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Abstract: An earthquake-induced landslide (EQIL) is a rapidly changing process occurring at the
Earth’s surface that is strongly controlled by the earthquake in question and predisposing conditions.
Predicting locations prone to EQILs on a large scale is significant for managing rescue operations and
disaster mitigation. We propose a deep learning framework while considering the source area feature
of EQIL to model the complex relationship and enhance spatial prediction accuracy. Initially, we used
high-resolution remote sensing images and a digital elevation model (DEM) to extract the source area
of an EQIL. Then, 14 controlling factors were input to a stacked autoencoder (SAE) to search for robust
features by sparse optimization, and the classifier took advantage of high-level abstract features to
identify the EQIL spatially. Finally, the EQIL inventory collected from the Wenchuan earthquake
was used to validate the proposed model. The results show that the proposed method significantly
outperformed conventional methods, achieving an overall accuracy (OA) of 91.88%, while logistic
regression (LR), support vector machine (SVM), and random forest (RF) achieved 80.75%, 82.22%,
and 84.16%, respectively. Meanwhile, this study reveals that shallow machine learning models only
take advantage of significant factors for EQIL prediction, but deep learning models can extract more
effective information related to EQIL distribution from low-value density data, which is why its
prediction accuracy is growing with increasing input factors. There is hope that new knowledge
of EQILs can be represented by high-level abstract features extracted by hidden layers of the deep
learning model, which are typically acquired by statistical methods.

Keywords: spatial prediction; earthquake-induced landslide; source area feature; stacked autoencoder

1. Introduction

Globally, many earthquakes occur annually due to the release of accumulated stress in
the Earth’s crust. Catastrophic earthquakes (≥magnitude 6) in mountainous regions could
trigger numerous landslides on steep mountain slopes [1,2]. Such earthquake-induced
landslides (EQILs) can cause tragic economic losses and human causalities by damaging
buildings, critical infrastructures, and the environment. Furthermore, other landslides
block rivers to form a dammed lake that is a potential risk for outburst floods and debris
flow, threatening people and properties downstream [3,4]. Therefore, it is valuable to
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describe and predict the spatial distribution of earthquake-induced landslides for the sake
of disaster prevention and mitigation [5–7].

The occurrences of EQILs are primarily controlled by causative factors, including
seismic parameters, topography, lithology, tectonics, and human activities, making the
spatial patterns of EQILs complicated [8–10]. Thus, predicting where landslides are likely
to occur after an earthquake is a challenging task [6,11]. In the past two decades, many
predictive models have been developed to identify landslide-prone areas after earthquakes,
and these are divided into two general categories: (1) physical- and numerical-based
models [12–15]; (2) susceptibility assessment models [16,17].

The physically based models (PBMs) were deduced from the mechanics of slope-
failure initiation and runout. Among those models, pseudostatic analysis was the first
proposed, assuming that the earthquake force is a permanent body force added to static
limit–equilibrium analysis [18,19]. Although pseudostatic analysis is conceptually simple,
selecting a pseudostatic coefficient lacks criteria, and crude assumption always leads to
conservative results [20]. Stress–deformation analysis, as an extension of finite-element
modeling, was later developed and provided a valuable tool for modeling the static and
dynamic deformation of slopes. This method is based on mathematical computation, with
the capability to solve physical problems with complex geometries, material properties, and
boundary conditions, and it is suitable for critical projects researching the stability of artifi-
cial slopes [21]. Soon after its implementation, permanent-displacement analysis—whose
complexity is between that of the two methods above—was proposed to estimate seismi-
cally driven displacements of landslides, considering landslide as a rigid–plastic body that
slides on an inclined plane. The representative models of permanent-displacement analysis
are the Newmark model and its variations [22]. Over the past few years, the accuracy of
physically based models has been enhanced significantly with improvements in analyzing
EQIL mechanisms. However, PBMs require a large number of parameter values, which
limits their application in a large geographical area [20].

Later, researchers gradually began exploring susceptibility assessment models (SAM)
that could represent a potential relationship between EQIL and causative variables and
identify EQIL-prone areas [23]. In recent years, landslide susceptibility models have become
increasingly popular due to the fast development of computer technology, geographic
information systems (GIS), and data mining [24]. Those models can be divided into two
categories: knowledge-driven models that are based on expert knowledge and data-driven
models that are based on historical landside inventories and related spatial causative data
of landslides [25]. The knowledge-based models utilize expert knowledge to quantitatively
express the relationship between the landslide occurrence and causative factors, and
they regard the analytic hierarchy process (AHP) as the most representative one [26].
For the data-driven models, many statistical methods and machine learning approaches
have been introduced to model the probability of landslide occurrence; these mainly
include multivariate logistic regression (MLR), artificial neural networks (ANN) [27],
support vector machine (SVM) [28], random forests (RF), and decision tree approaches [29].
Researchers have indicated that data-driven models outperform knowledge-driven models
in susceptibility mapping. Data-driven models pave the way for detecting the potential
distribution pattern of EQILs, which is difficult when only using the naked eye [11].

However, most of the data-driven models mentioned above are traditional machine
learning algorithms that can simply represent a single layer of linear or nonlinear relations
between causative factors and landslide occurrence [30]. Therefore, those models can easily
be overfitted or become stuck on a local optimum when faced with complex data [31,32].
On the other hand, these landslide prediction models rarely consider the difference be-
tween landslide source and accumulation due to a limitation in EQIL inventories that
always records an EQIL as points or polygons. In the last decade, many deep learning
algorithms have achieved remarkable results in computer vision, speech recognition, and
intelligent control of robots, whose capacity for exploiting the potential of multiple rela-
tionships in massive data has also been gradually noticed by geohazard specialists [33–38].
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Consequently, some types of deep learning framework have been successfully applied to
landslide detection and prediction, including deep neural networks (DNN), convolution
neural networks (CNNs), stacked autoencoder (SAE), and their derivative models [39,40].

In this paper, a deep learning framework that considers landslide source area is
proposed for the spatial prediction of EQIL. Then, the EQIL inventory of the Wenchuan
earthquake is used as a sample dataset to train and test the proposed approach. A compre-
hensive comparison with traditional machine learning models, such as MLR, SVM, and
decision tree, is carried out.

2. Methods and Methods

As mentioned above, a new deep learning-based framework is applied for spatially
predicting EQILs. In this framework, the stacked autoencoder is responsible for extracting
the deep distribution features of EQIL that could represent the nonlinear and interacting
relationship between causative factors and EQIL occurrence. Then, those extracted features
are input into a classifier to identify an EQIL-prone area.

2.1. Background

An autoencoder (AE) is a kind of construction of the neural network that consists of
an input layer x ∈ Rn, a hidden layer t ∈ Rp, and an output layer y ∈ Rm (Figure 1). In the
input layer, the value of every unit denotes raw data that are a quantitative description of
the object. After encoding and decoding, the raw data are transformed into a feature space,
which is more suitable for pattern recognition or classification [41]. In detail, the AE will
first map input layer x into latent vector y by the encoding process. Mathematically, this
step is formulated as

t = f (Wxx + bx) (1)

where Wx denotes the weights of input-hidden layers, bx denotes bias term, and f (.) is an
activation function named Sigmoid y = 1/1 + exp(−x). Then, the value of the output layer
is calculated using

y = f (Wyt + by) (2)

where Wy denotes the weights of hidden-output layers and by denotes the bias term of
hidden and output units.
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Figure 1. Illustration of AE and SAE: Wx, bx, Wy, by represent the weights matrix and bias vector; x, t, y represent the
input layer, hidden layer, reconstructed layer, respectively.

There are some errors between the input layer and the output layer from constructed
AE with randomly initialized parameters. These errors will limit the output layer’s capacity
to represent the input layer, causing information loss. Therefore, an unsupervised learning
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method is used to train parameters θ =
{

Wx, Wy, bx, by
}

by minimizing the loss function.
For real-valued inputs, MSE is deemed as a suitable loss function, which is written as

J(x, y; θ) =
1

2n

n

∑
i=1

(xi − yi)
2 + 2λΩ(W) (3)

Ω(W) =
m

∑
j=1

p

∑
k=1

W2
jk (4)

where Ω(W) denotes a regularization term that could avoid the overfitting problem of the
model, such as L2 normalization; λ is decay parameter that balances the relative importance
of the regularization term and MSE.

With the loss function, the group of parameter θ is updated by an optimization
algorithm, i.e., stochastic gradient descent (SGD), as follows:

Wt = Wt−1 + η
∂J(θ)
∂W

(5)

bt
x = bt−1

x + η
∂J(θ)
∂bx

(6)

bt
y = bt−1

y + η
∂J(θ)
∂by

(7)

where η is the learning rate that could also be dynamically adjusted, increasing the iteration
number. When the loss function reaches the relative minimum, the weights matrix and
bias vectors are set as AE’s optimal parameters in the specified dataset.

A trained AE has the ability to reconstruct the input data by using a hidden layer. The
hidden layer is regarded as an abstract feature representing one kind of property of input
data. However, a single AE is limited in feature representation, especially when it comes to
highly complex data. SAE, constructed with AEs layer by layer, was proposed to generate
the deep abstract feature and was expected to enhance data classification performance.
SAE is stacked with several AEs, in which every hidden unit of the former is set as input
units of the next AE. Thus, the output of the SAE can be expressed as follows:

hk = f 1( f 2( f 3(. . . f k()))) (8)

f 1 = (W1x + b1) (9)

where W1 and b1 denote the weight matrix and bias vector of first AE, respectively.
To obtain the SAE with the ability of data identification, there is a classification layer

on top of SAE, such as Softmax [42], naive Bayes, and support vector machine (SVM).
Consequently, two training processes are conducted to update the parameters. In the first
step, the AEs are applied to the unsupervised method to find the optimal parameter of
data reconstruction one by one, which is called “greedy layerwise pretraining”. Then,
fine-tuning is adopted to train the whole network. In this step, the loss function is deduced
based on the difference between the truth label and the predicted one. It is recognized
from the introduction above that all the parameters in the framework contribute to the loss
function. Therefore, the error backpropagation algorithm and stochastic gradient descent
are combined to optimize the loss function.

2.2. Prediction Framework

Through EQIL inventory statistics, many research works have proved that several
related factors control the occurrence of EQIL. Based on these conclusions, the traditional
prediction models are applied to represent the relationship between related factors and
EQIL. However, these models paid more attention to every factor’s contribution, rather than
the combined effect of factors, which limited performance in EQIL prediction. Therefore,
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we propose a deep learning framework considering landslide source area to model the
complex relationship and enhance spatial prediction accuracy.

As shown in Figure 2, the raw features, including triggering and predisposing factors,
are input to the model after normalization processing to avoid the convergence failure
problem. The first feature layer is then deduced by single-layer AE, which represents the
raw dataset with minimum information loss. Some pretrained AEs are stacked to generate
high-level abstract features layer by layer, and mapping the relationship between related
factors and EQIL occurrence, which is so-called “greedy layer-wise training”.

Mathematics 2021, 1, 0 6 of 17

inverse problems for parameter estimation, the iterative least-square method is required.
Thus, the estimation of the unknowns is updated at each iteration as follows,

Ξk+1 = Ξk + ∆Ξk (9)

where the k subscript refers to the current iteration. In general, the ∆Ξk term can be defined
by performing classic linear least-square at each iteration of the iterative least-square
procedure as follows,

∆Ξk = −
(
JT(Ξk)J(Ξk)

)−1
J(Ξk)

TL(Ξk) (10)

where J is the Jacobian matrix containing the derivatives of the losses with respect to all
the unknowns. One can consider computing the Jacobian either by hand or by means of
computing tools, such as Symbolic or Automatic Differentiation Toolboxes. The iterative
process is repeated until either of the following conditions are met,

L2[L(Ξk)] < ε or L2[L(Ξk+1)] > L2[L(Ξk)]. (11)

where ε defines some user prescribed tolerance.
In Figure 1, a schematic that summarizes how the X-TFC algorithm works for solving

inverse problems is shown. The main steps are also reported here:

1. Approximate the latent solution(s) with the CE;
2. Analytically satisfy the ICs/BCs;
3. Expand with the single layer NN (trained via ELM);
4. Substitute into the DE (that can be also a system of DEs);
5. Build the DE losses (that drive the training of the network, informing it with the

physics of the problem);
6. Build the data losses (the data can be provided on the solutions and/or on

their derivatives);
7. Train the network;
8. Build the approximate solution (with the estimated optimal parameters).

Figure 1. Schematic of the X-TFC framework for solving inverse problems.Figure 2. Spatial prediction frameworks of EQIL. Fourteen kinds of related factors are input to the first
layer. Softmax is set as a classifier. We adopt sparse optimization to reduce information redundancy.

At the top of SAE, a classifier is added to decide the probability as to whether an input
pixel belongs to an EQIL. Initially, the classifier without supervised training is unable to
specify the label of pixels; thus, a backpropagation algorithm is often employed to fine-tune
the whole framework.

Many studies have indicated that a different group of factors influences the occurrence
of EQIL, i.e., identifying EQIL could be considered as a multivariate inverse inference
problem, where the hidden units are composite indicators of the prediction model. Gen-
erally, the number of hidden units is more than a composite indicator for the sake of
complete feature extraction. However, more hidden units in the model increase the risk of
feature redundancy and decrease its robustness. To limit the overabundance of information
extraction, sparse optimization is applied to ensure proper units are encouraged to activate
(a unit is supposed as “active” when its output is close to (1)). The loss function of AE is
rewritten as follows:

J(x, y; θ) =
1

2n

n

∑
i=1

(xi − yi)
2 + 2λΩ(W) + βKL(ρ|| ∧ρj) (10)

KL(ρ|| ∧ρj) =
m

∑
j=1

ρ log
ρ
∧
ρj

+ (1− ρ) log
1− ρ

1− ∧ρj

(11)
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where KL(ρ|| ∧ρj) is the Kullback–Leibler (KL) divergence between a Bernoulli random

variable with mean ρ and a Bernoulli random variable with mean
∧
ρj; β is the weight of the

sparsity penalty term.
∧
ρj =

1
m

m

∑
i=1

aj(xi) (12)

where ρ̂j is the average activation of hidden unit j on the training set, m is the number of
samples, and aj denotes activation of hidden unit j based on specified xi.

2.3. Model Evaluation

Predicting EQIL and non-EQIL could be a typical binary classification. Therefore,
we apply a confusion matrix to evaluate the performance of the model; as illustrated in
Table 1, true positive (TP) denotes the number of correct predictions, and false positive
(FP) denotes the number of incorrect predictions that should be non-EQIL. On the contrary,
false negative (FN) denotes the number of incorrect predictions that should be EQIL, and
true negative (TN) denotes the number of correct predictions.

Table 1. Confusion matrix.

Actually Positive (1) Actually Negative (0)

Predicted Positive (1) True Positives (TP) False Positives (FP)
Predicted Negative (0) False Negatives (FN) True Negatives (TN)

Based on the confusion matrix, overall accuracy (OA), Precision, and Recall are deduced
as criteria for performance evaluation, which are written as follows:

OA =
TP + TN

TP + FN + FP + TN
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

The OA is the probability that represents whether a sample is correctly classified,
calculated by summing the number of corrected predictions and dividing by the total
number of samples. Precision is the probability that the predicted EQIL is indeed an EQIL,
which is deduced by summing the total number of correctly predicted EQIL examples and
dividing by the total number of predicted EQILs. High recall score indicates the EQIL is
correctly recognized at good performance, defined as the ratio of correctly predicted EQIL
and the number of positive predictions.

3. EQIL Inventory

EQIL inventories are essential datasets for researchers exploring the relationship be-
tween earthquakes and landslides. Previously, field investigation has been commonly used
to obtain an EQIL inventory, but it is time consuming and incomplete in some remote and in-
accessible places. Remote sensing technology’s popularity makes an EQIL inventory more
reliable, which significantly extends our knowledge of EQILs by statistical methods [43].
Thus far, more than 300 inventories have been constructed after catastrophic earthquakes
that have triggered large numbers of landslides. Among these, more than 60 EQIL invento-
ries have been digitized and spread widely [44]. However, these digital EQIL inventories
were collected from remote sensing images of different resolutions, leading to a large
variability in detail and data format and lack of uniformity and standardization. In this
paper, we chose the detailed Wenchuan EQIL inventory to test the model [45].
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3.1. Study Area

The study area includes most regions affected by the Wenchuan earthquake and is
located between longitudes 102.614–105.482◦ E and latitudes 30.507–32.701◦ N (Figure 3).
It is dominated by alpine valleys, with elevation ranging from 432 m to 5993 m, and
the slope gradient mainly ranges between 20 and 50◦. Meanwhile, the mean annual
precipitation is about 800–1400 mm, most of which takes place during the period from June
to September [46]. Abundant rainfall has promoted high-density drainage networks, with
intense surface erosion.
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Geology map is collected from China geological survey.

This area has tectonically active mountain belts, namely the Longmenshan (LMS)
thrust belt, which is the boundary zone between the Bayankala block of eastern Tibet
Plateau and the Sichuan Basin of South China block. Multistage tectonic events have led to
the extremely complex lithology of LMS. Due to tectonic stresses, the rock masses are highly
fractured and weathered, and consequently prone to slope instability. Based on GPS, it has
been proved that the extrusion of crustal material from the Tibetan Plateau against the rigid
blocks of the Sichuan Basin induces deformation at about 1 mm/yr and accumulates stress
in the Longmenshan regions. Therefore, there are many stress–release earthquakes on faults,
especially on the most active faults, including the Yinxiu-Beichuan Fault, the Maoxian-
Wenchuan Fault, the Guanxian-Anxian Fault, and the Pingwu-Qingchuan Fault (Figure 3).
On 12 May 2008, the devastating Wenchuan earthquake measured Mw 8.3 according to
the China Earthquake Administration (CEA), and it occurred on the Yinxiu-Beichuan
Fault. This earthquake caused more than 69,000 deaths and over 370,000 injuries, with
17,393 missing by 25 April 2009.

3.2. Training and Testing Samples

The Wenchuan earthquake triggered numerous landslides that caused serious casu-
alties and property damage, especially in the high-relief mountain area. To explore the
distribution patterns and mechanisms of EQILs, many studies focused on constructing
the EQIL inventories by remote sensing technology and field surveys. However, those
inventories were in the landslide’s various presentation manner, from polygons, centroid
points, or top points, which could affect the results of statistical analysis. Further, some
EQILs inventories for some earthquakes are inconsistent in number because of different
interpretation standards, remote sensing images, and experts. For those reasons, traditional
inventories are not suitable for training and testing the proposed model.
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In this paper, multisource remote sensing images acquired after the earthquake were
used to map landslides, referred to the existing inventory from [45], as shown in Figure 4.
The landslides were mapped as polygons that separately document source areas and runout
areas, based on image and topographic features (Figure 4b,c) [1]. Only the initiation areas
were set as samples for model training and testing. It is worth noting that some small-scale
rockfalls also cause scars on the image that confuse the interpretation map. Meanwhile,
those small scars can hardly be divided into different parts, which might create errors when
predicting results. Thus, we concentrate on landslides with clear shapes and boundaries.
In total, 23,029 EQILs were ultimately mapped in the study area.
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The proposed model is a pixelwise framework that takes as input a feature vector of an
individual pixel. The landslide polygons are converted to raster format data with a spatial
resolution of 12.5 m, consistent with the resolution of the digital elevation model (DEM).
Then, 8,193,389 pixels represent the whole landslides of the study area, and the same
number of non-landslide pixels that are regarded as adversarial samples are randomly
generated outside the landslide area. In total, a sample database with 1,638,778 pixels is
used to support the proposed framework for learning the distribution pattern of EQIL. To
obtain a robust prediction model, the samples are divided into training and testing sets at a
ratio of 2:8. Detailed information is depicted in Table 2.

Table 2. Samples generated from the EQIL inventory of the Wenchuan earthquake.

Category Name No. of Pixels No. of Training Samples No. of Testing Samples

EQIL 819,389 163,877 655,512

Non-EQIL 819,389 163,877 655,512

Total 1,638,778 327,754 1,211,024

3.3. Training and Testing Samples

In the past three decades, many studies have taken advantage of statistical methods
to analyze the relationship between controlling factors and EQIL. In general, these factors
are mainly categorized into six groups: (1) seismic property; (2) topography; (3) geology;
(4) soil; (5) hydrology; (6) land use. Considering the limitation of data accessibility and the
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importance of factors, we select 14 factors as input variables for the model [1,5], as listed
in Table 3.

Table 3. List of data sources used as controlling factors in this study.

Category Control Factors Data Type Data Source

Seismic property

EI—Earthquake intensity Polygon
China Earthquake

Administration
(CEA)

ED—Epicenter directivity Point

SRD—Surface rupture directivity Polyline

AF—Aftershocks Point

Topography

DEM (12.5 m resolution) Raster

Alaska Satellite
Facility, USA

SLO—Slope gradients Raster

SLOA—Slope aspect Raster

TPI—Topographic position index [47] Raster

SC—Slope curvature Raster

RER—Relative relief Raster

Geology
LITH—Lithology Polygon China Geological

SurveyFD—Fault direction Polyline

Hydrology DR—Distance to rivers Polyline
Department of

Forestry, Sichuan
Province

Soil ST—Soil type Polygon
Department

Natural Resources,
Sichuan Province

The raw data of controlling factors are different from the format, including raster,
polyline, polygon, and point. To overlay all the data together, the raw data of factors
are quantized and converted to raster with a spatial resolution of 12.5 m, except for
topography factors.

For instance, epicenter directivity is denoted as the following index:

Ep =





arctan( xp−xe
yp−ye

) xp > xe and yp > ye

π + arctan( xp−xe
yp−ye

) yp < ye

2π + arctan( xp−xe
yp−ye

) xp < xe and yp > ye

(16)

where (xp, yp) and (xe, ye) are the coordinates of the epicenter and a specific pixel.
The direction of surface rupture and fault controls the sliding direction of the landslide.

To obtain quantitative input for the model, several steps are conducted to reprocess the raw
distribution data of surface rupture and fault. In the first, the fault is cut into subsections
that can more accurately describe the changes in direction along the fault. Then, the
Thiessen polygon that generates competitive advantage trade areas for each point by
creating boundary lines is constructed to determine the affected area of every subsection.
The direction of the subsection is ultimately applied to indicate the fault direction of
the subregion.

The occurrence of aftershocks is a time series process and has an additive effect on
slope failure. Therefore, the aftershocks factor is produced by the kernel density analysis
method that generates the raster data to model the influence of aftershocks.
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Lithology and soil are polygon data, whose relationship with landslide is defined by
the frequency ratio values (FR) method in this study. This indicates a strong correlation
between EQIL and controlling factors when the value of FR is greater than 1.

I =
Li/Lt

Ai/A
(17)

where Li is the area of landslides in ith type, Lt is the total area of landslides, Ai is the area
of ith type, and A is the total area of the study area.

After the preprocessing mentioned previously, all the factors are acquired as shown
in Figure 5.
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4. Experiment and Results

Using sample data and control factors, the model was trained and tested to find the
optimal model structure and parameters. Then, the proposed model was compared with
traditional methods and its performance evaluated. Finally, the advantages of the model in
EQIL prediction are discussed in relation to feature extraction and threshold segmentation.

4.1. Framework Setting

Many studies have proved that the structure of a deep learning model has a great
influence on prediction results. For different datasets, the model must be analyzed to obtain
optimal framework settings. In this study, four kinds of framework setting (including
hidden units, hidden layers, learning rate, and number of iterations) were considered.

The number of hidden units is related to model parameters that decide the model’s
complexity and whether the model is prone to overfitting. Setting the optimal number
of hidden units is challenging, as it is susceptible to many factors, such as the number of
input and output features. To obtain the suitable number of hidden units for EQIL spatial
prediction, the ascending series in intervals of two are experimented with one by one and
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then assessed by OA. As shown in Figure 6, it is proven that the 110 hidden units are
suitable for representing the dataset and can enhance the performance of EQIL prediction
in this study.
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The depth of the framework is denoted by the number of hidden layers that map
the input features to high-level abstract features that represent the multilayer relationship
between EQIL occurrence and its controlling factors. The model then takes advantage
of these mapping relationships to assess whether a slope is prone to landslides under an
earthquake. For complex target recognition, more hidden layers can properly narrow the
“semantic gap”, which is defined as the difference between two kinds of representation
systems of one object. However, the controlling factors are a high-level description of
EQIL by different aspects compared with other raw data (such as a remote sensing image
that just records the features of objects in several channels). It is still necessary to extract
more abstract features to learn the pattern of EQIL spatial distribution, and then predict
potential EQIL.

Therefore, a group of experiments that are in the same setting, except for the number of
hidden layers, is conducted to establish how the final prediction accuracy is affected overall.
As shown in Figure 6, the OA initially becomes higher with hidden layers increasing; it
then decreases. In conclusion, three hidden layers are considered as an optimal setting in
this study.

Learning rate decides the convergence speed in processing parameter optimization
and whether the optimization goal is becoming globally optimal. It is influenced by the
size of sample data and the gradient of the loss function. We considered several learning
rates, including 0.0001, 0.001, 0.01, 0.1, and 0.8, to assess the performance, as shown in
Table 4. It is clear that the bigger learning rate is suitable for optimizing the constructed
objective function in this study.

Table 4. Prediction result assessment with different learning rate.

Learning Rate 0.0001 0.001 0.01 0.1 0.8

OA (%) 80.35 ± 0.40 83.03 ± 0.05 83.84 ± 0.10 85.49 ± 0.16 86.72 ± 0.23
Precision (%) 79.85 ± 0.45 81.91 ± 0.07 82.45 ± 0.13 84.14 ± 0.88 85.37 ± 0.96

Recall (%) 81.24 ± 0.65 84.83 ± 0.001 86.02 ± 0.11 87.53 ± 1.25 88.68 ± 1.9
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The number of iterations determines whether the parametric optimization process
of the model converges. Too many iterations will cause the overfitting of the model and
reduce its robustness. However, too few iterations will result in the model underfitting
and local optimality. Therefore, we searched for the optimal number of iterations through
multiple sets of experiments, and the results are shown in Figure 7. In the initial iteration,
the loss function converges quickly and then slows down gradually. After 30,000 iterations,
the accuracy of the model in the test set and the training set rose asynchronously, indicating
that the model reached overfitting. Consequently, for this dataset and model setting, we
adopted 30,000 iterations to optimize the model’s parameters.
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4.2. Visualizing Result and Performance Assessment

After obtaining the optimal settings for the framework, the training and testing
samples are used to optimize all parameters and then validate the deep learning framework
considering the landslide source area. Three other traditional machine learning algorithms,
including logistic regression (LR), support vector machine (SVM) [48], and random forest
(RF) [49], are also compared with our methods to analyze their capacity for data mining
and EQIL spatial prediction. The LR model constructs the loss function with L2-norm;
the regularization coefficient is 1. For SVM, the kernel is radial basis function, the penalty
coefficient is 1, and the parameter of kernel function is 0.001. For RF, the number of trees is
62 and the maximum depth is 13.

With the optimal setting, all the methods are trained and tested 20 times to eliminate
the influence of random initialization of parameters on evaluation results. Table 5 lists the
OA, Precision, and Recall of the proposed method and other methods. Our method obtains
the highest OA value of 91.88%, which is approximately 7% higher than that of RF in
second place, followed by SVM and LR, with OA values of 82.22% and 80.75%, respectively.
In terms of EQIL prediction precision, the four models are 79.1%, 80.7%, 81.93%, 87.56%,
in which our proposed method obtains the highest values. Overall, the deep learning
method has the best performance on sample data compared with other shallow machine
learning models.

Table 5. Prediction result assessment with different framework depths.

Measurements Logistic
Regression

Support Vector
Machine Random Forest Proposed

Method

OA (%) 80.75 ± 0.23 82.22 ± 0.15 84.16 ± 0.22 91.88 ± 0.18
Precision of EQIL (%) 79.10 ± 0.34 80.70 ± 0.23 81.93 ± 0.17 87.56 ± 0.21

Recall of EQIL (%) 80.33 ± 0.27 82.07 ± 0. 12 84.40 ± 0. 15 91.40 ± 0. 20
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Figure 8 shows the four kinds of predicted result in the whole study area when 0.5 is
set as a discrimination threshold of probability. All the results reflect the phenomenon
that EQILs distribute along a surface rupture [50]. It can be proved that machine learning
models, including shallow models, could learn and apply the basic distribution patterns to
predict EQILs spatially. Furthermore, our proposed method has the advantage of elegantly
representing EQIL distribution, especially in the north tail of surface rupture and the
Wenchuan-Maoxian valley, which require more discriminative features to enhance the
model’s prediction ability.
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As mentioned above, many shallow machine learning methods have been applied for
EQIL spatial predictions, including LR, SVM, decision tree, RF, and AdaBoost. However,
these methods depend heavily on the quality of related factors and sample data, whereas
the deep learning model is robust for pattern recognition and classification, especially
for small sample sizes and highly coarse datasets. We use the trained models to produce
the receiver operating characteristic (ROC) curve to validate different EQIL prediction
performances between two kinds of machine learning method, as shown in Figure 9. Our
method demonstrated the best predictive power compared with other methods in terms
of area under the curve (AUC). Specifically, the other three methods obtain similar AUC
values of 0.88, 0.88, and 0.89, respectively.
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5. Discussion
5.1. High-Level Feature Representation

An EQIL is an extremely complex earth surface process that is controlled by numerous
predisposing factors and a triggering event. Analyzing the relationship between factors and
EQIL distribution paves the way for recognizing EQIL occurrence and spatial prediction
mechanisms. Deep learning as a kind of effective data mining model has been applied
in many study areas, and it is well known for its discriminative feature extraction. As
shown in Figure 10, the raw features are derived from topographical, geological, and
hydrological data, which are then mapped to hidden layers that indicate the controlling
effect from different factors. That is to say that a different group of factors is processed by
the model and generates a synthetical index related to EQIL occurrence, which is different
from traditional methods that consider nearly every related factor contributing to the
object separately.
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Figure 10. The feature extraction process of SAE. There are 178 blocks in whole study area. The
34th block is selected as an example of the feature extraction process: (a) fourteen kinds of raw
feature were derived from different datasets. (b) Abstract features in first, second, and third layers.
(c) Weight matrix of fully connected layer. (d) The probabilities of EQIL and non-EQIL.
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5.2. Performance of Rock Landslide Prediction

A large earthquake (magnitude > 6) can trigger landslides of shallow soil, as well as
large, deep rock landslides [51]. A landslide’s initiation is controlled by different failure
mechanisms associated with material types, topography, and geotechnical features [52–54].
Landslides in bedrock are especially strongly influenced by their structure and preaccumu-
lated failure, which consequently result in complex failure mechanisms compared with soil
landslides [55]. Thus, we selected one of the earthquake-affected areas where EQILs were
dominated by rock materials to validate our model. As shown in Figure 11, both predictive
results from our proposed and FR methods could cover the EQILs from the inventory data.
However, FR carries out the final result with several non-EQIL areas, leading to a high
false alarm rate. It is proven that the conventional prediction models have a limited capac-
ity for synthetical analysis when faced with a multiple-parameters problem. Therefore,
the predictive result from these models is always controlled by the master EQIL-related
factors that mathematically have high variance. However, our proposed method could
construct high-level abstract features to represent the influence of a combination of different
factors on EQIL occurrence and make the spatial prediction more coincident with EQIL
distribution.

It is concluded that our deep learning-based model has the potential ability to break
through the bottleneck in EQIL predictions. Meanwhile, multilayer feature mapping could
help researchers to update the knowledge of landslides that was acquired by statistical
methods in the past.
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5.3. Influence on Factor Importance

Many studies have confirmed that the initiation of an EQIL is an extremely complex
process, indicating why the hazardous assessment and accurate prediction of EQILs have
not yet been attempted. Over the years, researchers have introduced a variety of con-
ventional models for EQIL prediction (such as LR, SVM, RF algorithm) and successfully
applied them to many EQIL inventories all over the world [44]. Lacking the capacity for
deep feature transformation, conventional algorithms usually improve the accuracy of
EQIL prediction by selecting high-importance factors to enhance model robustness [11].
However, this data preprocessing method cannot further extract hidden features of coarse
and redundant data, and cannot improve the data utilization of EQIL inventories [56]. The
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coseismic landslide prediction model proposed in this paper is not only superior in terms
of data input (extracting sliding features as model input), but also adopts a deep learning
model based on a stacked autoencoder. Our proposed accurate prediction framework
considering the EQIL source area is not only superior in terms of data input (extracting
sliding features as model input), but also introduces SAE to extract the complex features of
redundant data. To explain why this model has advantages in terms of EQIL prediction, we
conduct several comparative experiments for EQIL distribution with different numbers of
controlling factors that have different information contributions, thus reflecting the model’s
predictive ability.

First, the information gain function is applied to calculate the feature importance
index and rearrange the 14 predisposing factors (Figure 12). As mentioned in [57,58], the
information gain function (IG) is one of the quickest and easiest attribute ranking methods
that is often used in feature selections and for identifying root nodes in tree-based models.
As shown in Figure 12, initially, the prediction performance of all methods improved with
the increasing number of input-controlling factors. The prediction accuracies of RF, SVM,
and LR remain stable or even decline when the input-controlling factors are greater than
seven, which is due to the fact that increasing factors contribute less to EQIL distribution.
On the contrary, the proposed method continually obtains better prediction performance.
Thus, two points can be concluded: (1) the shallow machine learning models only take
advantage of the significant factors for EQIL prediction, but deep learning models can
extract more effective information of EQIL distribution from low-value density data, which
is why prediction accuracy grows when input factors increase; (2) the EQIL distribution
pattern is controlled by a combination of multiple factors; only when the slope unit satisfies
specific combination conditions can a landslide be triggered by a catastrophic earthquake.
These two conclusions explain why the deep learning model is superior in EQIL prediction,
and also provide a hint that some new knowledge of EQIL can be represented by high-level
abstract features extracted by the hidden layer of our deep learning model.
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Figure 12. Controlling factor importance and prediction accuracies of different models. The predic-
tion performance of all methods improved with the increasing number of input-controlling factors;
however, the performance of the shallow machine learning model then decreases or remains stable
when low-value density data are input, except for the method presented in this work.
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6. Conclusions

Earthquakes near human communities can result in significant loss of human life
and damage to the environment, especially in high-altitude and steep mountain areas.
Meanwhile, earthquakes can trigger many landslides that create secondary geological
disasters, increasing the intensity of earthquake damage. Thus, spatially predicting EQILs
based on distribution pattern is essential for disaster mitigation. For the last two decades,
complete and normalized EQIL inventories have extended our knowledge of the rela-
tionship between earthquakes and the landslides they can trigger by means of statistical
analysis. However, an effective method to detect new EQIL distribution patterns in large,
multiparameter datasets has been lacking, which has limited the performance of EQIL
prediction for a long period. Furthermore, the source area features of EQIL, which could
well represent predisposing conditions for EQIL occurrence, was seldom taken into con-
sideration in prediction models. Deep learning is known as feature extraction in complex
and highly coarse datasets, which could be used to analyze the combinations of different
factors that influence EQIL occurrence.

In this study, we constructed a deep learning framework based on the stacked autoen-
coder (SAE) and considered the source area features of EQILs to model their distribution.
The complete EQIL inventory of the Wenchuan earthquake was then applied to assess
the performance of the proposed methods. After several controlled experiments, the opti-
mal framework settings (including the number of hidden units, depth of hidden layers,
iteration number, learning rate) are 120, 3, 20,000, and 0.8, respectively. Ultimately, the
proposed method was compared with traditional prediction models, showing that the deep
learning-based model is superior in the spatial prediction of EQILs. Meanwhile, this study
reveals that shallow machine learning models only take advantage of the significant factors
for EQIL prediction, but deep learning models can extract more effective information about
EQIL distribution from low-value density data, which is why its prediction accuracy grows
when input factors increase. There is also hope that some new knowledge about EQILs
can be represented by high-level abstract features extracted by hidden layers of our deep
learning model; these were acquired by statistical methods in the past. In future, our
mature EQIL prediction model is expected to be promoted and applied to two scenarios:
rapid positioning in the secondary disaster-prone area after an earthquake, based on a basic
database, and providing a reference for disaster mitigation, thus creating a risk assessment
of potential seismic areas to improve the efficiency of risk management.
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