

between surface temperature and ground heat flux, which cannot be guaranteed during the day [30]. 

Murray and Verhoef [25] proposed that increasing soil saturation will result in a logistic increase of 

TI. The authors based their theoretical relation on a model of thermal conductivity as a function of soil 

saturation by Johansen [31]: ܶܫ = ௦ܫሺܶ݁ܭ − ௗሻܫܶ + ௗ (3)ܫܶ

where the subscripts, s and d, denote the saturated and air-dry conditions, respectively, and ݁ܭ is a 

modified Kersten number, given by: ݁ܭ = ݔ݁ ቊߛ ቈ1 − ߠߠ௦൨ఊିఋቋ (4)

where ߛ is a soil texture-dependent parameter, ߜ is a shape parameter and θ/θs [-] is the soil saturation 

ratio. Estimating soil moisture content can be done by inverting Equation (3) with the Kersten number, 

approximated by [21]: ݁ܭ = ܫܶ − ௦ܫௗܶܫܶ − ௗ (5)ܫܶ
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2.2. Thermal Inertia Modification by a Vegetation Cover 

The brightness temperature, measured using a thermal infrared sensor over a grass-covered soil, is 

modeled as the summation of (a) the energy of the soil surface emission, which passes through the 

plant canopy, (b) the energy of the plant canopy emission and (c) the reflected energy of plant canopy 

emission by the soil surface below it, which passes through the canopy [32]: ܶ = .ߝ .ߞ ௦ܶ + ሺ1 − ߱ሻ. ሺ1 − .ሻߞ ܶ + ሺ1 − .ሻߝ ሺ1 − ߱ሻ. ሺ1 − .ሻߞ ܶ  (6)

where Tb [k] is the brightness temperature measured by the thermal infrared (TIR) sensor, ௦ܶ	[K] is 

soil surface temperature, ܶ [K] is the plant canopy temperature, ε [-] is soil surface emissivity, ω [-] is 

the single scattering albedo and ζ [-] is the transmissivity of the vegetation canopy. The grass canopy 

(leaves) temperature differs from ambient air temperature by the net radiation at both the surface of the 

leaf and by the temperature diffusive resistance, which is a function of leaf size and wind speed [33]. 

The amount of heat storage, due to photosynthesis, is negligible over a day period. 

If remote sensing measurements are taken on a still clear night over a grass-covered soil, it can be 

assumed that the grass temperature is coupled to the ambient temperature. This will result in a linear 

reduction of the soil surface temperature, as determined by the transmissivity of the grass canopy and 

the sensor viewing angle (Equation (6)). Therefore, we postulate that using Equation (2) and surface 

temperature measured over a grass covered soil will result in an estimated TIc, which is proportional to 

the true TI of the soil below the grass. Although Equation (2) has not been applied to a grass-covered 

surface before, a previous field study by Kim and England [34] reports a significant relation between 

TI calculated using passive microwave and soil moisture content over a grass covered area. 

3. Methods 

3.1. Study Area  

An aerial survey was conducted over a block of grapes (Vitis vinifera var. Merlot) in a commercial 

vineyard near Niagara-on-the-Lake, Ontario, Canada. The block was located near the shoreline of Lake 

Ontario, between latitudes 43°14′50.18″N and 43°14′43.34″N and longitudes 79°8′42.54″W and 

79°8′35.07″ W. The vineyard was established on the Winona soil series, which is characterized by fine 

sandy loam texture originating from deltaic sand deposits over clay [35]. The spacing between 

vineyard rows was 2.44 m, and the rows were oriented in a north-south direction. The vineyard floor 

(inter-row) between rows was vegetated with a mixed grass sod, and the vines within the rows were 

spaced at 1.22 m intervals. 

3.2. Fieldwork and Data Collection  

Twenty-five plots (4 m2 each) were selected, based on the variations seen in the grape canopy 

during the previous growing season (Figure 1). The inter-row grass cover was cut to less than 1 cm 

above the ground, using a commercial grass trimmer, to measure soil moisture using the theta probe 

and soil electrical conductivity using an electromagnetic probe (EM-38); refer to Table 1 for a 

summary of the field sampling scheme. The average apparent electrical conductivity at the center of 

each trimmed plot was measured using an EM-38 probe (Geonics Ltd.). Four EM-38 measurements 



Remote Sens. 2013, 5 3733 

 

were taken at the vertical and horizontal orientations of the probe coils, as well as parallel and 

perpendicular to the vineyard rows around sunset. The measurements were corrected to 25 °C [36]. 

Volumetric soil moisture content of the upper 15 cm was measured using a handheld Theta probe 

ML2x (Delta-T Devices, Ltd.). The measurements were taken after the sunset of 17 September 2007, 

with three replicates for each plot, as indicated in Figure 1. Soil mechanical resistance was measured 

using a Rimik CP20 cone penetrometer (Rimik Agricultural Electronics, Ltd.). The penetrometer 

measurements were taken after acquiring the sunrise aerial images following the same three replicates 

per plot scheme. Soil surface temperature was measured using a Raytek Raynger ST2 thermal infrared 

gun (Fluke, Inc.) with ±1% accuracy. The IR instrument was pointed with a 45° angle at the trimmed 

surface at a distance of one meter, which results in a ground footprint of approximately 0.25 m2. Three 

replicates were measured at the far left, the right side and middle portion of the each plot (Figure 1). 

Soil emissivity was set at a value of 1 (perfect blackbody); subsequently, an emissivity correction was 

applied; refer to Section 3.3. Surface radiation balance were measured using a CNR1 four-component 

net-radiometer (Kipp & Zonen Ltd.), which was connected to a 21× data logger (Campbell 

Scientific Ltd.). 

Figure 1. Study area, locations of sampling plots and an example of a sampling plot. The 

red arrow indicates the north direction, while the circles mark the three replicate locations. 

 

Table 1. Field measurements. 

Measurement  Replicates  Proxy for 

Bulk electrical conductivity  

(by EM38) 

Horizontal mode perpendicular to vine rows  

Horizontal mode parallel to vine rows  

Vertical mode perpendicular to vine rows 

Vertical mode parallel to vine rows  

Clay mineralogy and  

soil solution salinity   

given dry conditions  

Mechanical resistance  

(by soil penetrometer) 

Right slice of the vine row 

Middle of vine row 

Left slice of the vine row   

Soil bulk density,  

soil compaction  

and stoniness 
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Table 1. Cont. 

Measurement  Replicates  Proxy for 

Soil dielectric constant  

(by Theta Probe) 

Same as mechanical resistance sampling Soil volumetric moisture 

content 

TIR emissions 

(by thermal infrared gun) 

Same as mechanical resistance sampling Surface temperature  

A plastic mast was fixed between row seven and eight from the eastern edge of the plot, to mount 

the net-radiometer (Figure 1). The surface grass around the mast was trimmed to obtain similar 

conditions to sampling plots. Hourly measurements of air temperature and relative humidity were 

obtained from the National Climate Data Center (NCDC) archive for the Niagara district weather 

station (Figure 2, WMO ID USAF:712625). 

Figure 2. Meteorological variables during the study period, Niagara district weather 

station. Vertical lines indicate the time of flights and field measurements. The 

meteorological variables are an approximation of the weather conditions at the study area. 

 
3.3. Aerial Mapping of Thermal Inertia 

Thermal images were recorded using a thermal camera FLIR model ThermaCAM SC2000  

(FLIR Ltd.). The thermal camera was pointed by one of the aircraft crew to the nadir view, and images 

were recorded through an opening in a modified aircraft door. The image recording was set to the 

automatic collection mode with a 1-s interval. Two flight passes were conducted over the same merlot 

plot around sunset and sunrise, to measure the drop in temperature during the clear sky night of 

17 September 2007 (Figure 2). Organizing a flight around sunset was less limited than the dawn flight, 

because of Canadian regulations restricting night flights of light aircrafts. Therefore, the sunrise flight 

was delayed, for half an hour, to benefit from the increased visibility during the civil twilight period. 

We assumed that this delay did not influence our results, because sun rays at extremely low angles 

were restricted by the vertical vine canopy ([37,38]; refer to Table 2 for details of the flights).  
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Table 2. Flight schedules and weather conditions. 

Flight Time Estimated Surface 

Emissivity 

Sky 

Temperature 

[°C] 

Relative 

Humidity 

[%] 

Air 

Temperature 

[°C] 

Flight Height 

[m AGL] 

6:50 p.m.–7:03 p.m. 
17 September 2007 

0.94 −1.4 40.5 20.6 ≈490 

7:11 a.m.–7:33 a.m. 
September 18, 2007 

0.94 −3.4 78.8 13.1 ≈490 

3.4. Calculating Thermal Inertia 

Thermal infrared gun measurements were corrected for land surface emissivity and reflection of sky 

temperature. The initial emissivity value for TIR gun measurements was one. After, we corrected the 

measurements by assigning an emissivity value of 0.94 [39] to represent a mix of soil and vegetation 

tissues. Sky temperature was derived from the incoming long-wave radiation (5 to 50 μm) measured 

by the net-radiometer, which had a wider wavelength window than the TIR sensors (8 to 14 μm). We 

assumed that the incoming long wave radiation was homogeneous over the entire field. Atmospheric 

correction was not considered for the TIR gun, because of the lack of climatic variables at the site. 

Using variables from another station could generate a significant bias, because of the different surface 

cover type. An atmospheric correction was applied to the thermal infrared images using the built-in  

radio-transfer model in the FLIR analysis software, Quick Report v2.1 (FLIR, Ltd.); details of the 

atmospheric model were given in [40]. The relative humidity and temperature of an air column with a 

height of 493 m a.g.l. (flight height) were approximated from the weather station data (Table 2). The 

approximation was based on the relative stability of the air column during still nights in contrary to a 

thick daytime mixing layer. However, one should notice that these conditions could create an inversion, 

which will offset the weather station measurements (colder) from the atmospheric profile average.  

A value of 0.94 was assigned to surface emissivity similar to that used to correct the TIR 

measurements. The vineyard plot was captured by two thermal images at both flight times (sunset and 

sunrise). A linear regression model was used to match the temperature of one scene to the other. The 

model was based on 100 randomly sampled clusters with 5 replicates (total of 500) in the overlap 

region between the two scenes. The two images were then merged into a single mosaic. Subsequently, 

geographic coordinates were assigned to the mosaic image using the coordinates of the plot corners. 

The locations of the 25 plots were identified on the sunset and sunrise thermal image mosaics using 

the center geographic coordinates of each plot. The average temperatures of matched pixels to field 

plots locations and the four connected neighbors for each pixel were recorded (i.e., upper, lower, right 

and left neighbor pixels). We decided to consider the average of five pixels (≈2 m2 on ground) instead 

of using the center value, only because of the susceptibility of single pixels (0.6 × 0.6 m) to errors in 

image registration and plot coordinates. In addition, averaging land surface temperature over a number 

of pixels limited the variability of surface temperature caused by local changes in the structure of grass 

canopy. In a few cases, the center of the plot was found to be located on top of the grape canopy, as 

indicated by the low temperature associated with the dense plant leaves. In these cases, the sample was 

relocated to the nearest between-row pixel. 
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TIc was calculated from both the TIR gun measurements (field TIc) and homogenized aerial thermal 

images (remotely-sensed TIc) using Equation (2) at each of the 25 plot locations. ΔT was calculated as 

the difference between land surface temperature (LST) at sunset and sunrise, while Δt was calculated 

as the time difference (in s) between sunset and sunrise. The net radiation during night (constant 

cooling in Wm−2) was calculated as the average of net radiation at sunset and sunrise. The net radiation 

at sunrise or sunset was given by an arithmetic sum of incoming and outgoing shortwave and incoming 

and outgoing longwave radiation. In order to account for local variation in net radiation, radiation 

balance components, except outgoing long wave, were estimated from the net radiometer 

measurements. The outgoing longwave radiation was estimated locally from the measured LST using 

the thermal gun or thermal images. 

3.5. Statistical Analysis 

The aim of the statistical analyses was to explore empirical relationships between TIc variables as 

our response and soil properties (i.e., moisture content, mechanical resistance and electrical 

conductivity) as predictors. Theta Probe measurements were used as a proxy for soil moisture content, 

while the horizontal parallel mode of EM38 measurements were interpreted as proxies of soil salinity 

and clay content, given the dry conditions. We selected the horizontal mode of the EM38 

measurements to increase the sensitivity to the uppermost layer of the soil and limited our analysis to 

the parallel mode to minimize interference with the vines’ metal wires [41]. The averages of vertical 

profiles of soil mechanical resistance were calculated at each field plot location. In addition, a binary 

variable was calculated to indicate the existence of missing mechanical resistance measurements at 

each profile. The lack of such measurements at a location was interpreted as the presence of 

consolidated substrate or the abundance of rock fragments. 

Pearson’s correlation coefficients were calculated between all available quantitative variables, to 

assess the strength of linear associations between soil characteristics and TIc. In the case of the 

mechanical resistance, the area under the receiver operating characteristics curve (AUROC) was used 

instead, which was a value between 0.5 (no separation) and 1 (perfect separation), which measured a 

quantitative variable’s ability to discriminate the two classes represented by a binary variable [42]. In 

addition, we tested the statistical significance of correlations between TIc calculated from the thermal 

gun and from aerial imagery at the α = 0.10 level of significance. This elevated significance level was 

chosen to reduce the Type II error rate in this exploratory analysis with a small sample size [43]. 

Multiple linear regression models were used to analyze the relationship between the response and 

Theta Probe, EM38, mechanical resistance (average) and mechanical-resistance (binary) as TIc 

candidate predictor variables. We developed separate models for TIc estimated over grass canopy from 

aerial imagery and for TIc using thermal infrared gun over trimmed field plots. We started with all the 

explanatory variables and, then, performed a backward elimination based on the Akaike Information 

Criterion (AIC). The AIC was based on a model’s log-likelihood. It penalized larger models in order to 

give preference to smaller models that fit the data almost as well [44]. 

A linear mixed-effects model was built to reproduce the regression analysis of field measurements 

at the level of the individual observations, which were grouped at the plot level. Compared to ordinary 

linear regression models, linear mixed-effects models account for grouping (e.g., repeated measurements 
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or spatial clustering) by introducing a so-called random-effect term that captures group-specific 

random variation (e.g., [44]). TIc (field) calculated from TIR gun measurements was selected as the 

response variable, and Theta Probe and binary mechanical resistance were chosen as the fixed effects, 

while the grouping based on the replicates’ locations between vine rows (east, middle, west) was 

included as a random-effect term. Fixed-effects variables were selected manually based on the AIC. 

All statistical analyses were performed using the statistical software, R [45], and its package ‘nlme’ for 

the mixed-effects model [46]. 

4. Results 

4.1. Aerial Thermal Imagery 

In the radiometrically corrected and mosaicked thermal images root-mean-square-error (RMSE of 

georeferencing: 0.9 pixel, 0.4 m), the difference in surface temperature patterns between low 

temperature grape rows and grass covered ground is clearly distinct as vertical strips (Figure 3). In 

addition, thermal anomalies, related to soil and vegetation, are observed across the two scenes. For 

example, an anomaly is visible in the lower half of both scenes; this anomaly is characterized by being 

warmer (colder) during sunset (sunrise), which indicates a region with lower TIc. 

Figure 3. Thermal image mosaics at local sunset and sunrise. Images are scaled differently 

to enhance the visualization. 

 
Remarkably, there is a tonal difference at the edges of the individual images, particularly at sunrise. 

The residuals of a linear regression model that relates the two images in each mosaic (Figure 4) are 

small in absolute terms (standard deviation of 0.137 K at sunset, 0.142 K at sunrise), but relatively 

large compared to the small variation in surface temperatures. The difference between the two images 

is partly attributed to geo-referencing uncertainties and to the difference in LST, based on the viewing 

angle. Nevertheless, the two mosaics capture the drop of surface temperature compared to the in situ 

net radiometer measurements (Figure 5). 
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Figure 4. Scatterplots and linear regression lines of 100 random samples in the overlap 

region of the thermal image pairs, which were used to produce the sunset and sunrise 

thermal image mosaics. 

 

Figure 5. The drop of surface temperature as it is captured using aerial thermal images, the 

thermal infrared (TIR) gun measurements and continuous land surface temperature (LST) 

measurements from the net radiometer. Triangles and square represent the surface 

temperature averaged over 25 locations at sunset and sunrise. 

.  

4.2. Soil Physical Properties 

Remote sensing and field measurements are summarized in Table 3. We applied a linear correction 

term to the TIR gun measurements at sunset to account for a cooling drift observed during data 

collection. The correction term was estimated by repeating the measurement of the first plot at the end 

of the data collection session and assuming a linear cooling of the soil during the measurement period. 

There was no observed trend in TIR gun measurements at sunrise, and therefore, no correction was 

applied. Field measurements shows a narrow range of surface temperatures at sunrise and sunset with 

an approximate 4 °C thermal offset between the two.  

The average remotely-sensed TIc is 3,361 J·m−2·K−1·s−1/2 and 3,410 J·m−2K−1·s−1/2 for field TIc, 

which is relatively high compared to bare soil values (700–1,200 J·m−2·K−1·s−1/2) [17]. Theta Probe 
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measurements of soil moisture indicate a dry soil with volumetric moisture content ranging from  

10–19%. The mechanical penetration resistance is highly variable, likely due to the abundance of 

subsurface rock fragments and compacted soil layers in the studied field. 

Table 3. Descriptive summary of remotely-sensed and in situ measurements (TI, thermal inertia.) 

Variable Minimum Lower 

Quartile 

Median Mean Upper 

Quartile 

Maximum 

Apparent Electrical Conductivity 

Horizontal-Parallel Mode [mS/m] 
18.6 30.7 37.2 40.7 47.8 68.6 

Volumetric soil moisture  

(Theta Probe) [%] 
9.7 12.7 15 14.5 16.3 19.4 

Mechanical Resistance (average) 

[kPa] 
1,480 2,056 2,368 2,399 2,655 3,306 

LST-sunset (field) [°C] 14.2 14.5 14.6 14.6 14.8 15 

LST-sunrise (field) [°C] 9.6 10.1 10.2 10.2 10.4 10.7 

Lst-sunset (remote) [°C] 15.2 15.5 15.5 15.5 15.6 15.9 

Lst-sunrise (remote) [°C] 10.9 11.1 11.2 11.2 11.3 11.5 

TIc (field) 

[J·m−2·K−1·s−1/2] 
2,894 3,262 3,357 3,410 3,609 3,872 

TIc (remote) 

[J·m−2·K−1·s−1/2] 
3,068 3,287 3,348 3,361 3,430 3,581 

4.3. Relationships between Field Measurements and Remote Sensing Imagery 

We will first explore the correlations between field/remotely-sensed surface temperature and 

thermal inertia before we present empirical models of TIc, as explained by measured soil properties. In 

this context, we expect that the effect of grass cover is more pronounced in the estimates of  

remotely-sensed LST and TIc compared to field LST and TIc. Consequently, remotely-sensed variables 

are based on an average of five pixels between the rows (at each plot location), and the grass covered 

pixels are dominant. Field and remotely-sensed TIc have a moderate positive correlation of 0.37  

(p-value of 0.065; Table 4), similar to the correlation between field and remotely-sensed LST at sunset 

(0.39, p-value of 0.053). At sunrise, there is no correlation of remote and field LST (0.08, p-value of 

0.721). The low correlation indicates non-proportional variations between remotely-sensed and field 

measurements over the 25 locations, which is likely due to collecting the measurements over a longer 

time (not in an instantaneous fashion), the limited field of view for ground measurements and the 

nonstandard view angle of the non-contact thermometer. 

Table 4. Pearson’s correlation between field and remote measurements of land surface 

temperature and thermal inertia (TIc). 

Variables Correlation Coefficient (p-value) 

LST (remote), LST (field) at local sunrise 0.075 (p = 0.721) 

LST (remote) vs. LST (field) at local sunset 0.392 (p = 0.053) 

TIc (remote) vs. TIc (field) 0.374 (p = 0.065) 
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The correlation analyses show a weak to near-zero correlation of TIc and surface temperature 

variables with the soil-related predictor variables (Table 5). Correlation is strongest between soil 

moisture and remotely-sensed TIc, as well as field TIc (0.50 and 0.39, respectively). Soil moisture 

content also correlates positively (negatively) and non-significantly with surface temperature at sunrise 

(sunset). These relations clearly indicate the sensitivity of TIc to moisture content, even under a grass 

canopy, compared to LST at sunset or sunrise. There is also some evidence of a negative correlation 

of TIc with EM38 and possibly a positive, but weak and non-significant, correlation with 

mechanical resistance. 

Table 5. Pearson’s correlations of thermal inertia and surface temperatures with the 

predictor variables. The area under the receiver operating characteristics curve (AUROC) 

is reported for the binary mechanical resistance. 

 
EM38 Horizontal 

Parallel 

Theta 

Probe 

Mechanical 

Resistance Average 

Mechanical Resistance 

(0/1) 

TIc (field) −0.057 0.392 0.108 0.699 

TIc (remote) −0.351 0.500 0.167 0.706 

LST-sunset (field) 0.199 −0.274 −0.326 0.688 

LST-sunrise (field) 0.085 0.316 −0.066 0.614 

Lst-sunset (remote) 0.128 −0.331 −0.195 0.772 

Lst-sunrise (remote) −0.267 0.249 −0.001 0.522 

4.4. Regression Relationships between Thermal Inertia and Soil Properties 

All three linear models relating TIc measurements to soil properties show remarkably similar 

structure and comparable coefficient estimates (Table 6). Locations with five percentage point higher 

soil moisture have an about 100 unit higher remotely-sensed TIc or a 150 unit higher field TIc (all  

p-values < 0.10) when accounting for the effects of the other variables included in the models. The 

mechanical resistance indicator variable is also included in all models; locations with the presence of 

consolidated or rock substrate are associated with an estimated ~80 unit higher remotely-sensed TIc or 

~140 unit higher field TIc, subject to substantial uncertainty (p-value < 0.10, only for the former). 

EM38 measurements are only selected into the model for remotely-sensed TIc, suggesting that 

locations with 20 m·S/m higher apparent electrical conductivity had an estimated ~40 unit lower TIc, 

although this effect is not significant. 

The models account for less than half of the variation in the response variables (R2 between 17% 

and 42% of total TIc variation). The largest coefficient of determination is achieved for  

remotely-sensed TIc, which can be attributed to the variance reduction by spatial aggregation (Table 3). 

This variance reduction may also explain the consistently smaller coefficient estimates in the model for  

remotely-sensed TIc. The results of the mixed-effects models (where the inter-row sampling position is 

selected as a random effect) suggest that there is a significant inter-row variability, as indicated by the 

pseudo R2 values. 
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Table 6. Summary of statistical models, including the coefficient estimates and their 

standard errors in square brackets; in parentheses, p-values for two-sided tests. Average 

mechanical resistance is not included in any of the models. 

Response 

Variable 

Intercept Theta 

Probe 

EM38 Mechanical 

Resistance (0/1) 

R2 

(adjusted R2) 

Residual Standard 

Deviation 

TIc (field) 2,863.72 34.57 

[17.59] 

(0.062) 

- 138.17 

[97.73] 

(0.171) 

0.224 

(0.153) 

227.2 

TIc 

(remote) 

3,118.101 

 

21.365 

[8.265]* 

(0.01)) 

−2.313 

[1.589] 

(0.160) 

81.965 

[45.721] 

(0.087) 

0.416 

(0.333) 

105.6 

TIc (field) 

In the mixed-

effects model 

2,950.321 

 

31.0470 

[11.385] 

(0.009) 

- 139.143 

[86.944] 

(0.116) 

0.167* 

0.624** 

287.9*** 

* Pseudo-R2 without random effects; **Pseudo-R2 with random effects; *** without random effects. 

5. Discussion 

5.1. Thermal Inertia and Soil Properties 

TIc values were found to be higher than the bare soil TI range. In Equation (2), small changes in 

surface temperature or net radiation resulted in substantial changes in calculated TI values. It is 

suggested that the observed TIc values were due to reduction in ΔT, which are more susceptible to 

error than net radiometer measurements. Lamb et al. [2] had shown that unless the pixel size was much 

smaller than the inter-row distance pixel, digital number values would always be a mix of grape 

canopy and the inter-row surface. In our study, the inter-row (2.4 m) was captured in four pixels, 

thanks to the sub-meter resolution (0.6 m). Hall et al. [7] indicated three categories of pixels, when 

pixel length was smaller than the inter-row distance: (a) vine only; (b) non-vine and (c) mixed pixels. 

Given that we selected the corresponding pixels to the sampling plots and their four neighbors, which 

translates to three pixels-wide (center pixel and the two neighbors), it is likely that the averaged 

remotely-sensed LST contained both non-vines and mixed pixels. The mixed pixels were influenced 

by sticking out branches of the vine rows. Unlike the grass leaves, grape canopy temperature was 

significantly decoupled from the soil surface temperature and could cause further reduction of 

estimated ΔT. Adding to that, the grass sod also modified the surface temperature, increased its buffer 

capacity and resisted change in surface temperature. 

Nevertheless, soil properties explained a substantial proportion of the variation of thermal inertia 

within a vineyard, both in the remotely-sensed and the field analysis (Figure 6). While the limited 

overall spatial variability of surface and substrate properties within a single vineyard had to be taken 

into consideration when interpreting coefficients of determination and hypothesis tests in this context, 

the estimated effect sizes for soil moisture content and mechanical resistance were encouraging 

indicators of the influence of these two variables on thermal inertia. Apparent electrical conductivity 

possibly showed too little variation in this study to provide results of practical relevance. 
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A significant linear relationship was found between TIc (field and remotely-sensed) and averaged 

soil moisture content and mechanical resistance. The narrow range of soil moisture content allowed us 

to approximate the relation using a linear relation, even though the theoretical model (Equations (3) 

and (4)) was characterized by a logarithmic increase over a wider soil moisture range [25]. 

Furthermore, the theoretical model was sensitive to soil texture (variable γ in Equation (4)). The sandy 

texture of the vineyard had increased the sensitivity of TIc at lower moisture content, which was 

consistent with the steep thermal inertia response to low soil moisture increase for coarse textured 

soils; Figure 1b in [25]. 

5.2. Advantages of Remotely-Sensed Thermal Inertia 

While remotely-sensed data evidently had a reduced spatial resolution compared to field 

measurements, this spatial aggregation also reduced the effects of small-scale variation on statistical 

results, while still providing data at a level of detail that was relevant to viticulture practice.  

Remotely-sensed TIc was more indicative of a spatial average of soil moisture and less susceptible to 

local variation, as indicated by the high statistical significance of Theta Probe regression coefficients 

compared to the case of field TIc. Similar observation of enhancing the soil moisture estimation by 

using aggregated thermal remote sensing data was noticed in a recent study by Minacapilli et al. [20]. 

Although the grass cover had been trimmed at each sampling spot, the average Theta Probe 

measurements at the trimmed plots were representative of the spatial average of soil moisture content 

over a larger radius than the trimmed plot area, because removing the grass was done on the day of 

aerial imaging. The short-term exposure was unlikely to influence the soil moisture content of the 

subsurface (≈15 cm) under a dry condition. The observation that remote measurements (500 m) were 

more correlated to soil moisture measurements than on ground electromagnetic probe (r values) was 

remarkable. A positive relation was also found with the binary indicator of soil mechanical resistance, 

although it was not significant. 

The vegetative canopy was found to have strong effects on remotely-sensed land surface 

temperature, as found by Kim and England [34]. For example, there was a noticeable difference 

between the two scenes in each image mosaic, as indicated by the random sample from the overlap 

region (Figure 4). This systematic difference in LST was likely induced by coregistration errors and 

LST variability based on the structure of grass canopy and the instantaneous view angle (Equation (6)). 

Adding to that, our estimated values of field TIc were approximately double the thermal inertia values 

reported for bare soil surface. This increase was attributed to a partial plant cover, which is 

characterized by a high TIc compared to the TIc of a bare soil surface. 

5.3. Limitations of Field Estimated Thermal Inertia 

The use of TIR guns to measure surface temperature and estimate thermal inertia was found to 

impose several practical challenges. For example, there was a time lag between measuring the surface 

temperature from one plot to another. This time lag resulted in further cooling of the plots at the end of 

the measuring route. Adding to this, it was difficult to maintain a constant view angle of the unit under 

manual operation. 
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Remote and field estimates of TIc and LST were poorly correlated, especially LST around sunrise. 

We speculated that the accuracy and representativeness of field measurements given a limited field of 

view and a high inter-row variability might have caused this discrepancy. There was no clear 

explanation as to why low correlations were obtained around sunrise, but the isothermal conditions and 

lack of temperature contrast made it susceptible to noise. 

Field TIc values were found to be higher than the bare soil TI range and in the same range of  

remotely-sensed TIc. Although the grass was trimmed a few hours prior to taking the observations, the 

root mass and remaining tissues still constituted a large portion of the exposed soil surface, which 

could account for the elevated range of field TIc. Adding to that, it was difficult to calculate the exact 

time difference (Δt) between sunset and sunrise. We used the net-radiometer incoming shortwave 

radiation as a guide. However, one should consider that vineyards were designed intentionally to 

increase the sunlight on grapes’ canopy rather than on the vineyard floor. Previous studies [34,35] 

showed a delay of the heating cycle at the ground surface for a few hours. 

5.4. Improving Moisture Retrieval Using Thermal Inertia 

The empirical results indicated that TIc had a potential for monitoring variation in soil moisture 

content within a uniformly compacted field (i.e., equal mechanical resistance). Moreover, we showed 

the possibility to extend TIc application to moderately vegetated vineyard soils. Despite the challenges 

encountered in this study (i.e., limited range of soil moisture content, limited sample size, difficulties 

in scheduling flights), our findings supported the promise of the TIc technique. 

Several issues need to be considered for future development of remotely-sensed TIc from nocturnal 

cooling. For example, the complete characterization of atmospheric temperature and water vapor 

content is a challenge. Measuring atmospheric variables simultaneously at the land surface and on the 

aircraft could provide data to interpolate profiles of air temperature and water vapor and estimate 

representative values for atmospheric correction. In our study, we have used incoming long wave 

radiation to estimate reflected sky temperature. This method could yield a positive bias, because of the 

different sensitivity range of each instrument. We suggest measuring the sky temperature using the 

TIR thermometer directed at a low emissivity surface (i.e., aluminum surface). Moreover, plant canopy 

is a major source of uncertainty. Therefore, including remote sensing products, such as the Normalized 

Difference Vegetation Index (NDVI) [18,47], full waveform analysis of LiDAR data [48] and leaf area 

index [49] to characterize the canopy density and leaf area index will succeed in reducing uncertainty. 

In addition, NDVI can be used to estimate a spatially distributed surface emissivity map, rather than 

using a constant emissivity value. 

Soil moisture content contributed less to the variation in field TIc, compared to remotely-sensed TIc. 

The results of the mixed effect models suggested that field measurements were susceptible to inter-row 

variability. Therefore, a spatially distributed infrared sensor network could be used, to obtain a 

temporally consistent measurement of surface temperature, at a specific time. Adding to that, surface 

temperature had a significant inter-row variability, as indicated by the mixed-effects model (Figure 6). 

Therefore, for vineyard applications, the height of the sensor should be increased in order to expand 

the field of view and to avoid between row variability. 
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Figure 6. Regression prediction of remotely-sensed and field TIc models. 

 

Furthermore, the presented technique could be used for continuous monitoring of vineyards by 

conducting regular flights during the growing season. A thermal inertia image, at a certain time in the 

growing season, could be normalized using the minimum and maximum TIc of this season, assuming 

that these points corresponded to the wilting point and field capacity. Further research must be 

conducted to establish the use of TIc to approximate the Kersten function (Equation (5)) in order to 

retrieve soil moisture content. 

6. Conclusions 

In the present study, we evaluated the relationships between soil moisture content, mechanical 

resistance and thermal inertia (TIc) over a grass covered vineyard in the Niagara region, Canada. TIc 

was calculated using surface temperature from two sensors; an airborne thermal camera (height ≈ 500 

meters AGL) and a handheld thermal gun (height ≈ 1 meter AGL). Applying an expression to calculate 

thermal inertia from cooling during the night revealed elevated TIc values as a consequence of the 

influence of grape canopy (average TIc of 3,361 and 3,410 J·m−2·K−1·s−1/2 for remotely-sensed and field 

TIc, respectively). However, we found a significant relationship between TIc and soil moisture and 

mechanical resistance, despite the limited range of soil moisture. For example, soil with five 

percentage points higher soil moisture has an approximately 100 unit higher remotely-sensed TIc or a 

150 unit higher field TIc (p-values < 0.10), considering that the mechanical resistance of that field does 

not change. On the other hand, elevated mechanical resistance (due to the presence of consolidated 
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rock or substrate) was found to have ~80 unit higher remotely-sensed TIc or ~140 unit higher field TIc 

with higher uncertainty (p-value < 0.10, only for the former). In general, both soil variables explained 

less than half of the TIc variability given the complex heating and cooling patterns associated with 

vineyards. Furthermore, remotely-sensed TIc was more sensitive to in situ moisture variability 

compared to handheld TIc, due to the strong small-scale variability of surface temperature between 

vine rows. Our results were encouraging for future research on extending thermal remote sensing of 

soil moisture in heterogeneous land cover regions. 

Acknowledgments 

The authors would like to thank Bill Falk, Manager of Lakeview Harvesters Inc./Falk Farms, for 

allowing this research to be conducted on his property. We would like to acknowledge the help we 

received from Donald Irvine, Geoffrey Mercer from the University of Guelph and the Niagara district 

and Guelph local airports in arranging for the flights. We also wish to thank the anonymous reviewers 

for their constructive comments. This research was supported by an Ontario Center of Excellence grant 

awarded to Ralph Brown. 

Conflict of Interest 

The authors declare no conflict of interest. 

References and Notes 

1. Bramley, R.; Proffitt, A.P.B. Managing variability in viticultural production. Austr. Grapegrower 

Winemaker 1999, 427, 11–16. 

2. Lamb, D.W.; Bramley, R.G.V. Managing and monitoring spatial variability in vineyard 

productivity. Nat. Resource Manage. 2001, 4, 25–30. 

3. Bramley, R. Generating Early Financial Benefits from Precision Viticulture through Selective 

Harvesting. In Proceedings of the 5th European Conference on Precision Agriculture, Uppsala, 

Sweden, 9–12 June 2005. 

4. Bramley, R.G.V.; Proffitt, A.P.B. Variation in Grape Yield and Quality in a Coonawarra 

Vineyard. In Proceedings of the 5th International Symposium on Cool Climate Viticulture & 

Oenology, Melbourne, VIC, Australia, 16–20 January 2000. 

5. Lamb, D.W. The use of qualitative airborne multispectral imaging for managing agricultural 

crops—A case study in south-eastern Australia. Aust. J. Exp. Agr. 2000, 40, 725–738. 

6. Lamb, D.W.; Bramley, R.G.V.; Hall, A. Precision viticulture—An Australian perspective. In 

Viticulture living with limitations. Acta. Hort. 2002, 640, 15–25.  

7. Hall, A.; Lamb, D.W.; Holzapfel, B.; Louis, J. Optical remote sensing applications in  

viticulture—A review. Aust. J. Grape Wine Res. 2002, 8, 36–47. 

8. Kaleita, A.L.; Tian, L.F.; Hirschi, M.C. Relationship between soil moisture content and soil 

surface reflectance. Trans. ASAE 2005, 48, 1979–1986. 
  



Remote Sens. 2013, 5 3746 

 

9. Bramley, R.G.V. Progress in the Development of Precision Viticulture—Variation in Yield, 

Quality and Soil Properties in Contrasting Australian Vineyards. In Precision Tools for Improving 

Land Management; Currie, L.D., Loganathan, P., Eds.; Massey University: Palmerston North, 

New Zealand, 2001; pp. 25–43. 

10. Lamb, D.; Mitchell, A.; Hyde, G. Vineyard trellising with steel posts distorts data from EM soil 

surveys. Aust. J. Grape Wine Res. 2005, 11, 24–32. 

11. Bennett, W.B.; Wang, J.; Bras, R.L. Estimation of global ground heat flux. J. Hydrometeorol. 

2008, 9, 744–759. 

12. Tian, J.; Su, H.; Chen, S.; Zhang, R.; Yang, Y.; Rong, Y. Estimation of Soil Heat Flux by 

Apparent Thermal Inertia. In Proceedings of 2011 IEEE International Geoscience and Remote 

Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011. 

13. Wang, J.; Bras, R.L. A model of evapotranspiration based on the theory of maximum entropy 

production. Water Resour. Res. 2011, 47, 1–10. 

14. Wang, J.; Bras, R.L. Ground heat flux estimated from surface soil temperature. J. Hydrol. 1999, 

216, 214–226. 

15. Wang, J.; Bras, R.L.; Sivandran, G.; Knox, R.G. A simple method for the estimation of thermal 

inertia. Geophys. Res. Lett. 2010, 37, 1–5. 

16. Price, J.C. Thermal inertia mapping: A new view of the Earth. J. Geophys. Res. 1977,  

82, 2582–2590. 

17. Verhoef, A. Remote estimation of thermal inertia and soil heat flux for bare soil. Agric. For. 

Meteorol. 2004, 123, 221–236. 

18. Verstraeten, W.W.; Veroustraete, F.; Van der Sande, C.J.; Grootaers, I.; Feyen, J. Soil moisture 

retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for 

European forests. Remote Sens. Environ. 2006, 101, 299–314. 

19. Pratt, D.A.; Ellyett, C. D. The thermal inertia approach to mapping of soil moisture and geology. 

Remote Sens. Environ. 1979, 8, 151–168. 

20. Minacapilli, M.; Iovino, M.; Blanda, F. High resolution remote estimation of soil surface water 

content by a thermal inertia approach. J. Hydrol. 2009, 379, 229–238. 

21. Minacapilli, M.; Cammalleri, C.; Ciraolo, G.; D’Asaro, F.; Iovino, M.; Maltese, A. Thermal 

inertia modeling for soil surface water content estimation: A laboratory experiment. Soil Sci. Soc. 

Am. J. 2012, 76, 92–100. 

22. Price, J.C. On the analysis of thermal infrared imagery: The limited utility of apparent thermal 

inertia. Remote Sens. Environ. 1985, 18, 59–73. 

23. Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G. Mapping soil water content under sparse 

vegetation and changeable sky conditions: Comparison of two thermal inertia approaches. J. Appl. 

Remote Sens. 2013, 7, 73548. 

24. Maltese, A.; Bates, P.D.; Capodici, F.; Cannarozzo, M.; Ciraolo, G.; La Loggia, G. Critical 

analysis of thermal inertia approaches for surface soil water content retrieval. Hydrol. Sci. J. 2013, 

58, 1–18. 

25. Murray, T.; Verhoef, A. Moving towards a more mechanistic approach in the determination of 

soil heat flux from remote measurements—A universal approach to calculate thermal inertia. 

Agric. For. Meteorol. 2007, 147, 80–87. 



Remote Sens. 2013, 5 3747 

 

26. Murray, T.; Verhoef, A. Moving towards a more mechanistic approach in the determination of 

soil heat flux from remote measurements II. Diurnal shape of soil heat flu. Agric. For. Meteorol. 

2007, 147, 80–87. 

27. Van Wijk, W.R. General Temperature Variations in a Homogeneous Soil. In Physics of Plant 

Environment, 1st ed.; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1963; 

pp. 144–169. 

28. Brunt, D. Notes on radiation in the atmosphere. I. Quart. J. R. Meteorol. Soc. 1932, 58, 389–420. 

29. Xue, Y.; Cracknell, A.P. Advanced thermal inertia modelling. Int. J. Remote Sens. 1995,  

16, 431–446. 

30. Pratt, D.A.; Foster, S.J.; Ellyett, C.D. A calibration procedure for fourier series thermal inertia 

models. Photogramm. Eng. Remote Sensing 1980, 46, 529–538. 

31. Johansen, O. Thermal Conductivity of Soils. PhD Thesis, University of Trondheim, Trondheim, 

Norway, 1975; p. 213. 

32. Mo, T.; Choudhury, B.J.; Schmugge, T.J.; Wang, J.R.; Jackson, T.J. A model for microwave 

emission from vegetation-covered fields. J. Geophys. Res. 1982, 87, 11229–11237. 

33. Oke, T.R. Leaves. In Boundary Layer Climates; Routledge: London, UK, 1988; Chapter 4.2; 

pp. 117–122. 

34. Kim, E.J.; England, A.W. Radiobrightness Thermal Inertia Sensing of Soil and Canopy Moistures for 

Grassland Areas. In Proceedings of Second Topical Symposium on Combined Optical-Microwave 

Earth and Atmosphere Sensing; Atlanta, GA, USA, 3–6 April 1995; pp. 39–41. 

35. Wicklund, R.E.; Matthews, B.C. Soil Survey of Lincoln County, Ontario; Report Number 34; 

Canada Department of Agriculture. Research Branch: Guelph, ON, Canada, 1963; pp. 23–37. 

36. Reedy, R.C.; Scanlon, B.R. Soil water content monitoring using electromagnetic induction. J. 

Geotech. Geoenviron. Eng. 2003, 129, 1028–1039. 

37. Soliman, A.; Brown, R.; Heck, R.J. Separating near surface thermal inertia signals from a thermal 

time series by standardized principal component analysis. Int. J. Appl. Earth Obs. Geoinf. 2011, 

13, 607–615. 

38. Pradel, E.; Pieri, P. Influence of a grass layer on vineyard soil temperature. Aust. J. Grape Wine 

Res. 1993, 6, 59–67. 

39. Mira, M.; Valor, E.; Caselles, V.; Rubio, E.; Coll, C.; Galve, J.M.; Niclòs, R.; Sánchez, J.M.; 

Boluda, R. Soil moisture effect on thermal infrared (8–13 μm) emissivity. IEEE J. Sel. Top. Appl. 

Earth Obs. 2010, 48, 2251–2260. 

40. Flir Systems Inc. User’s Manual Flir Tools/Tools+ 3.1; Flir Systems Inc.: Wilsonville, OR, USA, 

2013; pp. 54–60. 

41. Endres, T. Personal Communication. 2012. 

42. Zweig, M.H.; Campbell, G. Receiver operating characteristic (ROC) plots: A fundamental 

evaluation tool in clinical medicine. Clin. Med. 1993, 39, 561–577. 

43. Royall, R. M. The effect of sample size on the meaning of significance tests. Am. Stat. 1986, 

40, 313–315. 

44. Pinheiro, J.; Bates, D. Mixed-Effects Models in S and S-PLUS; 1st ed.; Springer: New York, NY, 

USA, 2000; pp. 133–199. 



Remote Sens. 2013, 5 3748 

 

45. The R Project for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 

20 March 2013). 

46. Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Team, T.R.C. nlme: Linear and Nonlinear Mixed 

Effects Models; 1st ed.; R Foundation for Statistical Computing: Vienna, Austria, 2009;  

R package, pp. 186–195. 

47. Johnson, L.F.; Trout, T.J. Satellite NDVI assisted monitoring of vegetable crop evapotranspiration 

in California’s San Joaquin valley. Remote Sens. 2012, 4, 439–455. 

48. Reitberger, J.; Schnörr, C.; Heurich, M.; Krzystek, P.; Stilla, U. Towards 3D mapping of forests: 

A comparative study with first/last pulse and full waveform LIDAR data. Int. Arch. Photogramm. 

Remote Sens. Spat. Inf. Sci. 2008, 37, 1397–1404. 

49. Mathews, A.; Jensen, J. Visualizing and quantifying vineyard canopy LAI using an unmanned 

aerial vehicle (UAV) collected high density structure from motion point cloud. Remote Sens. 

2013, 5, 2164–2183. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


