Intercomparisons of Long-Term Atmospheric Temperature and Humidity Profile Retrievals
<p>Anomalies of daily mean MetOp-02 high-resolution infrared radiation sounder (HIRS) channel 8 brightness temperatures as compared to a 2007–2017 climatology. Vertical red lines indicate the period of instability removed as an input to this retrieval.</p> "> Figure 2
<p>Correlation coefficients by standard atmospheric pressure level of eleven satellite pairs for (<b>a</b>) temperature and (<b>b</b>) specific humidity.</p> "> Figure 3
<p>Histograms (normalized by count) of temperature (°C) at 300 hPa for (<b>a</b>) N-9 vs. N-10, (<b>b</b>) N-14 vs. N-15, and (<b>c</b>) M-02 vs. N-17. Histograms (normalized by count) of specific humidity (g/kg) at 400 hPa for (<b>d</b>) N-9 vs. N-10, (<b>e</b>) N-14 vs. N-15, and (<b>f</b>) M-02 vs. N-17.</p> "> Figure 4
<p>Mean bias errors (MBE) between HIRS and other retrievals (HIRS–other) at standard atmospheric pressure levels, subdivided by latitude ranges. Temperature MBE (°C) for HIRS comparisons with (<b>a</b>) radiosonde (RS92); (<b>b</b>) constellation observing system for meteorology ionosphere and climate (COSMIC); and (<b>c</b>) COSMIC2013. Humidity MBE (g/kg) for comparisons with (<b>d</b>) RS92; (<b>e</b>) COSMIC; and (<b>f</b>) COSMIC2013.</p> "> Figure 5
<p>Boxplots of comparisons between HIRS and reference upper-air network (GRUAN) stations for temperature and specific humidity, root mean square error (RMSE) and MBEs. Along the horizontal axis delineates the profile height from 2 m to 50 hPa. The central mark in each box indicates the median value amongst all GRUAN stations. The edges of the box are the 25th (Q1) and 75th (Q3) percentiles, while the whiskers extend to values within Q3+W*(Q3-Q1) and Q1-W*(Q3-Q1) (roughly 99.3 coverage of normally distributed values) where W = 1.5. The plus signs indicate outlier values. (<b>a</b>) Temperature RMSE (°C); (<b>b</b>) specific humidity RMSE (g/kg); (<b>c</b>) temperature MBE (°C); (<b>d</b>) specific humidity MBE (g/kg).</p> "> Figure 6
<p>MBE between HIRS and infrared atmospheric sounding interferometer (IASI) retrievals (HIRS-IASI) at standard atmospheric pressure levels, subdivided by latitude ranges. Temperature MBE (°C) in (<b>a</b>) January 2014; and (<b>b</b>) July 2014. Humidity MBE (g/kg) in (<b>c</b>) January 2014; and (<b>d</b>) July 2014.</p> "> Figure 7
<p>(<b>a</b>) Histogram of 2 m temperature for M-02 vs. N-17. Matches represent locations all over the globe during the time period of 2007–2009; (<b>b</b>) histogram of surface temperature for IASI vs. HIRS in January 2014; (<b>c</b>) histogram of 2 m temperature for GRUAN vs. HIRS during 2006–2017.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retrieval Algorithm
2.1.1. Neural Network Training
2.1.2. Cloud-Screening
2.1.3. Bias Calibration
2.1.4. Significant Changes from Previous Studies
2.2. Data
2.2.1. RS92
2.2.2. COSMIC
2.2.3. GRUAN
2.2.4. IASI
3. Results
3.1. Intersatellite Comparisons
3.2. Independent Validation
3.2.1. RS92
3.2.2. COSMIC and COSMIC2013
3.2.3. GRUAN
3.2.4. IASI
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chedin, A.; Scott, N.A.; Wahiche, C.; Moulinier, P. The Improved Initialization Inversion Method—A high-resolution physical method for temperature retrievals from satellites of the Tiros-N series. J. Clim. Appl. Meteorol. 1985, 24, 128–143. [Google Scholar] [CrossRef]
- Li, J.; Wolf, W.W.; Menzel, W.P.; Zhang, W.J.; Huang, H.L.; Achtor, T.H. Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteorol. 2000, 39, 1248–1268. [Google Scholar] [CrossRef]
- Coccia, G.; Siemann, A.L.; Pan, M.; Wood, E.F. Creating consistent datasets by combining remotely-sensed data and land surface model estimates through Bayesian uncertainty post-processing: The case of land surface temperature from HIRS. Remote Sens. Environ. 2015, 170, 290–305. [Google Scholar] [CrossRef]
- Siemann, A.L.; Coccia, G.; Pan, M.; Wood, E.F. Development and analysis of a long-term, global, terrestrial land surface temperature dataset based on HIRS satellite retrievals. J. Clim. 2016, 29, 3589–3606. [Google Scholar] [CrossRef]
- Peng, G.; Shi, L.; Stegall, S.T.; Matthews, J.L.; Fairall, C.W. An evaluation of HIRS near-surface air temperature product in the arctic with SHEBA data. J. Atmos. Ocean Tech. 2016, 33, 453–460. [Google Scholar] [CrossRef]
- Chung, E.S.; Soden, B.; Sohn, B.J.; Shi, L. Upper-tropospheric moistening in response to anthropogenic warming. Proc. Natl. Acad. Sci. USA 2014, 111, 11636–11641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohn, B.J.; Park, S.-C. Strengthened tropical circulations in past three decades inferred from water vapor transport. J. Geophys. Res. 2010, 115, D15112. [Google Scholar] [CrossRef]
- Mantsis, D.F.; Sherwood, S.; Allen, R.; Shi, L. Natural variations of tropical width and recent trends. Geophys. Res. Lett. 2017, 44, 3825–3832. [Google Scholar] [CrossRef]
- Bates, J.J.; Jackson, D.L.; Breon, F.M.; Bergen, Z.D. Variability of tropical upper tropospheric humidity 1979–1998. J. Geophys. Res. Atmos. 2001, 106, 32271–32281. [Google Scholar] [CrossRef]
- Shi, L.; Bates, J.J. Three decades of intersatellite-calibrated high-resolution infrared radiation sounder upper tropospheric water vapor. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- McCarthy, M.P.; Toumi, R. Observed interannual variability of tropical troposphere relative humidity. J. Clim. 2004, 17, 3181–3191. [Google Scholar] [CrossRef]
- Shi, L.; Schreck, C.J.; John, V.O. HIRS channel 12 brightness temperature dataset and its correlations with major climate indices. Atmos. Chem. Phys. 2013, 13, 6907–6920. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Schreck, C.J.; Schroder, M. Assessing the pattern differences between satellite-observed upper tropospheric humidity and total column water vapor during major el nino events. Remote Sens. 2018, 10, 1188. [Google Scholar] [CrossRef]
- Reale, A.; Tilley, F.; Ferguson, M.; Allegrino, A. NOAA operational sounding products for advanced TOVS. Int. J. Remote Sens. 2008, 29, 4615–4651. [Google Scholar] [CrossRef]
- Shi, L.; Matthews, J.L.; Ho, S.-P.; Yang, Q.; Bates, J.J. Algorithm development of temperature and humidity profile retrievals for long-term HIRS observations. Remote Sensing 2016, 8, 280. [Google Scholar] [CrossRef]
- Jackson, D.L.; Wylie, D.P.; Bates, J.J. The HIRS pathfinder radiance data set (1979–2001). In Proceedings of the 12th Conference on Satellite Meteorology and Oceanography, Long Beach, CA, USA, 10–13 February 2003. [Google Scholar]
- Cao, C.; Weinreb, M.; Xu, H. Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Ocean. Technol. 2004, 21, 537–542. [Google Scholar] [CrossRef]
- Cao, C.; Jarva, K.; Ciren, P. An improved algorithm for the operational calibration of the high-resolution infrared radiation sounder. J. Atmos. Ocean. Technol. 2007, 24, 169–181. [Google Scholar] [CrossRef]
- Shi, L.; Bates, J.J.; Cao, C. Scene radiance-dependent intersatellite biases of hirs longwave channels. J. Atmos. Ocean. Technol. 2008, 25, 2219–2229. [Google Scholar] [CrossRef]
- Shi, L. Intersatellite differences of HIRS longwave channels between NOAA-14 and NOAA-15 and between NOAA-17 and METOP-A. IEEE Trans. Geosci. Remote 2013, 51, 1414–1424. [Google Scholar] [CrossRef]
- Saunders, R.; Matricardi, M.; Brunel, P. An improved fast radiative transfer model for assimilation of satellite radiance observations. Q. J. R. Meteorol. Soc. 1999, 125, 1407–1425. [Google Scholar] [CrossRef]
- NOAA ESRL Global Monitoring Division. 2017, Updated Annually. Atmospheric Carbon Dioxide Dry Air Mole Fractions from Quasi-Continuous Measurements at Mauna Loa, Hawaii; Thoning, K.W., Kitzis, D.R., Crotwell, A., Eds.; National Oceanic and Atmospheric Administration (NOAA), Earth System Research Laboratory (ESRL), Global Monitoring Division (GMD): Boulder, CO, USA, 2017; Version 2018-10.
- Rossow, W.B.; Dueñas, E.N. The international satellite cloud climatology project (ISCCP) web site: An online resource for research. Bull. Am. Meteorol. Soc. 2004, 85, 167–172. [Google Scholar]
- Rossow, W.B.; Garder, L.C. Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Clim. 1993, 6, 2341–2369. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Foster, M.J.; Walther, A.; Zhao, X.P. The Pathfinder atmospheres-extended AVHRR climate dataset. Bull. Am. Meteorol. Soc. 2014, 95, 909. [Google Scholar] [CrossRef]
- Ho, S.-P.; Ho, S.-P.; Kuo, Y.-H.; Schreiner, W.; Zhou, X. Using si-traceable global positioning system radio occultation measurements for climate monitoring. Bull. Am. Meteorol. Soc. 2010, 91, S36–S37. [Google Scholar]
- University Corporation for Atmospheric Research COSMIC Data Analysis and Archive Center (CDAAC). Available online: https://cdaac-www.cosmic.ucar.edu/cdaac/products.html (accessed on 21 August 2018).
- He, W.; Ho, S.-P.; Chen, H.; Zhou, X.; Hunt, D.; Kuo, Y.-H. Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data. Geophys. Res. Lett. 2009, 36, L17807. [Google Scholar] [CrossRef]
- Thorne, P.W.; Vomel, H.; Bodeker, G.; Sommer, M.; Apituley, A.; Berger, F.; Bojinski, S.; Braathen, G.; Calpini, B.; Demoz, B.; et al. GCOS reference upper air network (GRUAN): Steps towards assuring future climate records. AIP Conf. Proc. 2013, 1552, 1042–1047. [Google Scholar]
- Eumetsat. IASI Level 2: Product Guide 11 July 2017; EUM/OPS-EPS/MAN/04/0033; Eumetsat: Darmstadt, Germany, 2017. [Google Scholar]
- Pougatchev, N.; August, T.; Calbet, X.; Hultberg, T.; Oduleye, O.; Schlussel, P.; Stiller, B.; St. Germain, K.; Bingham, G. Validation of the IASI temperature and water vapor profile retrievals by correlative radiosondes. Proc. SPIE. 2008, 7081, 70810J. [Google Scholar]
- Pougatchev, N.; August, T.; Calbet, X.; Hultberg, T.; Oduleye, O.; Schlussel, P.; Stiller, B.; St. Germain, K.; Bingham, G. IASI temperature and water vapor retrievals—Error assessment and validation. Atmos. Chem. Phys. 2009, 9, 6453–6458. [Google Scholar] [CrossRef]
- Kwon, E.-H.; Sohn, B.J.; Smith, W.L.; Li, J. Validating IASI temperature and moisture sounding retrievals over East Asia using radiosonde observations. J. Atmos. Ocean. Technol. 2012, 29, 1250–1262. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA) Global Energy and Water Exchanges (GEWEX) Surface Radiation Budget. Available online: https://gewex-srb.larc.nasa.gov/index.php (accessed on 23 January 2019).
Satellite Pair | Date Range | No. Profile Matchups | Coverage 1 |
---|---|---|---|
N-7/N-8 | 16 May 1983–30 May 1984 | 1117 | polar |
N-9/N-10 | 17 Nov 1987–18 Oct 1988 | 1629 | polar |
N-10/N-11 | 8 Nov 1988–16 Sept 1990 | 3147 | polar |
N-11/N-12 | 16 Sept 1991–27 Aug 1994 | 6597 | polar |
N-12/N-14 | 9 Feb 1995–31 March 1997 | 3788 | polar |
N-14/N-15 | 31 Oct 1998–25 July 2002 | 31,826 | global |
N-14/N-16 | 20 Mar 2001–25 July 2002 | 3491 | polar |
N-15/N-16 | 20 Mar 2001–26 Oct 2003 | 6452 | polar |
N-15/N-17 | 24 Aug 2002–30 Mar 2005 | 6864 | polar |
N-16/N-17 | 24 Aug 2002–31 Dec 2003 | 9049 | polar |
M-02/N-17 | 29 June 2007–10 Jan 2009 | 211,176 | global |
Data set | Surface | 2 m | 1000 hPa | 850 hPa | 700 hPa | 600 hPa | 500 hPa | 400 hPa | 300 hPa | 200 hPa | 100 hPa | 50 hPa |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RS92 | T,Q | T,Q | T,Q | T,Q | T,Q | T,Q | T,Q | T | T | T | ||
COSMIC 1 | T,Q | T,Q | T,Q | T,Q | T,Q | T,Q | T,Q | T | T | T | ||
GRUAN | T,Q | T,Q | T,Q | T,Q | T,Q | T,Q | T,Q | T,Q | T | T | T | |
IASI | T | T,Q | T,Q | T,Q | T,Q | T,Q | T,Q | T,Q | T | T | T |
GRUAN Site | Latitude (°N)/Longitude (°E) | Surface Elevation (m) | No. Matches |
---|---|---|---|
Barrow 1 | 71.32/−156.61 | 8 | 798 |
Lauder | −45.05/169.68 | 370 | 10 |
Lindenberg | 52.21/14.12 | 98 | 403 |
Ny-Ålesund | 78.92/11.93 | 5 | 525 |
SGP 1 | 36.60/−97.49 | 320 | 57 |
Sodankylä | 67.37/26.63 | 179 | 53 |
Tateno | 36.06/140.13 | 27 | 129 |
Tenerife 1 | 28.32/−16.38 | 115 | 311 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matthews, J.L.; Shi, L. Intercomparisons of Long-Term Atmospheric Temperature and Humidity Profile Retrievals. Remote Sens. 2019, 11, 853. https://doi.org/10.3390/rs11070853
Matthews JL, Shi L. Intercomparisons of Long-Term Atmospheric Temperature and Humidity Profile Retrievals. Remote Sensing. 2019; 11(7):853. https://doi.org/10.3390/rs11070853
Chicago/Turabian StyleMatthews, Jessica L., and Lei Shi. 2019. "Intercomparisons of Long-Term Atmospheric Temperature and Humidity Profile Retrievals" Remote Sensing 11, no. 7: 853. https://doi.org/10.3390/rs11070853
APA StyleMatthews, J. L., & Shi, L. (2019). Intercomparisons of Long-Term Atmospheric Temperature and Humidity Profile Retrievals. Remote Sensing, 11(7), 853. https://doi.org/10.3390/rs11070853