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Abstract: Roads are an important recognition target in synthetic aperture radar (SAR) image
interpretation. Although a considerable number of high-quality SAR images are now available,
the method of road extraction is lagging. To extract the road network with low missed and false
rates, this paper proposed a road network extraction approach which includes line detection, road
segmentation, road network extraction and optimization. First, the linear feature response and
direction map are obtained from the SAR intensity image using the multiplicative Duda operation.
Then, the backscattering coefficient and coefficient of variation are combined using a support vector
machine to eliminate the linear structures of non-roads, and the binary image of road candidates
is subsequently achieved by morphological profiles of path openings. Next, with the obtained
direction map, a novel thinning method based on binary image decomposition and curve fitting is
presented to obtain line segments of the road network. Finally, a series of measures which involve
overlap, continuity, and junction optimization are proposed to construct the road network. In the
experiments, the proposed method was applied to Radarsat-2 and TerraSAR-X high-resolution images.
The experimental results showed that the proposed method had an excellent performance in terms of
both completeness and correctness.

Keywords: synthetic aperture radar (SAR); road network extraction; multiplicative Duda operation;
path opening

1. Introduction

Roads are typical man-made objects that play an essential role in modern transportation systems.
Especially in an emergency, for instance, when serious natural disasters occur, real-time road information
is vital for emergency rescue. Therefore, accurate and timely road information extraction is considered
to be essential. Synthetic aperture radar (SAR), with its imaging capability in all-weather and all-time,
has become a popular tool to obtain road information. With the development of SAR technology, SAR
sensors have been able to provide daily high-quality images with different modes. Taking TerraSAR-X
as an example, the resolution can be of the order of 20 cm in staring spotlight mode [1]. Nevertheless,
complete road detection from SAR images is still a challenging task because of the unique imaging
mechanism of SAR, the diversity of road types, and the variable complex situations surrounding
the road.

In SAR images with high resolution, road targets are often characterized by elongated dark strips
with specified widths, instead of thin lines as the case of low-resolution SAR images [2]. Considering
these road features, many different kinds of methods have been presented to detect road from SAR
images in the past decades. Among those approaches, a significant number are comprise two main steps:
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one for local linear feature detection aiming to achieve road candidates, and one for global optimization
processing, which generates regular road lines and connects the gaps to form a road network. With
regard to local line detection, many edge detectors based on SAR image characteristics are presented,
such as ratio of averages (ROA) operator [3], ratio of exponentially weighted averages (ROEWA)
operator [4], multiplicative Duda operator [5], D1D2 operators [6,7], and so on. Recently, the method of
deep fully convolutional neural networks was also introduced to detect road candidates [8]. As for the
global optimization process, a commonly used framework is Markov random fields (MRFs) [2,6,9,10]
which construct a graph model on road segments. In [11], a Bayesian framework which constructed a
conditional random field (CRF) model was utilized to achieve road network optimization. Besides,
the work by Lu et al. [12] proposed a method based on region-growing to extract the road network
which extended road region step-by-step with automatically selected seeds. Similarly, Cheng et al. [13]
presented an approach using a parallel particle filter to track road centerlines. Other methods are
based on the genetic algorithm [14] and the snakes model [15] can also be found in the literature.

In this article, we develop a road network extraction approach also based on the aforementioned
two steps. On the subject of local line detection, the method of multiplicative Duda operators [5] is
applied, which utilizes a group of sliding windows with different widths and directions to obtain linear
feature responses. Compared with other line detectors, the multiplicative Duda operator has a good
ability for width and orientation estimation of linear segments. However, like most of line detectors,
the problem of high false alarm rate exists because of the non-road local line structures [16]. Hence,
a process of non-road mask detection is proposed in the following which combines backscattering and
coefficient of variation information using a support vector machine (SVM). Moreover, morphological
profiles of path openings [17] are applied to reduce the noise and to achieve the binary road candidates.
In terms of the global optimization process, thinning (also called skeletonizing) is a rather important
part which aims to regularize and vectorize the road candidates. Most existing research is based on
the algorithm of morphology thinning, whereas it may result in small burrs and loops which cause
difficulties in the subsequent network generation [18]. In particular, Negri et al [2] realized the region
skeleton extraction using an incremental tracking approach. A fast-marching method and branch
backing-tracking method to acquire road centerline and tensor voting algorithm to connect the broken
centerline was also introduced by Zhou et al. in [19]. For the method in this paper, the binary image
decomposition according to direction features and thinning based on polynomial fitting are proposed
to extract line segments. These proposed approaches are motivated by the idea that the road network
is composed of cross-linked curves with determined equations. Furthermore, network optimization
methods which include overlap, continuity, and junction optimization are applied on the line segments
to form the final road network. As expected, the experiments on different sensors and sites showed the
advantages of the approaches in this paper.

In summary, three key points are worth mentioning in this article. Firstly, the usage of
backscattering and coefficient of variation information and morphological profiles constructed
by path openings are proposed to improve the results of multiplicative Duda operation for road
extraction. Secondly, a new thinning method for road extraction application is proposed using binary
image decomposition and polynomial curve fitting. Thirdly, network optimization rules based on
geometric relationships between line segments are proposed to construct a more regular and complete
road network.

The rest of this article is organized as follows. The proposed method is introduced with a concise
workflow in Section 2. Section 3 presents the proposed method of road candidate segmentation.
Section 4 describes the approaches of road network extraction and optimization. The experimental
validation, parameter setting, results and discussions are shown in Section 5. The conclusions and
future work are given in Section 6.
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2. Workflow of the Proposed Method

The methodology begins with a single look complex (SLC) SAR product. The flowchart of the
proposed procedure is shown in Figure 1. Overall, the proposed method mainly includes line feature
detection using multiplicative Duda operation, non-road detection using backscattering coefficient
and coefficient of variation (CV), road segmentation using morphological profiles (MPs) constructed
by path openings, road thinning based on binary image decomposition and polynomial curve fitting,
and road network optimization according to geometric relationships.
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3. Segmentation of Road Candidates

For illustrative purposes, the two-dimensional image in this paper is described as A = {A(x, y)|1 ≤
x ≤ M; 1 ≤ y ≤ N; x, y ∈ Z} where A(x, y) is the value of the pixel located at row x and column y, M
and N are the height and width of the image respectively. Considering the linear indexing technique,
the two-dimensional image can be also expressed as A = {ai|ai = A(x, y), i = N × (x− 1) + y}. Then,
we define that B = {bi|bi ∈ {0, 1}} denotes the binary image and T = {ti|ti ∈ {0, 1, 2, . . . , Nt}} is the labeled
image, where bi and ti represent the pixel values at the site i, Nt denotes the total number of labels.

To acquire road candidates from high-resolution SAR images, the proposed method is based on [20]
which uses multiplicative Duda operators and path operators. More specifically, the multiplicative
Duda operator [5] is applied to obtain the linear feature response (LFR) using local sliding windows with
different sizes and orientations. Then, road candidates are segmented by constructing morphological
profiles using path openings [21] on the LFR map. However, due to the fact that only features of
local intensity ratio and target length are considered, some non-road targets may be interpreted as
roads when SAR images contain shadows and dense buildings. In order to tackle the drawback,
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backscattering coefficient (σ0), and coefficient of variation (CV) are merged to reduce the linear
structures of non-roads in the LFR map. In this work, the σ0 map is obtained as

P = {σi|σi = 10× log10[argmax
µC

{ f (i|V(θ, w, l))}]} (1)

where f (i|V(θ, w, l)) is the response of multiplicative Duda operation with the window V(θ, w, l) at site
i (See Figure 2), µC is the mean intensity value of region C in the window V which has the maximum
response. Since roads have low surface roughness and low permittivity [22], the value σ0 of roads is
very low and often comparable to the SAR sensor noise level. The CV measures the heterogeneity of a
region and is defined as

CV = {cvi|cvi = argmax
γC

{ f (i|V(θ, w, l))}} (2)

where γC = sC/µC, µC and sC denote the mean and standard deviation of intensity values in the region
C of window V which has the maximum response. For high-resolution SAR images, roads can be
considered as homogeneous patches [23] and thus have low values of CV. Figure 1 shows the examples
of LFR, σ0 and CV maps obtained from the test image.

After the extraction of σ0 and CV, the feature vector Ui = (σi, cvi) is constructed and the SVM
classifier is subsequently applied to obtain the non-road mask. In this study, all the features are
normalized and a Gaussian RBF kernel is selected. The SVM is chosen because it has the ability
to generalize well even with limited training samples. Besides, a considerable number of studies
have demonstrate the performance of SVM in remote sensing applications [24]. Finally, the values of
non-road pixels in the LFR map are reset to zero before morphological profiles with path operators are
applied, which analyze object length and shape features to determine road candidates.
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4. Generation of Road Network

This part aims to extract the road network by global optimization using line segments as elements.
The thinning road network is the foundation for embedding the extracted road information into a
geographic information system (GIS) database [25]. In this article, the road network is creatively
modeled as a sequence of connected curves which have determined equations. The proposed method
is done with two main steps: binary image decomposition through direction grouping and thinning by
curve fitting. To begin with, the following operations on images are defined.

Given two binary images B1, B2, “AND (&)” and “OR (||)” operations for images are defined as
performing logical “AND” and “OR” on each pixel at the same location. That is,

B1&B2 = {bi|bi = b1i&b2i; b1i ∈ B1; b2i ∈ B2}

B1||B2 = {bi|bi = b1i||b2i; b1i ∈ B1; b2i ∈ B2}
(3)
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For a labeled image T, we define a binary conversion to extract the pixels that belong to a label set
G as follows:

BT,G = {bi|bi = δ(ti, G); ti ∈ T} (4)

where:

δ(ti, G) =

{
1, ti ∈ G
0, otherwise

(5)

4.1. Binary Image Decomposition with Direction Feature Grouping

For a binary image B of road candidates, connected-component (CC) labeling [26] can be applied
which scans the binary image and groups its pixels into components based on pixel connectivity.
However, the shape of CC may be rather complex and irregular because pixels in the same CC may
be oriented differently. This leads to a tricky problem of describing the CC using a curve equation.
To tackle this problem, binary image decomposition is proposed.

Suppose that G = {0,π/n, 2π/n, . . . , (n− 1)π/n} is a set of values that represent different direction
levels. Then, the direction feature map is estimated by

T = {ti|ti = argmax
θ
{ f (i|V(θ, w, l))}} (6)

where f (i|V(θ, w, l)) is the response of multiplicative Duda operation with the window V(θ, w, l) at site
i, θ ∈ G. As shown in Figure 1, the estimated direction map are marked by different colors representing
different directions. According to the proximity of directions, the direction set G is divided into
K(K ≤ n) groups which are denoted by Gk(k = 1, 2, . . . , K). For example, in the case of 8 direction levels
(n = 8) and 4 groups (K = 4), it can be defined that G1 = {0,π/8},G2 = {π/4, 3π/8},G3 = {π/2, 5π/8},
and G4 = {3π/4, 7π/8}. Next, the binary image B is decomposed into K binary image layers

Bk = B&BT,Gk , (k = 1, 2, . . . , K
)

(7)

where BT,Gk= {bi|bi = δ(ti, Gk), ti ∈ T}. Figure 1 presents the example of binary image layers decomposed
from road candidates. It is certain that all the road candidates on an image layer Bk have similar
directional characteristics that belongs to the set Gk. Most importantly, this step makes it possible to
construct a coordinate system and apply the method of curve fitting on each CC. This process can be
considered as a decomposition process of binary image B because we have B = B1||B2|| . . . ||BK and
Bp&Bq = O where O is zero matrix.

4.2. Thinning Based on Polynomial Curve Fitting

After the decomposition of the binary image, the road candidate regions need to be thinned to
achieve line segments, which are the basic elements of the road network. The traditional morphology
thinning algorithm is a commonly used solution, but it has poor performance when the edge is rather
rough and the image is seriously disturbed by noise. In this study, a thinning based on polynomial curve
fitting is proposed to extract the thinned road line segments. Algorithm 1 gives the implementation
details of the proposed thinning procedure.
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Algorithm 1. Thinning based on polynomial curve fitting

Step 1: Input all the road binary image layers Bk(k = 1, 2, . . . , K).
Step 2: For k = 1, 2, . . . , K:
a) Apply the method of connected-component (CC) labeling on Bk;
b) Compute the pixel area of each CC and remove CCs in which pixel area is smaller than Tarea;
c) Create coordinate system, for each CC:

1) Extract all pixel coordinates in the CC as the discrete data points;
2) Apply the polynomial curves fitting on data points;
3) Record the curve equation, two endpoints, and corresponding tangential direction vectors;
4) Generate the line segment as the thinned curve of CC using the curve equation.

Step 3: Combine all the line segments to form the thinning road map.

The example of extracting the fitted curves and endpoints is illustrated in Figure 3a. Supposing
that Q = {(xn, yn)|xn, yn ∈ N+, n = 1, 2, . . . , N} represents a set of pixel coordinates in a CC where
N denotes the total number of pixels, the polynomial curves fitting is applied on Q to derive curve
equation f (x) = c0 + c1x + . . .+ cpxp where p is the equation order and c0, c1, . . . , cp are parameters
determined by the least square method. Furthermore, two endpoints can be obtained by coordinates
(xmin, f (xmin)) and (xmax, f (xmax)) where xmin and xmax are the minimum and maximum of xn

in Q. The corresponding angles of the tangent lines at two endpoints are expressed as θ1 =

π+ arctan f ′(xmin),θ2 = arctan f ′(xmax) and then tangential direction vectors are s1 = (cosθ1, sinθ1)

and s2 = (cosθ2, sinθ2). The endpoints and tangential direction vectors are both recorded here for
the following road network optimization. It is worth mention that the definition of x-axis and y-axis
of coordinate system should be exchanged for the case of binary images Bk with a vertical direction
feature. As shown in Figure 3b, there is an example of thinned road map where the different line
segments are presented in different colors.
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4.3. Road Network Generation and Optimization

Although the thinned road map obtained in the previous section has initiated formation of a
road network, it is coarse and need to be optimized further. On one hand, due to the fact that road
regions are decomposed according to the direction feature grouping, multiple extractions for the same
road may occur when extracting the line segments from the image layers. This particular case is
manifested as the overlap of line segments (see Figure 3b). On the other hand, as presented in Figure 3b,
undesired gaps may also occur in the thinning results. There are two main factors that may contribute
to gaps. One is the SAR imaging principles which cause roads approximately in the azimuth direction
to be easily affected by the layovers and shadows of tall buildings or vegetation, especially in the
high-resolution SAR images [27]. The other factor is the extraction approaches, e.g., image filtering
and segmentation, which may remove some true road components.
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In order to resolve these problems, the optimization of overlap, continuity, and junction are
proposed successively. These proposed approaches of road network optimization are based on
perceptual grouping principles which include proximity, parallelism, colinearity, continuity, and so
on [28]. In terms of the network generalization, the perceptual grouping concepts have been widely
used in image interpretation such as for road extraction [29] and river network generation [28]. In this
article, the line segments will be perceived as elements and grouped for the optimization processes.

4.3.1. Overlap Optimization

As shown in Figure 4, the proposed overlap optimization is motivated by the matching principle
presented by Wiedemann [30]. Let Lm and Ln denote two different line segments. A buffer with
constant width is then constructed around Lm. The parts of Ln located in the buffer are considered as
the overlapping parts. The overlapping ratio can be computed by ro = ln1/(ln1 + ln2) where ln1, ln2 are
the lengths of Ln within and without the buffer respectively. If the overlapping ratio is large than the
given threshold To, Lm and Ln will be merged into one line segments Lo by polynomial curve fitting
using the data points on the line segments Lm and Ln. The overlap optimization is finally implemented
by repeating the above steps and constantly updating the line segments until there are no two line
segments that satisfy the condition ro > To where To is 0.5 in this article. In practice, the buffer width
can be set according to the linear width feature map W estmiated from

W = {wi|wi = argmax
w
{ f (i|V(θ, w, l))}} (8)

where f (i|V(θ, w, l)) is the response of multiplicative Duda operation with the window V(θ, w, l) at
site i.
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4.3.2. Continuity Optimization

The continuity optimization is aimed at filling the gaps between line segments which have similar
direction features. As illustrated in Figure 5, this procedure is ruled by two parameters: 1)D: the
spatial Euclidean distances between endpoints that belong to the two target line segments using image
coordinates; 2)Ω: the angle between tangential direction vectors s and connected direction vectors ω at
the endpoints where ω is defined as the vector from one endpoint to another endpoint. For two given
line segments Lm, Ln from the same image layer, the optimization is conducted if one of geometric
constraint conditions below is satisfied:

1)D ≤ TD1

2)TD1 < D ≤ TD2, Ω1 ≤ TΩ, and Ω2 ≤ TΩ
(9)

where TD1, TD2 are two Euclidean distance thresholds and TΩ represents the angle threshold. Then,
the optimization is done by merging line segments Lm, Ln into one Lo using polynomial curves fitting.
Finally, the above steps are repeated until no line segment pair satisfies the conditions in the whole
image. For the experiments in this paper, D is computed using pixel coordinates, the distance threshold
TD1 is equal to 10 and TD2 is 50, and the angle threshold TΩ is set to π/8.
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4.3.3. Junction Optimization

Road junctions, which usually appear as the shapes of “L”, “T”, and “十”, are significant parts in
the road network. To resolve the gaps and burrs illustrated in Figure 6, a junction optimization method
is proposed which can work well in the both cases. Let Lm, Ln denote two line segments derived from
different image layers, which means they have different direction features and may form a junction.
In order to determine the cross point Jmn of Lm, Ln, one direct method is solving the combined curve
equations of Lm, Ln. However, the solution will be complex and time-consuming when the equation
order is high. Thus, the cross point is determined by searching the pixels located on the target curve.
Suppose that S = {(xm, ym)} is the pixel coordinate set of Lm and fn(x) is the curve equation of Ln.
Then, a potential cross point set can be determined by J = {(xm, ym)|‖ fn(xm) − ym‖ < 1}. If J is not an
empty set, the cross point is then determined by

Jmn = argmin
(xm,ym)

‖ fn(xm) − ym‖, (xm, ym) ∈ J (10)

To further determine whether Lm, Ln constitute a junction and satisfy the condition of optimization,
the spatial Euclidean distance D between Jmn and En is calculated using pixel coordinates where En is
the nearest endpoint of Ln to the cross point Jmn. If D < TD is satisfied, replace endpoint En by Jmn and
redrawn line segment Ln using the curve equation fn(x) and the new endpoint. Finally, iterate all the
line segment pairs based on the above rules and the junction optimization is then finished. As can be
noticed, TD is the only parameter in this step and is set to 20 in this paper. Normally, TD should not be
too large or it may bring false optimization.
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4.4. Post-Processing of Road Network

Since the geometric relationships are the only characteristics used in performing the network
optimization, some of the false detections of roads still cannot be removed. For example, some low
backscattering objects, such as rivers and shadows, are difficult to distinguish from roads because of
their similarity of features in SAR images. It should be noted that those road line segments could
be considered as a refined input processed by the methods in [9,10] which are based on Markov
random fields (MRF) to obtain a better result. However, although the MRF methods are not the focus
of this paper, the proposed approach is suitable for further improvement in the correctness of the
road network.

Let Π = {L1, L2, . . . , Lm, . . . , LM} be an initial set of line segments in the road network. For each
line segment Lm, the width of line segment w(Lm) can be estimated by the mode, i.e. the value that is
repeated most often, of the pixel values using the data of the line width feature map W in Equation (8).
With the determined curve equation fm(x) of line segment Lm, the length of Lm is calculated by
l(Lm) =

∫ xmax

xmin
fm(x)dx. Thus, the length-width ratio of Lm is inferred by rlw(Lm) = l(Lm)/w(Lm).

Finally, the road network after post-processing is derived from

Π′ = {Lm|rlw(Lm) > Tlw, Lm ∈ Π} (11)

where Tlw is the length-width ratio threshold. This process can improve the correctness of road
extraction because true road segments usually have high length-width ratios. Empirically, threshold
Tlw is fixed to be 3 in this paper.

5. Experiments and Discussions

5.1. Dataset Description and Parameter Setting

The experiments were conducted on high-resolution SAR images from two different satellite
sensors, which are Radarsat-2 and TerraSAR-X. Table 1 lists the main characteristics of SAR images in
experimental study sites. Study site 1 was collected from Radarsat-2 using ultrafine acquisition mode.
Study site 1 is located in Dujiangyan, Sichuan, China, and covers an area of factories. Study site 2
lies in Chongzhou, Sichuan, southwest of China. It was acquired by TerraSAR-X sensor with staring
spotlight mode and mainly contains road network and some villages. Study site 3 is a larger dataset
located in Denver, Colorado, USA which includes more complex scenes such as cloverleaf junction,
lakes, and a dense residential area. The original SAR images and geographic information are presented
in Figure 7a, Figure 8a, and Figure 9a.

Table 1. The basic information of test datasets.

Study Site Imaging Time Source Polarization Pixel Spacing Image Size

1 25-Apr-2012 Radarsat-2 HV 2.1 m × 2.1 m 1585 × 1941
2 20-Sep-2018 TerraSAR-X HH 0.8 m × 0.8 m 1890 × 2448
3 25-Feb-2011 TerraSAR-X HH 1.0 m × 1.0 m 4217 × 4561

5.2. Experimental Results and Comparisons

5.2.1. Experimental Results on Different Study Sites

Table 2 presents the main parameters used in the experiments. For the parameter settings, some
can be fixed without considerable loss for the most of the applications. For example, the direction levels
of sliding windows are fixed at 8, i.e., G = {0,π/8, 2π/8, . . . , 7π/8}. When performing binary image
decomposition, the image is decomposed into four image layers which contain road segments with
direction features of {0,π/8}, {π/4, 3π/8}, {π/2, 5π/8} and {3π/4, 7π/8} respectively. The polynomial
order p is 3 in the process of thinning based on polynomial curve fitting. As presented in previous
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sections, constant parameters are also used for the step of optimization in this article, which are
estimated empirically. Except from the above mentioned parameters, there are some other parameters
that are considered significant. A parameter is considered to be significant when it has obvious
influence on the final result. Table 2 presents these significant parameters which include sliding
window sizes used in the multiplicative Duda operation, and median gray level (MGL) together with
minimum length (Lmin) for the road candidate segmentation. The definitions of MGL and Lmin can be
found in [20,21]. More analysis about these parameters is introduced in Section 5.3.

Table 2. Parameters used in the experiments.

Study Site Window Size Median Gray Level Minimum Length

1 [w× l] = [5 × 21, 10 × 21, 15 × 31] MGL = 0.30 Lmin = 100
2 [w× l] = [5 × 21, 10 × 21, 15 × 31] MGL = 0.20 Lmin = 100
3 [w× l] = [5 × 21, 15 × 31, 25 × 51, 35 × 71] MGL = 0.35 Lmin = 100

To evaluate the proposed method, the results obtained are analyzed visually and numerically.
For the visual analysis, the three original SAR images of test regions are shown in Figure 7a, Figure 8a,
and Figure 9a along with their corresponding reference road data in Figure 7b, Figure 8b, and Figure 9b
which are marked with green lines. The reference data were generated manually with the help of
Google Earth optical images and is overlaid on the original image. The road extraction results using
the proposed method are presented in Figure 7c, Figure 8c, and Figure 9c, in which the extracted road
network are marked with red.
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Figure 7. Road extraction results for study site 1. (a) Original SAR image; (b) reference road network;
(c) extracted road network with proposed method.

For the numerical analysis, the quantitative indexes of the obtained results are computed using
the reference data based on the method proposed by Wiedemann [30]. When applying the evaluation
method, a buffer is set to determine the degree that one road network matches with the other. In this
paper, the buffer is set to 5 pixels and three quantitative indexes (completeness, correctness, quality) are
used to measure the detection performance. The completeness (CP) is the percentage of the reference
road network located in the buffer around the extracted road network, while the correctness (CR)
represents the percentage of the extracted road network located in the buffer around the reference road
network. The quality (QL) index is a general index combining completeness and correctness. Table 3
proposed the quantitative indexes of the extracted results in the three test sites. It is worth mentioning
that these quantitative indexes have more relative than absolute meaning [10] because they are relative
to the manually selected reference data and buffer.
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Table 3. Quantitative indexes of the extracted results in test sites with different segmentation methods.

Methods
Study Site 1 Study Site 2 Study Site 3

CP% CR% QL% CP% CR% QL% CP% CR% QL%

Method in [21] 84.9 55.0 50.1 49.2 59.4 36.8 45.5 23.0 18.1

SVM 83.8 58.3 52.4 60.0 61.8 43.6 69.3 32.6 28.5

Proposed 77.0 78.3 63.4 58.0 73.7 48.0 49.1 52.3 33.9

5.2.2. Comparison of Methods for Road Segmentation

For road segmentation, the proposed method is compared with results from method in [21] and
method of SVM which uses LFR, backscattering σ0, and CV as feature vector. Figure 10 presents
the segmentation results using different methods in the three study sites. As shown in Table 3,
the three method were also compared in terms of quantitative indexes. It should mentioned that all the
quantitative indexes are computed using the same thinning method and parameters.

As can be observed from results in Figure 10, all three methods have the ability to detect the road
candidates. However, a problem with the method in [21] can be clearly seen, namely that non-road
dark regions with large area are interpreted as roads, which leads to a low correctness. This is mainly
due to the fact that the method is based on the gray level value and object length. As for the method
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of SVM, a high CP but low CR can be noted in Table 3 because many isolated non-road pixels are
detected, which is similar with the results of other pixel-based classifiers. In order to overcome the
aforementioned defects, the proposed method improves the CR of results by using features of intensity
ratio and linear length in spite of the loss of a small percentage of completeness. For the study site 3
with more complex scenes, it can be observed that the proposed method brings a greater decrease in
CP than the other two sites. This fact occurs mainly because roads around the cloverleaf junction in
study site 3 have a low intensity contrast, which causes the missed detection. Overall, the proposed
method provides results with better QL, i.e., compromise results in terms of CP and CR.
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5.2.3. Comparison of Methods for Network Generation

To assess the performance of proposed network generation method, a comparison was carried out
with two state-of-the-art methods: (1) morphological thinning [31] and; (2) tensor voting algorithm [32].
Figure 11 presents the comparison results on two test binary images using different methods. With
regard to the proposed thinning approach, it is based on curve fitting on connected components
(CC). Compared with traditional morphological thinning methods, the proposed method has several
advantages. On the one hand, the thinning results of the proposed method are definitely curves
with two endpoints and known curvilinear functions, while the morphology thinning method is
sensitive to the contour of CC which may bring burrs and loops (See Figure 11a) instead of neat curves.
For most practical applications, the desired result for road extraction is a smooth thinning curve. On the
other hand, the proposed method can easily obtain the endpoints and their corresponding tangential
extension direction (See Figure 3a) using the curve equation, which are useful for the subsequent
network optimization. As shown in Figure 11c, the connected part that is emphasized is the result
using the proposed network optimization. As can be seen from Figure 11b, the tensor voting method
also generates smooth centerlines and has the ability to connect small gaps. However, the missing parts
occur at junction areas which need to be improved in the post-processing. Although the proposed
method has the aforementioned strengths, the input of additional direction information is mandatory
which is achieved by the sliding window detection in this paper. If the direction feature is inaccurate
or discontinuous, the road candidates in the decomposed image layers may be fragmented and the
performance of presented work will decline. One consequence of this is the missing part shown in
Figure 11c. Figure 11d,e shows one more example of the comparison. Experimental results show that
the proposed method achieves an improved performance in network generation, especially for the
case of SAR image in which extracted road segments have no smooth edges.
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5.3. Parameter Analysis and Discussion

Concerning the multiplicative Duda operation, window size is the key parameter. Usually,
the parameter must be chosen to obtain responses with high contrast between lines and non-lines.
As shown in Figure 12a, an image slice which is marked in red and contains line pixels is selected.
Figure 12b shows the line feature responses of selected pixels under different window widths, while
the other parameters remain the same. It can be inferred that window width has an obvious influence
on the detection results and the optimal should be equal to the actual pixel width of road in the image.
Since road width is usually unknown in advance and it changes with different road types, windows
with different widths should be applied and the maximum response value should be taken even though
it may increase the cost of time.
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Figure 12. (a) An image slice marked in red; (b) line feature responses of image slice under different
window widths (the abscissa axis denotes the columns of pixels and the row number is fixed to 360).

Additionally, parameter analysis of road segmentation was conducted. The performance of road
segmentation is controlled by the pixel length threshold Lmin and the pixel value threshold MGL [20].
In this article, both of the threshold Lmin and MGL are selected empirically. In order to present the
effects of the two parameters, the results using the proposed method with different values of Lmin and
MGL are compared. The results are obtained using the image of study site 1 and presented in Figure 13.
As illustrated in Figure 13a, there is a decline of index CP with the increase of Lmin, which is opposite
to the variation trend of CR. The index QL reaches peak probably at the intersection of two curve CP
and CR. The index of completeness decreases because some short road segments are removed when
the threshold Lmin increases. Besides, it can be seen that both of the CP and CR are above 60% when
Lmin is in the range from 60 to 180 pixels. Moreover, Figure 13b shows the changes of quantitative
indexes when MGL varies but Lmin is fixed at 100. The graph indicates that the completeness has
the downward trend but the correctness keeps rising when MGL changes from 0.05 to 1. To make a
compromise between completeness and correctness, the optimal MGL can be determined at the peak
of quality curve. However, such a quality curve is hard to achieve in practical applications which need
complete reference road data. Thus, according to the QL curve, the optimal MGL is estimated to be in
the range of 0.2 to 0.4, which provides a guide for parameter selection in the other applications.
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Figure 13. (a) The quantitative indexes (CP, CR, QL) versus the pixel length threshold Lmin while MGL
is fixed to 0.3; (b) the quantitative indexes versus MGL while Lmin is fixed to 100.

Moreover, the choice of order p also has impact on the thinning results. Figure 14a proposes the
quantitative indexes of road extraction results with different orders of p in the case of study site 1.
When order p = 1, all the fitting curves are straight lines which do not fit in the case of a winding road
and thus it is not an optimal value. Generally, when the order p increases, the thining process tends to
overfiting which may lead to poor robustness and accuracy for the estimation of tangential extension
directions at endpoints. As illustrated in Figure 14b, with the increase of order p, the root-mean-square
error (RMSE) in polynomial fitting process decreases but the tangential directions at endpoints tend to
deviate from the actual direction. The inaccuracy of tangential directions may bring false network
optimization which explains the slow downward trends of quantitative indexes when the order p is
higher than 3 in Figure 14a. As a consequence, the value of p should not be a large number in practice.
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6. Conclusions

In this article, a road network extraction method from high-resolution SAR images is proposed.
The major contributions of this work lie in constructing the road network using smooth cross-linked
curves with determined functions. This mathematical description of road segments is useful for road
regularization, network optimization and even data fusion. Based on this idea, the multiplicative
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Duda operation is introduced to achieved line feature responses and their corresponding directions.
To decrease the false rate, the non-road detection using backscattering coefficient and coefficient
of variation, and the filter of morphological profiles using path openings, are then presented to
obtain the road candidates. Next, binary image decomposition and polynomial curve fitting are
proposed to linearize the road segments. Finally, the road network is obtained by overlap, continuity,
and junction optimization using the defined geometric constrain conditions. The experimental results
and quantitative comparisons on three different SAR images demonstrated the effectiveness of the
proposed method. Besides, the proposed road thinning method showed better performance than that
attained by the traditional morphology thinning and tensor voting. Though the presented method
provides satisfactory compromise results in completeness and correctness, there is still some room for
the improvement of road network extraction from the high-resolution SAR images. Future work will
be carried on road information fusion from multi-temporal and multi-sensor images.
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