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Abstract: Recently, many convolutional neural network (CNN)-based methods have been proposed
to tackle the classification task of hyperspectral images (HSI). In fact, CNN has become the de-facto
standard for HSI classification. It seems that the traditional neural networks such as multi-layer
perceptron (MLP) are not competitive for HSI classification. However, in this study, we try to prove
that the MLP can achieve good classification performance of HSI if it is properly designed and
improved. The proposed Modified-MLP for HSI classification contains two special parts: spectral–
spatial feature mapping and spectral–spatial information mixing. Specifically, for spectral–spatial
feature mapping, each input sample of HSI is divided into a sequence of 3D patches with fixed
length and then a linear layer is used to map the 3D patches to spectral–spatial features. For spectral–
spatial information mixing, all the spectral–spatial features within a single sample are feed into
the solely MLP architecture to model the spectral–spatial information across patches for following
HSI classification. Furthermore, to obtain the abundant spectral–spatial information with different
scales, Multiscale-MLP is proposed to aggregate neighboring patches with multiscale shapes for
acquiring abundant spectral–spatial information. In addition, the Soft-MLP is proposed to further
enhance the classification performance by applying soft split operation, which flexibly capture the
global relations of patches at different positions in the input HSI sample. Finally, label smoothing is
introduced to mitigate the overfitting problem in the Soft-MLP (Soft-MLP-L), which greatly improves
the classification performance of MLP-based method. The proposed Modified-MLP, Multiscale-MLP,
Soft-MLP, and Soft-MLP-L are tested on the three widely used hyperspectral datasets. The proposed
Soft-MLP-L leads to the highest OA, which outperforms CNN by 5.76%, 2.55%, and 2.5% on the
Salinas, Pavia, and Indian Pines datasets, respectively. The obtained results reveal that the proposed
models provide competitive results compared to the state-of-the-art methods, which shows that the
MLP-based methods are still competitive for HSI classification.

Keywords: convolutional neural network; hyperspectral image classification; multi-layer perceptron

1. Introduction

Hyperspectral sensors are able to capture hyperspectral image (HSI) with abundant
spectral and spatial information, which could accurately characterize and identify different
land-covers. The valuable source of the rich information makes the HSI useful in a wide
range of applications, including agriculture (e.g., crops classification [1] and detection of
water quality conditions [2]), the food industry (e.g., characterizing product quality [3]),
water and maritime resources management (e.g., water quality analysis [4] and sea ice
detection [5]), forestry and environmental management (e.g., health of forests [6] and
infestations in plantation forestry [7]), security and defense applications (e.g., identification
of man-made materials [8]), and vision technology (e.g., 3D reconstruction [9] and image
detection [10]).

HSI classification refers to a task of assigning a category to each pixel in the scene.
Due to the fact that it is a basic procedure in many applications, HSI classification is a
fundamental and hot topic in the remote sensing community [11].
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A large number of methods have been proposed for HSI classification and most
of them are supervised learning-based methods [12]. There are two important parts
for accurate HSI classification: discriminative feature extraction and robust classifier. For
feature extraction of HSI, many morphological operations, including morphological profiles
(MPs) [13], extended MPs (EMPs) [14], extended multi-attribute profile (EMAP) [15], and
extinction profiles (EPs) [16], have been developed to extract the HSI features. For a robust
classifier of HSI, due to its low sensitivity to high dimensionality, support vector machine
(SVM) was widely used as a good classifier [17].

Recently, various studies applied for HSI classification have demonstrated the suc-
cess of deep learning-based methods, such as stacked auto-encoder [18] and deep belief
network [19]. Moreover, recurrent neural network has promising performance in learning
hyperspectral image with sequential data [20]. Among the deep learning-based methods
for HSI classification, convolutional neural network (CNN) with the local-connection and
shared-weight architecture has become the mainstream approach for classifying HSI [21].

Depending on the input information of models, the HSI classification methods based
on the CNN methods can be divided into three types: the spectral CNN, spatial CNN,
and spectral–spatial CNN [22]. The spectral CNN-based approaches adopted CNN on
the spectral of HSI to extract discriminative spectral features. For instance, in [23], the
spectral information of each pixel is extracted by the CNN with only five convolutional
layers. Besides, Li et al. presented a novel pixel-pairs strategy for HSI classification by
utilizing the deep CNN, which provides excellent performance [24].

The second type of CNN-based approaches for HSI classification is named the spatial
CNN. Since there exist amounts of spatial information in the HSI, the 2D convolution
layer is designed in many studies to extract the spatial features of HSI from a local cube in
the spatial domain [25–27]. For instance, in [27], principal component analysis was first
applied to reduce the dimension of the HSI, then, 2D convolution layer was utilized to
extract the spatial features of fixed neighborhood of each pixel.

The last type based on the CNN for classifying HSI is called the spectral–spatial
CNN, which extracts the spectral and spatial HSI features in a uniform framework [28,29].
Here, 3D convolutions have been used to extract the spectral and spatial features of HSI
simultaneously [30–34]. In [30], a 3D CNN was utilized in a range of effective spectral–
spatial representative band groups to extract spectral–spatial features. In addition, spectral–
spatial residual network is designed through identity mapping to improve accuracy [31].
Because there are many parameters in the model, a light 3D CNN has been proposed to
reduce the computational cost [34]. Recent works have demonstrated that the CNNs have
enabled many breakthroughs in HSI classification tasks, yielding great successes [35,36].

Although CNN-based methods have achieved good performance for HSI classifi-
cation, questions still remain. Firstly, CNN is a kind of network which is inspired by
biological visual system; therefore, it is proper for image feature extraction. However,
HSI, which contains spectral–spatial information, is quite different from an “ordinary”
image. Specifically, CNN uses local connection and shared weights to efficiently extract the
features of images [37]. The effectiveness of this mechanism for HSI processing should be
investigated. Secondly, CNN has the ability to capture local structure with inductive bias,
but there are no advantages of handling long-range interactions at any position in a single
input, since the receptive fields are limited [38]. Thus, in this study, MLP [39], which is a
kind of neural network with fewer constraints, is investigated for HSI classification.

MLP is one type of basic neural networks. In recent years, CNNs usually obtain better
classification performance compared with other types of deep learning. However, MLP
has been proven as a promising machine learning technique [40–42]. For example, in [41],
an artificial neural network MLP architecture was presented with time optimization, which
demonstrates the best time results. Furthermore, Kalaiarasi et al. proposed a frost filtered
scale-invariant feature transformation-based MLP classification technique by applying the
frost filtering technique and Euclidian distance between the feature vectors, which im-
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proved the classification accuracy with minimum time [42]. However, the aforementioned
studies are still in the traditional architecture of the MLP with a few hidden layers.

In this paper, we show that while convolutions are sufficient for good performance,
they are not necessary. We present that CNN has inductive bias by localized processing,
while the proposed MLP could learn long-range interactions of different patches by al-
lowing various patches to communicate with each other. Instead of simply reusing the
traditional MLP, the proposed MLP-based methods adopt new architecture and achieve
significant performance, which leads to better results than CNN for HSI classification.

As a summary, the following are the main contributions of this study.

(1) Instead of simply applying the traditional MLP for HSI classification, a modified
MLP is investigated for HSI classification with ingenious architecture in a unified
framework (i.e., normalization layer, residual connections, and gaussian error linear
unit operations). The Modified-MLP not only extracts discriminative features inde-
pendently through spectral–spatial feature mapping, but also captures interactions
with each patch by spectral–spatial information mixing for effective HSI classification.

(2) To obtain the spectral–spatial information in each sample sufficiently, a simple yet
effective Multiscale-MLP is proposed to classify HSI with various scales, which
divides an HSI sample into various equal-sized patches without overlapping to
aggregate multiple spectral–spatial interactions of different patches in HSI sample.

(3) Another method, flexible Soft-MLP, is proposed with soft split operation to solve
the limitations caused by the predefined patch size in MLP-based methods, which
transforms a single sample of HSI with different orders and sizes with overlapping
by applying soft split operation. Therefore, the Soft-MLP can model the global
spectral–spatial relations of different patches to further boost the HSI classification
performance.

(4) Finally, label smoothing has been used for HSI classification combined with the
proposed Soft-MLP, which leads to higher accuracies and indicates that the proposed
MLP-based methods can be improved as CNN-based methods.

The rest of this paper consists of three sections. Section 2 introduces the proposed Modified-
MLP, Multiscale-MLP, Soft-MLP, and Soft-MLP-L. Afterward, the experimental settings, results,
and analyses are presented in Section 3. Finally, Section 4 concludes this study.

2. The MLP-Based Methods for HSI Classification
2.1. The Proposed Modified-MLP for HSI Classification

Figure 1 shows the overview architecture of the proposed Modified-MLP for HSI
classification. There are three core parts in the Modified-MLP: spectral–spatial feature
mapping, spectral–spatial information mixing, and following clssification. We split each
input HSI sample into fixed-size 3D patches. Then, each is linearly projected by the spectral–
spatial feature mapping layer, resulting in a series of spectral–spatial features. Next, these
features are fed into the spectral–spatial information mixing for capturing the spectral–
spatial feature interactions of different patches. After that, the classification results are
obtained by the fully connected layer. The detailed description is explained as follows.

Suppose the HSI dataset is of size H×W× nBand, where H and W indicate the spatial
height and width, respectively, and nBand is the band number. Firstly, a single sample (i.e.,
I) is generated by processing each pixel in the HSI with a fixed window size, whose shape
is h× w× nBand.
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Figure 1. The overview architecture of the proposed Modified-MLP for HSI classification.

Secondly, a sample of the HSI is split into l patches (i.e., P1, P2, · · · , Pl) without over-
lapping, P = {P1, P2, · · · , Pl}, and l is calculated as Equation (1). Each patch has a shape of
p× p× nBand, the size of the clipped patch (i.e., p) is determined empirically. For instance,
if the size of a single HSI sample, i.e., I, is 32 × 32 × nBand (i.e., h = 32, w = 32), the fixed
patch size p is set to 4, thus, l = 64.

l =
[

h
p

]
×
[

w
p

]
, (1)

Thirdly, all the patches are fed into a spectral–spatial mapping layer independently,
here, each patch is linearly projected into an optimal hidden d-dimensional spectral–spatial
feature space. Here, let X ∈ Rl×d represent the output features obtained by the spectral–
spatial mapping layer of the Modified-MLP, where l is the number of patches and d
indicates the hidden dimension of the proposed Modified-MLP.

Then, these obtained features X are passed through the well-designed Modified-MLP
for spectral–spatial information mixing. There are B blocks with the same size and structure,
and each block is composed of two different MLPs (i.e., MLP1 and MLP2). The number of
B represents different depth of the model. Figure 1 shows the two blocks (i.e., B = 2) as an
example. Each block is connected with a layer normalization at the beginning, and every
block is followed by the residual connections. Every block can be defined as follows:

Z = σ(XU), (2)

Z̃ = s(Z), (3)

Y = Z̃V, (4)

where σ indicates the gaussian error linear unit (GELU) [43] activation function, U indicates
the weight matrix of MLP 1 with d′-dimensional output, and V refers to the weight matrix of
MLP 2. Different from the classical MLP architecture, skip-connections and normalization
layer [44] are considered in this study to ensure stable training.

In particular, s(·) is the key element to capture the spectral–spatial interactions of
different patches in the proposed Modified-MLP, which is built out of basic MLP layers
with gating. To capture the crossed spectral–spatial information, it is necessary for s(·) to
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consist of operation over the spectral–spatial dimension. The simplistic option could be
described as follows, which is a linear projection:

f (Z) = WZ + b, (5)

where W ∈ Rl×l , l indicates the number of patches, b is the bias.
In this study, the crossed information is defined as follows:

s(Z) = Z1 � f (Z2), (6)

where � indicates the element-wise multiplication. This operation is inspired by the Gated
Linear Units (GLUs) [45], which defines s(·) as a spatial depth-wise convolution. Instead of
using the convolution operation, we redefine the operation by element-wise multiplicative
interaction to capture crossed spectral–spatial information. Similar to the LSTMs, these
gates multiply each element of the weight matrix W and controls the information passed
on. Here, Z is split into two independent elements formed (Z1, Z2) along the channel
dimension to capture the spectral–spatial relationships effectively. The shape of Z1 and
Z2 is the same, which divide the channel dimension of Z equally. Thus, we set d′ = 2d to
maintain the value of the input dimension. f (Z2) can be viewed as the gating function,
because each value of elements in Z2 would be changed according to the f (Z1) by the
multiplicative gating. Therefore, the features have strong correction with each other.

Finally, the proposed Modified-MLP applies a normalization layer to alleviate the
vanishing problem in the training procedure. At last, average pooling layer and a fully
connected layer are used for classifying HSI.

Specifically, the normalization layer is used to normalize the input features, which not
only reduces the training time by normalizing neurons, but also alleviates the vanishing or
exploding gradient problem [44].

For the average pooling layer, it sums out the spectral–spatial information and takes
the average of each feature map. The advantage of the average pooling layer is that there is
no parameter to optimize.

The outputs of the average pooling layer are vectorized and fed into fully connected
layers and then a softmax layer is used to finish the HSI classification task.

2.2. The Proposed Multiscale-MLP for HSI Classification

The proposed Modified-MLP extracts the spectral–spatial features of each patch
independently. However, Modified-MLP uses a fixed scale (i.e., p) to prepare training
data. Therefore, Modified-MLP can be enhanced with different scales to fully extract
the multiscale spectral–spatial features of HSI inputs. In this section, Multiscale-MLP is
proposed, which aims to capture the spectral–spatial information in patches with different
scales. Figure 2 shows the framework of the proposed Multiscale-MLP for HSI classification.
Specifically, an input HSI sample is divided into fixed-size 3D patches with different patch
sizes. Next, each patch is linearly projected by the spectral–spatial feature mapping layer.
Then, the obtained features in different scales are fused in different scales so that the
patch-level spectral–spatial features can be represented in a multiple scale manner. After
that, these features are sent to the spectral–spatial information mixing and the following
classification. The detailed steps are explicitly explained as follows.
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Figure 2. The framework of the proposed Multiscale-MLP for HSI classification.

Firstly, a value of the patch size is set. Thus, there are l patches, which can be calculated
by Equation (1).

Secondly, a spectral–spatial mapping layer is applied to project each Pi into a fixed
dimension.

ti = Mapping (Pi), for i = 1, 2, · · · , l, (7)

where Mapping is the spectral–spatial mapping operation, ti refers to the output features
of each Pi, and Ti indicates a mapping set Ti = {t1, t2, · · · , tl} with l × d-dimension, whose
length l and output hidden layer d-dimension are both determined by the experiments.

Thirdly, we reset the patch size p with different values and repeat the above two steps,
hence, there are several Ti with n different scales (i.e., n = 3, and l = 4, 9, and 16) in Figure 2,
which is determined by the number of different values of patch sizes. Ti is fused to generate
T, which can be defined as follows:

T = concatenate (T1, T2, · · · , Tn). (8)

Finally, T is fed into the spectral–spatial mixing and finish the HSI classification task.
The proposed Multiscale-MLP could obtain abundant spectral–spatial information with
multiple patches with different sizes.

2.3. The Proposed Soft-MLP for HSI Classification

To further improve the HSI classification performance and make full use of different
scale information in the network, here, Soft-MLP is proposed with a key part named soft
split operation, which not only structurizes the input to patches with variable length, but
also fully uses the spectral–spatial information with an overlapping style. Figure 3 displays
the detail description of the soft split. Each patch is produced by combining overlapped
pixel vectors. Details of the proposed soft split operation are described as follows.

The input HSI sample I can be described as I =
{

I1, I2, · · · , Iq
}

, where Ii, (i = 1 : q)
represents a pixel vector of the given I and q = h×w. Suppose a sample I has the shape of
32 × 32 × nBand, therefore, a single sample contains q (i.e., 1024) pixel vectors and all the
pixel vectors can be reshaped with any combination.
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Figure 3. An example of the soft split operation in the Soft-MLP. 

 

Figure 3. An example of the soft split operation in the Soft-MLP.

Next, a patch can be formed by combining different pixel vectors. In Figure 3, four
pixel vectors (i.e., 1, 2, 33, and 34) in the input HSI sample are concatenated to form a new
patch with size p× p× nBand. By applying the soft split, l can be calculated as follows:

l =
[

h− p
s

+ 1
]
×
[

w− p
s

+ 1
]

, (9)

where p is the patch size and h and w are the spatial height and width of a HSI sample,
respectively. s refers to the stride (i.e., s = 1) in Figure 3. Since the proposed Soft-
MLP splits the input HSI sample into patches with overlapping, each patch is correlated
with surrounding patches to establish prior knowledge that there should be stronger
correlations between surrounding patches. Thus, the local information can be aggregated
from surrounding patches, which is helpful to extract features with multiscale information.

Finally, all the patches are fed into the spectral–spatial mapping layer and spectral–
spatial mixing layer to finish HSI classification task, which is similar to the Multiscale-MLP.
The proposed Soft-MLP can transform the input HSI sample with different orders and
sizes with overlap; therefore, the Soft-MLP helps to make full use of the global relations of
different pathes on the input HSI sample.

2.4. The Proposed Soft-MLP-L for HSI Classification

There always exists many learnable parameters in the MLP-based methods with
limited samples, which results in an overfitting problem. In order to mitigate this problem,
we introduce label smoothing to the proposed MLP-based methods.

For HSI classification, let x represent a HSI training sample, and its corresponding label
y ∈ {1, 2, · · · , C}, where C indicates the number of classes. Here, y can be represented in
a one-hot vector with C-dimension:

yk = δk,y, (10)

where k = 1, 2, · · · , C, δk,y indicates the discrete Dirac delta function, and δk,y equals 1 for
k = y and 0 otherwise.

When we apply label smoothing for HSI classification, y′k is used as the label instead
of the original label yk.

y′k = (1− ε)δk,y +
(

1− δk,y

) ε

C− 1
, (11)

where y′k is a mixture of the original label and the fixed uniform distribution of the number
of C− 1 classes and ε represents the smoothing factor [46].
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3. Experimental Results
3.1. Data Description

The three widely used datasets, including the Salinas, Pavia University (Pavia), and
Indian Pines datasets, are used to test the effectiveness of the proposed methods. The
detailed information of each dataset is presented as follows.

The Salinas dataset was obtained by the Airborne Visible-Infrared Imaging Spectrom-
eter (AVIRIS) sensor over Salinas Valley. This dataset includes 512 × 217 pixels, and its
spatial resolution is 3.7 m. The 20 noisy spectral bands have been removed, leading to
204 bands in the range of 0.2–2.4 µm. The ground truth consists of 16 classes of interest.
Figure 4 displays the false-color composite image and the available ground-truth map.
Table 1 gives the number of samples for each class.

Figure 4. The Salinas dataset. (a) False-color composite image; (b) ground truth map.

Table 1. Salinas labeled sample counts.

Class Sample
NumbersNo. Color Name

1 Brocoli_green_weeds_1 1977
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11,213
9 Soil_vinyard_develop 6197

10 Corn_senesced_green_weeds 3249
11 Lettuce_romaine_4wk 1058
12 Lettuce_romaine_5wk 1908
13 Lettuce_romaine_6wk 909
14 Lettuce_romaine_7wk 1061
15 Vinyard_untrained 7164
16 Vinyard_vertical_trellis 1737

Total 53,785

The Pavia dataset was captured by the ROSIS-3 sensor over Pavia University, com-
posed of 103 bands with 610× 340 pixels after removing the low signal-to-noise ratio (SNR)
bands. The spatial resolution of this dataset is 3.7 m, and nine classes were chosen in the
ground truth in the experiments. The false-color composite image and the reference map
are shown in Figure 5. The samples are reported in Table 2.
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Figure 5. The Pavia University dataset. (a) False-color composite image; (b) ground truth map.

Table 2. Pavia University labeled sample counts.

Class Sample
NumbersNo. Color Name

1 Asphalt 6851
2 Meadows 18,686
3 Gravel 2207
4 Trees 3436
5 Metal sheets 1378
6 Bare soil 5104
7 Bitumen 1356

8 Bricks 3878

9 Shadow 1026

Total 43,922

The Indian Pines dataset was acquired by the AVIRIS sensor in 1992. This dataset
is 145 × 145 pixels with 103 bands ranging from 0.2–2.4 µm. The water absorption and
low signal-to-noise ratio bands (bands 104–108, 150–163, and 220) lead to 200 bands. The
ground truth contains 16 land cover types. Figure 6 displays the false-color composite
image and the ground truth map. The detailed number of available pixels in each class is
reported in Table 3.

Figure 6. The Indian Pines dataset. (a) False-color composite image; (b) ground truth map.
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Table 3. Indian Pines labeled sample counts.

Class Sample
NumbersNo. Color Name

1 Alfalfa 46

2 Corn-notill 1428

3 Corn-min 830

4 Corn 237

5 Grass-pasture 483

6 Grass-trees 730
7 Grass-pasture-mowed 28

8 Hay-windrowed 478

9 Oats 20

10 Soybean-notill 972

11 Soybean-mintill 2455

12 Soybean-clean 593

13 Wheat 205

14 Woods 1265

15 Buildings-Grass-Trees 386

16 Stone-Steel-Towers 93

Total 10,249

3.2. Implementation Details

In the experiments, the dataset is separated into three parts, including the training
samples, validation samples, and the test samples. We randomly choose 200 training
samples from all the labeled samples, and 50 samples are randomly selected from the
remaining as the validation samples; the remaining samples are considered as the test
samples. The best model on the validate samples is used to evaluate on the test samples.

For each dataset, firstly, the input HSI is normalized into [−0.5, 0.5]. Then, the
neighbors of each pixel to be classified are set to 32 × 32 as the input of the well-designed
model. Since the number of samples are different, the batch size for all the datasets is
various. For the Salinas dataset, the bath size is set to 256; for the Pavia dataset, the batch
size is set to 128; and for the Indian Pines dataset, the batch size is set to 100. Besides, for
the proposed Modified-MLP, the numbers of training epochs are 500, 150, and 900 for the
Salinas, Pavia, and Indian Pines datasets, respectively. The number of training epochs
is determined by observing the curve of the loss function on the validated samples. To
clearly display the training process, take the Modified-MLP as an example. The curves of
the proposed Modified-MLP including the loss and accuracy of the training and test for
all the datasets are shown in Figures 7–9. Thus, the number of epochs is set to 500, 150,
and 900 for the Salinas, Pavia, and Indian Pines datasets, respectively, when the learning
curve is stable. In addition, for the proposed Multiscale-MLP, Soft-MLP and Soft-MLP-L
epochs are both set to 300, 300, and 200 for the Salinas, Pavia, and Indian Pines datasets,
respectively. In order to update the training parameters rapidly, the Adam optimizer [47]
and decay learning rate are utilized; specifically, initial learning rates are set to 1 × 10−4,
8 × 10−4, and 2 × 10−4 for the Salinas, Pavia, and Indian Pines, respectively. The decay
rate every 300 epochs is set to 1/3 for the proposed Modified-MLP. For the Soft-MLP, the
learning rate is 8 × 10−5, 8 × 10−5, and 6 × 10−5 for the Salinas, Pavia, and Indian Pines
datasets, respectively. To measure the performance of all the methods, overall accuracy
(OA), average accuracy (AA), and kappa coefficient (K) are used as the evaluation indexes.
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Figure 7. Curves on the Salinas dataset.

Figure 8. Curves on the Pavia dataset.

Figure 9. Curves on the Indian Pines dataset.
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3.3. Parameter Analysis

In order to find the optimal architecture, ablations on scaling different main parameters
including the patch sizes, hidden dimensions, and number of blocks are run. The selection
of these parameters plays an essential role in model size and the complexity of the proposed
Modified-MLP, which should be specially discussed.

The first parameter is validated on the patch sizes. To capture the relationships of
different patches, the input (e.g., 32 × 32 × nBand) of the proposed Modified-MLP is split
into fixed-size patches (e.g., 4 × 4 × nBand, 8 × 8 × nBand, and 16 × 16 × nBand) for all
the datasets, which represent spectral–spatial information at different positions of the input
HSI. Meanwhile, the dimensions and number of layers of the proposed Modified-MLP
are kept the same. The second parameter is analyzed on the number of blocks of the
Modified-MLP, which controls the depth of the model, which we call depth for short. The
value of the depth is varied from three to five of the Modified-MLP to find the appropriate
value of depth. In addition, the third main parameter is named the dimension of the
proposed Modified-MLP. Here, the dimension of the proposed Modified-MLP indicates
the hidden dimension in the MLP. With the increment of the model dimension, it is easy
for the model to encounter the overfitting problem; thus, different numbers of dimension
(i.e., 64, 128, and 256) are chosen to search the optimal value for HSI classification.

The performance of the proposed Modified-MLP of different parameters with 200 train-
ing samples is shown in Figures 10–12 for the Salinas, Pavia, and Indian Pines datasets,
respectively. In the experiments, we use the control variable method for all the datasets.
For the case of the model depth, the value of patch size and dimension of the model are
fixed, set to 4 and 128, respectively. For the case of patch size, the value of model depth
and dimension of the model are also fixed, set to 3 and 128, respectively. Similarly, for the
case of dimension of the model, the value of patch size and model depth are fixed, set to 4
and 3, respectively. As shown in Figures 10–12, it can be easily seen that for the Salinas
and Pavia datasets, with increasing the value of patch size, the accuracies are decreased. In
terms of the depth of the proposed Modified-MLP, for the Pavia and Indian Pines datasets,
when the value of depth is larger, there are bigger improvements. For the Salinas dataset,
when the value of depth is three, Modified-MLP achieves the best classification accuracy.
Because there are more bands in the Salinas dataset compared to other datasets, increasing
the depth results in more parameters in the MLP, which makes it easier to generate the
overfitting problem. In addition, by scaling the width of the hidden layer in the proposed
Modified-MLP, Modified-MLP with 128 dimensions reaches the highest OA, AA, and K.
These results suggest that the proposed Modified-MLP with five layers, dimension = 128,
and a patch size of 4 for the Pavia and Indian Pines datasets obtain the highest accuracies,
and with three layers, dimension = 128, and a patch size of 4 for the Salinas dataset achieves
the best performance.

Figure 10. Test accuracy of key parameters on the Salinas dataset.
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Figure 11. Test accuracy of key parameters on the Pavia dataset.

Figure 12. Test accuracy of key parameters on the Indian dataset.

Furthermore, the proposed Multiscale-MLP uses different scales (i.e., p scales) to fully
extract the multiscale spectral–spatial features with different scales of the HSI inputs. To
validate the impact of input size, different spatial window sizes (i.e., 26 × 26, 28 × 28,
30 × 30, 32 × 32, 34 × 34, 36 × 36, and 38 × 38) are used in the experiment, and the results
of the proposed Multiscale-MLP on the three datasets are shown in Figure 13.

Figure 13. Results of Multiscale-MLP with different window sizes.

With different window sizes, there exists a peak. The best spatial window size de-
pends on different datasets. The proposed Multiscale-MLP achieves the best performance
concerning the 28 × 28 window size on the Salinas dataset, and the 32 × 32 window size
on the Pavia and Indian Pines datasets. If the spatial window size increases, more pixels
are used to extract spectral–spatial features; thus, the OA of the proposed Multiscale-MLP
increases, too. However, the accuracies begin to decline when the window size reaches a
certain value, because more heterogeneous pixels confuse the feature extraction. In the
experiments, all the proposed methods are evaluated with 32× 32 window size to maintain
the same setting.
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3.4. Comparison of the Proposed Methods with the State-of-the-Art Methods

In the experiments, two classical methods including RBF-SVM [14] and EMP-SVM [48]
and four state-of-the-art methods including the CNN [49], SSRN [31], VGG [50], and
HybridSN [51] are considered for comparison. For the radial basis function (RBF)-SVM,
the optimal value of C and γ are the key parameters, which are searched by the grid
searched method in the range of {10−3, 10−2, . . . , 103}. In addition, for the extended
morphological profiles (EMP)-SVM, in order to extract the spatial information of the HSI,
the morphological opening and closing operations are applied. We adopt the disk-shaped
structuring element, whose sizes are increasing from two to eight. Then, the generated
features are used as the input for the RBF-SVM to finish the final classification task.

The experimental performance of the proposed Modified-MLP, Multiscale-MLP, Soft-
MLP, and Soft-MLP-L for hyperspectral classification with 200 training samples are reported
in Tables 4–6. Compared with the RBF-SVM and EMP-SVM, the proposed Modified-MLP
achieves the highest accuracies. For example, compared with the RBF-SVM, the proposed
Modified-MLP has superior performance, according to OA, AA, and K. Besides, compared
to the EMP-SVM, OA, AA, and K on the Salinas dataset are increased by 4.33%, 3.4%, and
4.81%, respectively. In addition, compared to the classical methods, the deep learning-
based methods generally obtain better performance. The proposed Modified-MLP also
has the superiority of the deep learning-based methods. Take the Salinas dataset as an
example; compared to the CNN, the OA of the proposed Modified-MLP is increased by
3.52%. Besides, the proposed Modified-MLP exhibits the best OA with the improvement of
3.19% and 2.67% in comparison with the SSRN and VGG, respectively. The classification
results on the Pavia and Indian Pines also have the similar situation. All the experimental
results reveal the superiority of the proposed Modified-MLP.

Furthermore, different from the proposed Modified-MLP, the proposed Multiscale-
MLP achieves 92.25%, 93.50%, and 91.33% in terms of OA, AA, and K on the Salinas dataset,
respectively. The results demonstrate the superiority of the proposed Multiscale-MLP with
multiscale patch sizes. In addition, the proposed Soft-MLP obtains the highest results.
For the Salinas dataset, the proposed Soft-MLP is 1.56% and 1.23% higher than Modified-
MLP and Multiscale-MLP, respectively. Besides, compared to the classical methods (i.e.,
RBF-SVM and EMP-SVM) and deep learning-based methods (i.e., CNN, SSRN, VGG, and
HybridSN), the proposed Soft-MLP has obvious improvements. Specifically, compared
to RBF-SVM and EMP-SVM, the proposed Soft-MLP increases accuracies by 10.39% and
5.89%; 12.96% and 3.59%; 8.62% and 6.84% in terms of OA on the Salinas, Pavia, and Indian
Pines, respectively. In addition, for the Indian Pines dataset, compared to the CNN and
VGG, the proposed Soft-MLP increases OA by about 2%; for the SSRN and HybridSN, the
Soft-MLP has an improvement of nearly 5%. All the results indicate that the proposed
Soft-MLP is an effective method. Likewise, the performance of the Pavia and Indian Pines
datasets follows the similar trends as the Salinas dataset. The results demonstrate that
the proposed Soft-MLP, which applies the soft split operation by separating the input HSI
sample into fixed patches with overlapping, is effective.

In addition, the proposed Soft-MLP-L has the best performance of all methods on
all datasets. Specifically, the proposed Soft-MLP-L boosts OA by 2.24% for the Salinas
dataset, 1.83% for the Pavia dataset, and 2.13% for the Indian Pines dataset, compared to
the proposed Modified-MLP with 200 training samples. The proposed Soft-MLP-L also
exceeds HybridSN by 3.35%, 2.15%, and 6.23% on the Salinas, Pavia, and Indian Pines
datasets, respectively. These results indicate that the proposed MLP-based methods are
effective. In the future, we will explore more new ideas in deep learning methods to further
improve the classification performance of the MLP-based method.
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Table 4. Classification results on the Salinas dataset.

Method RBF-SVM EMP-SVM CNN SSRN VGG HybridSN Modified-MLP Multiscale-
MLP

Soft-
MLP

Soft-
MLP-L

OA (%) 83.09 ± 1.08 87.59 ± 2.39 88.40 ± 2.13 88.73 ± 2.06 89.25 ± 5.20 90.81 ± 2.87 91.92 ± 2.45 92.25 ± 2.57 93.48 ± 1.30 94.16 ± 0.71
AA (%) 85.46 ± 2.06 88.65 ± 1.93 92.48 ± 2.79 92.63 ± 1.47 90.16 ± 4.81 90.77 ± 3.27 92.05 ± 3.41 93.50 ± 2.22 94.21 ± 2.76 93.94 ± 1.43
K × 100 81.07 ± 1.19 86.15 ± 2.75 88.27 ± 2.73 87.51 ± 2.26 88.05 ± 5.82 89.90 ± 3.25 90.96 ± 2.74 91.33 ± 2.51 92.70 ± 1.46 93.46 ± 0.81
Brocoli_

green_weeds_1 94.15 ± 0.50 95.28 ± 4.21 81.75 ± 5.36 100.00 ± 0.00 82.46 ± 17.94 99.53 ± 0.68 87.56 ± 17.77 93.31 ± 17.69 99.87 ± 21.95 95.24 ± 6.23

Brocoli_
green_weeds_2 98.57 ± 0.89 98.49 ± 0.28 88.89 ± 7.69 100.00 ± 0.00 88.85 ± 2.11 99.88 ± 0.21 91.52 ± 4.04 91.75 ± 4.98 87.27 ± 6.53 85.46 ± 6.82

Fallow 90.56 ± 0.50 70.53 ± 22.58 89.35 ± 3.85 72.85 ± 13.98 92.04 ± 1.61 87.06 ± 16.91 87.03 ± 15.21 95.73 ± 4.71 97.21 ± 5.23 95.20 ± 2.69
Fallow_rough_plow 98.93 ± 0.40 99.80 ± 0.12 80.01 ± 5.86 99.78 ± 2.15 89.86 ± 0.37 86.68 ± 14.06 97.15 ± 3.94 93.14 ± 8.40 99.68 ± 1.71 97.27 ± 2.17

Fallow_smooth 95.23 ± 0.63 93.34 ± 4.40 88.40 ± 2.57 98.68 ± 0.54 98.32 ± 3.18 92.29 ± 9.29 95.19 ± 4.88 95.46 ± 5.57 97.68 ± 5.41 96.96 ± 1.50
Stubble 99.25 ± 0.91 99.36 ± 0.22 90.45 ± 6.38 99.85 ± 0.89 99.97 ± 1.53 98.26 ± 2.48 99.53 ± 0.98 99.86 ± 0.18 99.89 ± 0.50 99.67 ± 0.40
Celery 98.82 ± 0.33 97.48 ± 1.84 97.96 ± 2.79 99.43 ± 0.43 96.98 ± 3.36 97.66 ± 2.51 96.42 ± 3.54 96.65 ± 3.15 99.68 ± 0.32 95.09 ± 3.84

Grapes_untrained 78.50 ± 0.57 90.09 ± 7.83 69.63 ± 9.62 62.90 ± 14.95 75.66 ± 11.52 88.21 ± 4.01 88.51 ± 6.99 84.56 ± 10.12 88.34 ± 4.30 92.70 ± 0.63
Soil_vinyard_develop 94.11 ± 0.50 98.89 ± 0.08 89.33 ± 9.79 97.87 ± 3.96 98.44 ± 0.13 99.73 ± 0.56 99.32 ± 0.67 99.93 ± 0.20 100.00 ± 0.00 99.87 ± 0.18

Corn_senesced
_green_weeds 85.56 ± 0.36 90.74 ± 2.23 85.75 ± 9.08 88.08 ± 5.20 96.76 ± 13.29 85.54 ± 12.82 98.22 ± 1.50 98.78 ± 2.23 97.05 ± 2.76 97.49 ± 4.22

Lettuce_romaine_4wk 90.63 ± 0.78 93.06 ± 2.02 88.92 ± 9.72 86.54 ± 7.17 95.72 ± 28.25 78.36 ± 11.74 98.54 ± 2.18 94.25 ± 12.50 97.85 ± 3.56 99.08 ± 1.62
Lettuce_romaine_5wk 99.48 ± 0.03 99.98 ± 0.04 82.07 ± 9.37 99.41 ± 5.75 97.41± 1.01 90.06 ± 8.95 96.43 ± 2.46 98.58 ± 1.97 95.59 ± 3.70 98.53 ± 1.07
Lettuce_romaine_6wk 20.08 ± 2.47 77.91 ± 39.03 82.65 ± 8.30 84.74 ± 7.69 96.82 ± 37.37 79.08 ± 16.67 93.21 ± 6.55 88.29 ± 13.54 95.54 ± 11.66 92.43 ± 6.93
Lettuce_romaine_7wk 66.29 ± 1.67 98.34 ± 0.99 85.41 ± 9.25 99.33 ± 1.18 98.23 ± 1.40 91.44 ± 8.47 85.59 ± 19.38 95.49 ± 4.83 84.14 ± 8.47 92.73 ± 9.19

Vinyard_untrained 59.14 ± 1.06 35.73 ± 30.40 76.80 ± 18.48 93.40 ± 12.17 84.13 ± 35.13 83.29 ± 7.32 79.57 ± 11.79 83.28 ± 19.88 85.40 ± 7.80 88.17 ± 5.88
Vinyard_vertical_

trellis 66.96 ± 0.78 79.35 ± 6.22 56.06 ± 12.02 98.71 ± 2.58 50.94 ± 41.64 90.23 ± 11.11 78.98 ± 18.37 87.00 ± 15.40 82.20 ± 36.36 77.18 ± 20.27
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Table 5. Classification results on the Pavia dataset.

Method RBF-SVM EMP-SVM CNN SSRN VGG HybridSN Modified-
MLP

Multiscale-
MLP

Soft-
MLP

Soft-
MLP-L

OA (%) 80.06 ± 1.52 89.43 ± 1.20 91.41 ± 1.44 91.59 ± 3.57 91.72 ± 2.12 91.81 ± 1.35 92.13 ± 2.76 92.22 ± 1.32 93.02 ± 1.64 93.96 ± 2.11
AA (%) 69.48 ± 3.03 80.37 ± 3.60 81.03 ± 4.99 87.56 ± 3.57 84.13 ± 5.41 84.73 ± 1.81 88.48 ± 3.94 87.15 ± 2.09 88.38 ± 3.36 88.77 ± 3.76
K × 100 74.19 ± 2.02 85.81 ± 1.64 89.12 ± 1.83 88.96 ± 1.56 89.53 ± 2.70 89.22 ± 1.82 90.07 ± 3.48 90.17 ± 1.66 91.13 ± 1.70 92.39 ± 2.70
Asphalt 88.75 ± 2.70 91.84 ± 1.75 92.36 ± 5.62 99.62 ± 2.57 89.85 ± 2.05 89.34 ± 3.64 92.68 ± 4.40 91.52 ± 4.18 93.11 ± 3.75 91.55 ± 6.27

Meadows 94.94 ± 1.47 98.02 ± 0.68 98.85 ± 1.04 98.85 ± 4.91 98.68 ± 1.23 99.55 ± 1.36 97.20 ± 1.62 98.06 ± 1.57 97.04 ± 1.43 98.48 ± 1.89
Gravel 34.89 ± 15.46 66.63 ± 14.10 42.94 ± 22.88 90.99 ± 25.41 68.99 ± 11.70 71.10 ± 9.07 79.84 ± 6.59 77.87 ± 10.70 73.10 ± 11.29 89.19 ± 16.83
Trees 64.11 ± 9.76 92.10 ± 5.14 93.52 ± 3.53 94.13 ± 8.55 86.72 ± 2.18 91.08 ± 6.13 94.53 ± 1.02 84.05 ± 5.60 84.72 ± 6.67 91.39 ± 6.78

Metal sheets 89.35 ± 8.20 86.26 ± 21.92 99.33 ± 0.72 99.63 ± 2.74 99.71 ± 0.21 99.93 ± 0.67 98.49 ± 1.11 97.40 ± 5.49 98.15 ± 3.55 90.80 ± 3.07
Bare soil 66.54 ± 6.15 78.66 ± 7.12 98.62 ± 1.54 77.72 ± 8.91 91.36 ± 3.23 99.09 ± 1.90 86.72 ± 3.97 91.20 ± 2.98 90.21 ± 6.43 96.23 ± 5.64
Bitumen 55.77 ± 22.79 74.43 ± 10.12 45.56 ± 27.30 59.63 ± 15.34 75.24 ± 22.87 73.33 ± 5.83 88.23 ± 11.54 90.16 ± 5.96 90.69 ± 8.28 88.34 ± 14.86

Bricks 73.39 ± 7.31 90.92 ± 3.70 90.60 ± 5.68 67.52 ± 23.28 97.24 ± 1.59 71.74 ± 13.24 88.25 ± 6.61 92.94 ± 2.84 91.50 ± 6.19 93.59 ± 7.51
Shadow 57.61 ± 21.51 74.11 ± 22.21 67.52 ± 33.51 99.90 ± 2.89 49.41 ± 26.69 67.38 ± 14.03 70.38 ± 14.97 61.16 ± 16.23 40.67 ± 28.98 48.73 ± 20.27

Table 6. Classification results on the Indian Pines dataset.

Method RBF-SVM EMP-SVM CNN SSRN VGG HybridSN Modified-MLP Multiscale-
MLP Soft-MLP Soft-

MLP-L

OA (%) 79.75 ± 1.89 81.53 ± 2.39 86.81 ± 1.28 83.21 ± 1.25 86.80 ± 1.08 83.08 ± 2.85 87.18 ± 1.53 87.59 ± 1.75 88.37 ± 1.31 89.31 ± 0.78
AA (%) 60.11 ± 2.56 72.43 ± 6.35 68.30 ± 4.82 62.88 ± 7.12 63.18 ± 1.98 70.38 ± 5.17 72.27 ± 4.54 67.26 ± 5.07 72.17 ± 5.29 76.23 ± 3.22
K × 100 75.82 ± 2.35 78.87 ± 2.78 84.20 ± 1.57 80.86 ± 1.39 84.10 ± 1.29 81.65 ± 2.60 84.65 ± 1.85 85.09 ± 2.14 86.07 ± 1.59 87.20 ± 0.90
Alfalfa 38.67 ± 26.66 50.27 ± 41.37 38.70 ± 32.39 25.00 ± 35.08 35.56 ± 9.07 36.89 ± 13.20 60.69 ± 40.45 46.15 ± 31.40 50.45 ± 37.67 54.54 ± 50.43

Corn-notill 80.01 ± 9.17 72.43 ± 7.51 84.64 ± 6.07 87.16 ± 12.44 90.74 ± 1.98 73.12 ± 6.58 89.16 ± 4.33 88.03 ± 3.60 88.26 ± 5.39 92.14 ± 3.11
Corn-min 52.50 ± 11.83 80.77 ± 5.42 63.15 ± 22.10 95.61 ± 20.25 38.80 ± 20.66 72.04 ± 5.73 59.89 ± 17.34 53.83 ± 21.43 60.24 ± 22.20 47.85 ± 18.06

Corn 23.85 ± 22.71 74.44 ± 19.28 55.37 ± 45.79 20.60 ± 17.82 55.32 ± 27.30 59.01 ± 9.70 44.68 ± 38.53 50.63 ± 35.28 49.90 ± 38.15 82.94 ± 14.47
Grass-pasture 61.00 ± 16.10 77.04 ± 8.10 56.41 ± 10.40 84.93 ± 21.91 51.24 ± 11.62 79.04 ± 12.82 65.29 ± 12.39 55.64 ± 27.08 71.06 ± 15.30 71.60 ± 14.29

Grass-trees 91.76 ± 4.49 95.27 ± 3.54 96.90 ± 3.94 99.71 ± 6.22 94.21 ± 2.60 96.12 ± 3.01 93.30 ± 3.13 93.56 ± 3.66 89.95 ± 7.86 95.46 ± 2.50
Grass-pasture-mowed 16.58 ± 23.12 49.63 ± 49.64 42.54 ± 38.16 28.70 ± 48.04 13.58 ± 19.21 59.99 ± 23.05 21.28 ± 39.84 3.09 ± 10.69 42.07 ± 45.77 51.76 ± 48.25

Hay-windrowed 87.89 ± 8.56 97.43 ± 2.90 85.84 ± 27.28 97.65 ± 2.15 73.44 ± 18.42 99.87 ± 0.28 90.05 ± 7.87 94.40 ± 6.84 91.50 ± 10.38 82.75 ± 20.05
Oats 42.21 ± 37.64 28.95 ± 39.68 12.75 ± 18.33 9.28 ± 43.22 24.07 ± 34.05 15.79 ± 35.30 44.01 ± 47.16 13.96 ± 32.61 12.11 ± 25.79 35.79 ± 39.28

Soybean-notill 74.57 ± 8.69 74.92 ± 7.72 90.33 ± 6.48 80.77 ± 8.61 85.78 ± 4.08 85.56 ± 1.95 86.01 ± 9.06 89.57 ± 3.49 87.91 ± 2.85 92.81 ± 3.63
Soybean-mintill 92.74 ± 3.23 85.30 ± 4.85 94.21 ± 3.32 83.09 ± 6.57 95.70 ± 1.82 92.04 ± 3.49 91.82 ± 2.53 95.10 ± 1.57 94.85 ± 0.95 93.69 ± 1.85
Soybean-clean 48.60 ± 13.61 60.49 ± 10.01 58.07 ± 12.47 70.77 ± 21.72 69.35 ± 8.91 60.89 ± 14.47 65.56 ± 17.23 71.56 ± 20.86 75.11 ± 16.39 73.89 ± 13.50

Wheat 61.59 ± 25.50 75.54 ± 37.88 85.99 ± 14.62 98.48 ± 12.96 96.75 ± 2.72 77.88 ± 13.08 83.02 ± 16.25 77.20 ± 22.52 90.13 ± 9.74 83.77 ± 22.68
Woods 94.26 ± 2.15 96.56 ± 3.24 96.63 ± 2.53 96.99 ± 3.86 98.02 ± 1.93 96.30 ± 2.68 96.30 ± 2.46 96.67 ± 3.15 96.50 ± 2.68 94.39 ± 4.84

Buildings-Grass-Trees 52.78 ± 28.23 73.77 ± 9.55 67.38 ± 28.38 38.76 ± 18.17 58.04 ± 42.38 65.92 ± 17.24 84.59 ± 23.84 79.38 ± 18.41 77.92 ± 29.59 89.03 ± 19.96
Stone-Steel-Towers 42.78 ± 34.42 66.09 ± 43.03 63.96 ± 33.59 53.85 ± 44.51 30.22 ± 12.73 55.70 ± 12.43 66.36 ± 30.98 67.44 ± 36.81 75.20 ± 28.75 77.29 ± 31.60
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In addition, to validate the proposed methods are effective with different training
samples, Figures 14 and 15 show the OA of different methods (i.e., EMP-SVM, CNN,
SSRN, Modified-MLP, Multiscale MLP, and Soft-MLP) on the different datasets with 150
and 300 training samples, respectively. Specifically, the proposed Soft-MLP achieves the
best performance on the three datasets, which reaches 90.64%, 90.55%, and 85.13% on the
Salinas, Pavia, and Indian Pines datasets, respectively, with only 150 training samples. In
addition, when 300 training samples are used in the experiments, the proposed MLP-based
methods have also achieved better results compared to comparison methods. Especially,
for the Indian Pines dataset, the proposed Soft-MLP improves the classification accuracy
by 5.23%, 4.4%, and 3.07% compared to EMP-SVM, CNN, and SSRN, respectively. All the
results demonstrate that the proposed methods are effective.

Figure 14. Test accuracy (%) comparisons under different methods on the three datasets with
150 training samples.

Figure 15. Test accuracy (%) comparisons under different methods on the three datasets with
300 training samples.

3.5. Comparison with Different Methods with Cross-Validation Strategy

Cross-validation is a popular strategy for model selection, which relies on a prelimi-
nary partitioning of the data into g subsamples, and each subsample can be selected as the
validation sample. In the experiments, the fivefold cross-validation is used with the sum of
200 labeled samples on the three datasets. The results of the corresponding experiments
are shown in Figure 16.

Figure 16. Results of different methods with cross-validation.
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One can see that the proposed MLP-based methods also yield the highest OA on the
three datasets. Take the Salinas dataset as an example; compared to the other methods (i.e.,
EMP-SVM, CNN, SSRN, and VGG), the proposed Soft-MLP improves the OA by 6.88%,
4.59%, 3.56%, and 2.89%, respectively. The results demonstrate that the proposed methods
(i.e., Modified-MLP, Multiscale-MLP, and Soft-MLP) have better performance compared
with other comparison methods.

3.6. Comparison the Running Time and Computational Complexity of the Proposed Methods with
the State-of-the-Art Methods

In order to comprehensively analyze the proposed approaches and the state-of-the-art
methods, here, computational cost of different methods is analyzed, which is reported
in Table 7. All the experiments are conducted on a computer with an Intel Xeon Silver
4210R processor with 2.4 GHz, 128GB of DDR4 RAM, and an NVIDIA Tesla V100 graphical
processing unit (GPU). From the view of the running time, the proposed Soft-MLP con-
sumes more time compared to other deep learning-based methods on all the datasets, due
to each input of the model being split into several fixed patches with overlapping. Thus,
the number of the patches is larger than other methods, which adds the dimension of the
input of the proposed Soft-MLP. For the proposed Modified-MLP method, compared to
the SSRN, the training time is shorter. Take the Salinas dataset as an example; due to the
fact that the number of epochs of Modified-MLP is smaller than SSRN, the training time
reduces by 77.55 s. Compared to CNN and VGG, the training time of Modified-MLP takes
longer on the three datasets. In addition, compared to the Modified-MLP, the training time
and test time of the proposed Soft-MLP and Soft-MLP-L are longer, but these methods
obtain better classification performance.

Table 7. Time consumption and computational complexity on the three datasets.

Datasets Methods Training Time (s) Test Time (s) FLOPs (M) Total Parameters (M)

Salinas

CNN 28.99 82.52 13.25 0.13
SSRN 141.57 66.69 47.13 0.24
VGG 63.62 88.43 442.65 14.85

Modified-MLP 64.02 63.24 45.62 0.72
Multiscale-MLP 105.4 63.81 121.51 9.17

Soft-MLP 164.57 93.92 524.45 9.27
Soft-MLP-L 169.93 94.56 524.45 9.27

Pavia

CNN 18.52 28.77 9.726 0.13
SSRN 76.82 20.58 29.12 0.14
VGG 26.56 30.61 379.29 14.79

Modified-MLP 59.45 49.23 38.67 0.61
Multiscale-MLP 51.34 21.77 81.79 4.93

Soft-MLP 206.97 65.41 317.61 4.99
Soft-MLP-L 230.95 61.88 317.61 5.01

Indian Pines

CNN 23.50 9.23 13.11 0.13
SSRN 132.51 3.68 46.19 0.23
VGG 32.28 10.32 440.14 14.85

Modified-MLP 126.09 5.43 57.67 0.91
Multiscale-MLP 80.40 7.27 119.93 8.89

Soft-MLP 116.41 11.23 516.26 9.00
Soft-MLP-L 153.54 13.64 516.26 9.09

In addition, the number of floating-point operations (FLOPs) [52] of different methods
is also reported in Table 7. Compared to the VGG and SSRN, the proposed Modified-
MLP has smaller FLOPs on the Salinas dataset. The proposed Modified-MLP needs
fewer FLOPs compared to the VGG on the Pavia and Indian Pines datasets. Besides,
the number of parameters of various approaches is also computed, which is shown in
the last column in Table 7. From the results, compared to the VGG, there are fewer
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parameters in the proposed Modified-MLP, Multiscale-MLP, Soft-MLP, and Soft-MLP-L
on all the datasets. Compared to the CNN and SSRN, the proposed methods have more
total parameters because the depth and width of the proposed methods are larger, which
results in increasing FLOPs and total parameters, but the accuracies of the proposed
methods are the highest. Specifically, compared to the Modified-MLP, Multiscale-MLP
increases the FLOPs by 75.89 Mbytes, 43.12 Mbytes, and 62.26 Mbytes, and increases the
total parameters by 8.45 Mbytes, 4.32 Mbytes, and 7.98 Mbytes on the Salinas, Pavia, and
Indian Pines datasets, respectively. Because the proposed Multiscale-MLP aims to capture
the spectral–spatial information in patches with different scales and the proposed Soft-MLP
transforms the input HSI sample with an overlap style, there are larger FLOPs and total
parameters compared to the proposed Modified-MLP. For the proposed Soft-MLP-L, it
is similar to the Soft-MLP in terms of FLOPs and total parameters on the three datasets,
which demonstrates that Soft-MLP-L is an effective method for HSI classification.

3.7. Classification Maps

To facilitate visual comparison, the classification maps of different approaches for
all the datasets with 200 training samples are displayed in Figures 17–19. As can be
seen from these figures, compared to the classical method EMP-SVM and deep learning-
based methods including CNN, SSRN, VGG, our proposed methods have more precise
classification results. More specifically, there are noisier scatter points in the classification
map of EMP-SVM compared to deep learning-based methods on the three datasets. Take
the Pavia dataset as an example; for the class of Bitumen color in blue shown in Figure 17b–i,
the proposed Modified-MLP appears to be more smoothing. Furthermore, metal sheets
color in green depicts more errors compared to the proposed Modified-MLP, Multiscale-
MLP, and Soft-MLP. All the figures reveal that the proposed methods (i.e., Modified-MLP,
Multiscale-MLP, Soft-MLP, and Soft-MLP-L) stand out from other competitors.

Figure 17. Salinas. (a) False-color composite image. The classification maps using (b) EMP-SVM; (c) CNN; (d) SSRN;
(e) VGG; (f) Modified-MLP; (g) Multiscale-MLP; (h) Soft-MLP; (i) Soft-MLP-L.

Figure 18. Pavia. (a) False-color composite image. The classification maps using (b) EMP-SVM; (c) CNN; (d) SSRN; (e) VGG;
(f) Modified-MLP; (g) Multiscale-MLP; (h) Soft-MLP; (i) Soft-MLP-L.
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Figure 19. Indian Pines. (a) False-color composite image. The classification maps using (b) EMP-SVM; (c) CNN; (d) SSRN;
(e) VGG; (f) Modified-MLP; (g) Multiscale-MLP; (h) Soft-MLP; (I) Soft-MLP-L.

3.8. Experimental Summary

Overall, compared to the traditional methods (i.e., RBF-SVM and EMP-SVM) and deep
learning-based approaches (i.e., CNN, VGG, SSRN, and HybridSN), the overall accuracies
of all the proposed methods (i.e., Modified-MLP, Multiscale-MLP, Soft-MLP, and Soft-MLP-
L) have improvements on the three public HSI datasets and the corresponding classification
maps have also demonstrated that the proposed methods achieve competitive performance.
In addition, the total parameters, FLOPs, and time of the proposed methods are larger
compared to other methods, but the accuracies of the proposed methods are the highest.
To some extent, the proposed methods based on the well-designed MLPs have potential
for HSI classification.

4. Conclusions

This study presented modified MLP-based methods for HSI classification, which
demonstrated that the proposed MLPs obtained good classification performance compared
with state-of-the-art CNNs.

Specifically, compared to the traditional MLP architecture, the Modified-MLP was
composed of the spectral–spatial feature mapping and spectral–spatial information mix-
ing with a new architecture (i.e., normalization layer, residual connections, and GELU
operations). Modified-MLP learned long-range spectral–spatial feature interactions in and
among different patches, which were useful for HSI classification. Moreover, the Multiscale-
MLP was exploited to capture adaptive spectral–spatial information with multiple scales,
which was conveyed by patch-level input sufficiently. Furthermore, another Soft-MLP
was investigated to enhance classification results flexibly by applying soft split operation,
which was able to change the fixed-size patch into variable size with overlapping at any
length; therefore, each patch is correlated with its surrounding patches. Compared to the
popular spectral–spatial extraction methods, the proposed MLP-based approaches (i.e.,
Modified-MLP, Multiscale-MLP, and Soft-MLP) led to better results with limited training
samples. This study demonstrates that the solely MLP-based HSI classification methods
have obtained impressive results without convolution operation. Most of all, this study
opens a new window for further research of HSI classification, which demonstrates that
the well-designed MLPs can also obtain remarkable classification performance of HSI.

Although it is an early try of MLP-based HSI classification, the modified MLPs ob-
tained better classification performance compared to traditional methods (i.e., RBF-SVM
and EMP-SVM) and many recently proposed deep learning-based methods such as CNN,
SSRN, VGG, and HybridSN.

Recently, much progress has been achieved in the machine learning community and
some of them, such as transfer learning, can be combined with MLP to further improve the
performance of MLP-based HSI classification.
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