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Abstract: Although lidar is a powerful active remote sensing technology, lidar echo signals are easily
contaminated by noise, particularly in strong background light, which severely affects the retrieval
accuracy and the effective detection range of the lidar system. In this study, a coupled variational
mode decomposition (VMD) and whale optimization algorithm (WOA) for noise reduction in lidar
signals is proposed and demonstrated completely. The combination of optimal VMD parameters
of decomposition mode number K and quadratic penalty α was obtained by using the WOA
and was critical in acquiring satisfactory analysis results for VMD denoising technology. Then,
the Bhattacharyya distance was applied to identify the relevant modes, which were reconstructed to
achieve noise filtering. Simulation results show that the performance of the proposed VMD-WOA
method is superior to that of wavelet transform, empirical mode decomposition, and its variations.
Experimentally, this method was successfully used to filter a lidar echo signal. The signal-to-noise
ratio of the denoised signal was increased to 23.92 dB, and the detection range was extended from
6 to 10 km.

Keywords: lidar signal; variational mode decomposition; whale optimization algorithm; Bhattacharyya
distance

1. Introduction

Lidar is a combination of traditional radar technology and modern laser technology and has
the advantages of high resolution, wide detection range, and strong anti-interference ability [1].
Its applications in atmospheric remote sensing detection, e.g., aerosol, cloud layer, and visibility, have
become increasingly important [2,3]. However, the power of the lidar echo signal decays with the
exponential attenuation of the aerosol extinction coefficient and the square of the distance between
the lidar and the target according to the lidar equation, and the signal can be easily interfered with
by noise from electric fluctuations and stray lights [4]. Moreover, the lidar echo signal is susceptible
to strong background sunlight noise, dark current noise, and thermal noise [5]. Useful signals are
inevitably contaminated by noise, which will directly affect the effective working range and the
detection precision. Therefore, the lidar backscattering signal must be effectively denoised.
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In the last few decades, several filtering methods based on nonlinear and nonstationary signal
processing, such as Kalman filtering (KF), wavelet transform (WT), and empirical mode decomposition
(EMD), have been proposed to denoise lidar signals. KF can be defined as a recursive estimation
algorithm with minimum mean square error as the best criterion; however, this method will lose
accuracy when the aerosol extinction coefficient changes sharply [6,7]. WT can decompose the signal
into different frequencies through multiscale analysis and has good time–frequency localization
characteristics. However, WT is hampered by the problems of selecting suitable wavelet basis functions
and the decomposition level [4,8]. EMD technology makes up for the limitations of WT and KF and
has good adaptability, thereby enabling it to efficiently reflect the local frequency characteristics of the
signal [9]. Nevertheless, EMD and its variants still have some drawbacks, such as mode mixing and
end effects [10].

Variational mode decomposition (VMD), proposed by Dragomiretskiy and Zosso in 2014, is a new
adaptive signal decomposition method that has a different process of mode decomposition compared
with EMD [11]. It has obvious advantages in dealing with nonrecursive signals, which can not only
overcome the mode mixing problems in EMD but also obtain a better filtering effect by using its own
Wiener filtering characteristics. VMD has been successfully implemented in many fields, such as
mechanical diagnosis, biomedical sciences, and hydropower unit vibration signal processing [12–14].
Despite VMD’s contributions, two crucial parameters need to be resolved: the decomposition mode
number K and the quadratic penalty α [15]. These two parameters are usually selected in a certain
range. If they are obtained by the trial-and-error method, it will require tens of thousands of operations
and will waste a lot of time. For this reason, the parameter values are usually determined based on
experience and convenience, which greatly limits the performance of the VMD method and may cause
inaccurate decomposition results. Therefore, appropriate methods are needed to obtain the optimal
values of these two parameters, and various algorithms have been proposed. Li et al. proposed an
independence-oriented VMD method, which finds the most suitable mode number by peak searching
and the similarity principle; however, this method does not consider the influence of the bandwidth
control parameter on decomposition results [16]. Shi et al. investigated a precise feature extraction
method that optimizes the two parameters K and α for VMD independently [17]. However, they
neglected the interaction between the two parameters [18,19]. Selecting relevant modes is also an
important issue. At present, the indicators for selecting relevant modalities are correlation coefficient,
permutation entropy, approximate entropy, and Hausdorff distance, among others [14,18–20].

In this paper, a VMD method combined with the whale optimization algorithm (WOA)
is presented and used to reduce signal interference from background light and electric noises for a lidar
echo signal. The proposed method utilizes the WOA to obtain the optimal parameter combination
of decomposition mode number K and quadratic penalty α. The signal is reconstructed by using the
relevant modes, which are selected by calculating the Bhattacharyya distance between the probability
density function (PDF) of each mode and the input signal. Four synthetic signals are applied to
validate the feasibility of the VMD-WOA model. Numerical exploration shows that the new method
can achieve improved results in terms of accuracy and signal-to-noise ratio (SNR) than the method
presented in our previous work [21] and other technologies.

2. Brief Description of the VMD Algorithm

The VMD algorithm can decompose any signal into an ensemble of band-limited intrinsic mode
functions (BLIMFs) [22]. To evaluate the bandwidth of each mode, VMD is represented as a constrained
variational problem, which is given as follows:

min
{uk},{ωk}

{
K
∑

k=1

∥∥∥∂t[(δ(t) +
j

πt )× uk(t)]e−jωkt
∥∥∥2

2

}
s.t.

K
∑

k=1
uk = f

, (1)
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where uk is the kth mode, ωk is the center frequency, ∂t represents the gradient with respect to t, t is

the time script, δ(t) denotes the impulse function, ‖ . . . ‖2 is the norm, ‖∂t[(δ(t) +
j

πt )× uk(t)]e−jωkt‖
2
2

represents the bandwidth of each mode, and f is the original signal to be decomposed.
Taking the quadratic penalty α and Lagrangian multiplier λ into consideration, we can convert the

above constrained problem into the unconstrained variational problem. The augmented Lagrangian is
expressed as follows:

L({uk}, {ωk}, λ) = α∑
k

∥∥∥∂t[(δ(t) +
j

πt )× uk(t)]e−jωkt
∥∥∥2

2
+ ‖ f (t)−∑

k
uk(t)‖2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉
. (2)

The solution to the original minimization problem of Equation (1) is the saddle point of the
augmented Lagrangian L in a sequence of iterative sub-optimizations called the alternate direction
method of multipliers (ADMM). The formula is given as

un+1
k = argmin

uk∈X

{
α‖∂t[(δ(t) +

j
πt

)× uk(t)]e−jωkt‖
2

2
+ ‖ f (t)−∑

i
ui(t) +

λ(t)
2
‖

2

2

}
. (3)

According to the ADMM optimization approach, updating uk and ωk in two directions is assumed
to help realize the analysis process of VMD, and the solutions for them are as follows:

ûn+1
k (ω) =

f̂ (ω)−∑i 6=k ûi(ω) +
λ̂(ω)

2

1 + 2α(ω−ωk)
2 , (4)

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
. (5)

For efficient signal reconstruction, the Lagrangian multiplier is also updated using the
following equation:

λ̂n+1(ω) = λ̂n(ω) + τ

(
f̂ (ω)−∑

k
ûn+1

k (ω)

)
. (6)

The algorithm repeats the iterative process according to Equations (4)–(6) until the convergence
stop condition is satisfied. The stop condition is given by

∑
k

∥∥∥ûn+1
k − ûn

k

∥∥∥2

2

/‖ûn
k ‖ < e, (7)

where ûk is the spectrum of the mode, f̂ (ω) is the spectrum of the signal, τ is the noise tolerance, and n
is the iteration number. The pseudocode of VMD is summarized in Algorithm 1.

Algorithm 1. Pseudocode for VMD

1: Initialize ûk, ωk → 0

2: Update ûk → ûn+1
k (ω) =

f̂ (ω)−∑i 6=k ûi(ω)+ λ̂(ω)
2

1+2α(ω−ωk)
2

3: Update ωk → ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω

4: Update λ̂n → λ̂n+1(ω) = λ̂n(ω) + τ
(

f̂ (ω)−∑k ûn+1
k (ω)

)
until convergence ∑k

∥∥∥ûn+1
k − ûn

k

∥∥∥2

2
/‖ûn

k ‖ < e.

3. Principle of the VMD-WOA Model for Noise Reduction

3.1. Optimization of VMD Parameters Based on the WOA

The WOA, first proposed by Mirjalini and Lewis in 2016, is an efficient search and optimization
algorithm that was inspired by the bubble-net attacking strategy of whales [23]. When humpback
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whales obtain the location of prey, they dive deeply, create bubbles in a spiral shape around the prey,
and swim to the surface to attack the prey during the maneuver. The mathematical model of the WOA
is mainly divided into three phases: encircling the prey, establishing spiral bubbles, and searching for
the prey. This novel method requires minimal parameter adjustments and has fast convergence speed
and strong global search ability [24]. When using the WOA to determine the key parameters of VMD,
the specific operation steps are as follows:

(i) Encircling the prey
In the WOA, a candidate solution is considered the prey position. The encirclement of the

humpback whales around the prey can be formulated by the following formulas:

→
D =

∣∣∣∣→C · →X∗i − →Xi

∣∣∣∣, (8)

→
Xi+1 =

→
X∗i −

→
A ·
→
D , (9)

where
→
X is the whales’ position vector,

→
X∗ denotes the prey position vector of the best solution obtained,

and i represents the current iteration.
→
A and

→
C are coefficient vectors, which can be calculated as follows:

→
A = 2

→
a ·→r −→a , (10)

→
C = 2 ·→r , (11)

where vector a is linearly decreased from 2 to 0 over the process of iteration and the random vector r
lies in (0, 1).

(ii) Establishing spiral bubbles
There are two existing approaches to the bubble-net behavior of the whales, namely, the shrinking

encircling mechanism and the spiral updating position. To model the two behaviors simultaneously,
the assumption is that a 50% probability exists in choosing either the shrinking encircling mechanism
or the spiral model to update the positions of the whales during optimization. The mathematical
model is as follows:

→
Xi+1 =


→
X∗i −

→
A ·
→
D p < 0.5

→
D′ · ebl · cos(2πl) +

→
X∗i p ≥ 0.5

, (12)

where
→
D′ =

∣∣∣∣ →X∗i − →Xi

∣∣∣∣ indicates the distance of the current whale to the prey (best solution obtained so

far), b is a constant for determining the shape of the logarithmic spiral, l is a random number in the
range of −1 to 1, and p is the probability number in (0, 1).

(iii) Searching for the prey
In addition to employing the bubble-net search strategy, humpback whales also randomly search

for prey. If |A| ≥ 1, then the position of a search agent will be updated according to a randomly
chosen search agent Xrand. The mathematical model is as follows:

→
D =

∣∣∣∣→C · →
Xrand −

→
X
∣∣∣∣, (13)

→
Xi =

→
Xrand −

→
A ·
→
D. (14)

To achieve parameter optimization through the WOA, the fitness function needs to be determined.
Energy entropy is used to characterize the distribution of signal energy [25]. A small energy entropy
corresponds to increased significance of the corresponding signal in the total energy. The energy
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entropy values of each mode are calculated by using the VMD model under the positions of the search
agents according to the following formula:

H = −
K

∑
k=1

p(k)logp(k), (15)

where p(k) = Ek/E is the percentage of the energy of the kth mode in the total signal energy,
Ek = ∑

t
uk(t)

2, and E = ∑
k

Ek.

The lowest energy entropy value is called the local minimum energy entropy value and is used as
the fitness function in the optimization process [15,26]. It can be described as follows:

f itness = min
γ=(K,α)

{
minLHim f

}
. (16)

The pseudocode for the parameter optimization of VMD based on the WOA is presented in
Algorithm 2. The WOA algorithm starts with a set of random solutions. At each iteration, the search
agents update their positions with respect to either a randomly chosen search agent or the best solution
obtained so far. The parameter a is decreased from 2 to 0 in order to provide exploration and exploitation,
respectively. A random search agent is chosen when |A| ≥ 1, while the best solution is selected when
|A| < 1 for updating the position of the search agents. Depending on the value of p, the WOA is able to
switch between spiral and circular movements. Finally, the optimization process is completed when the
termination criterion is satisficed and the parameters of K and α can be obtained in X*.

Algorithm 2. Pseudocode for WOA

Initialize the whale population position X
Calculate the fitness of each search agent
X* is the best search agent
while (i < maximum iteration number)

for each search agent
Update a, A, C, l, and p

if1 (p < 0.5)
if2 (|A| < 1)

Update the position of the current search agent by the Equation (9)
else if2 (|A| ≥ 1)

Select a random search agent (Xrand)
Update the position of the current search agent by the Equation (14)

end if2
else if1 (p ≥ 0.5)

Update the position of the current search by the Equation (12)
end if1

end for
Check if any search agent goes beyond the search space and amend it
Calculate the fitness of each search agent
Update X* if there is a better solution
i = i + 1

end while
return X*

3.2. Identification of Relevant Modes

A probability density function (PDF) can reflect the difference between the distribution of
signals [27]. Thus, we use the kernel smoothing density function to estimate the PDFs of each
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mode and the input signal. The relevant and irrelevant modes are distinguished by calculating their
similarity. The similarity measure of input signal f and each mode BLIMFi, C(i), is defined as follows:

C(i) = distance[pd f ( f ), pd f (BLIMFi)]. (17)

Here, the Bhattacharyya distance is used to measure the distance of two PDFs, which is an
effective approach to prove similarity. For probability distributions P and Q over the same domain F,
the Bhattacharyya distance is defined as:

DB(P, Q) = −ln(BC(P, Q)). (18)

For discrete probability distributions,

BC(P, Q) = ∑
f∈F

√
P( f )Q( f ). (19)

For continuous probability distributions,

BC(P, Q) =
∫ √

P( f )Q( f )d f . (20)

Relevant modes can be determined by evaluating the slope of two adjacent PDFs’ distance
between the mode and the input signal [21]. The maximum slope θ can be defined as:

θ = max|C(i + 1)− C(i)| i = 1, 2, . . . , (N − 1) . (21)

The demarcation index of relevant and irrelevant modes is as follows:

Kr = i. (22)

3.3. Proposed VMD-WOA Methodology

Figure 1 shows the flowchart of the VMD-WOA algorithm. The detailed steps of this algorithm
are as follows:
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Step 1: The original signal f is input. The ranges of the VMD parameters to be optimized are set
and the WOA model is initialized, including the number of search agents and the maximum iteration
number. Here, K takes an integer in the interval (2,15), α is assigned in the interval (1000–10,000),
the number of search agents is 30, and the maximum number of iterations is 15.

Step 2: The signal is decomposed by using VMD. The fitness of each search position is calculated.
The minimum fitness value for each iteration is saved.

Step 3: The loop is iterated until the maximum iteration number is reached, i.e., whether
i ≥ maximum iteration number. If yes, end the iteration. Otherwise, let i = i + 1 and continue
the iteration, saving the optimal parameters and the best fitness value.

Step 4: The signal is decomposed by VMD with optimal parameters.
Step 5: The Bhattacharyya distance between the PDF of each mode and the input signal

is calculated.
Step 6: The relevant modes are selected and reconstructed to denoise the signal.

4. Results and Discussion

4.1. Experiments with Simulated Signals

To test the effectiveness of the proposed method, preliminary simulations were conducted to
reduce the noise in simulated signals. The synthetic signals, namely, Bumps, Heavy Sine, Blocks,
and Doppler signals, are shown in Figure 2. These signals were contaminated by white Gaussian
noise, where SNRin = 5 dB and signal length N = 2048. The blue lines are the true signals, and the
red lines represent the noisy signals. We compared the performance of the proposed algorithm with
that of different denoising methods, namely, NeighCoeff-db4 WT (WT-db4), EMD direct thresholding
(EMD-DT), EMD combined with soft thresholding and a roughness penalty (EMD-STRP), and VMD
method based on the decomposition level of EMD (EMD-VMD).Remote Sens. 2019, 11, 126 8 of 16 
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In order to evaluate the noise reduction performance of these denoising methods, two indicators,
namely, the output signal-to-noise ratio (SNRout) and the root-mean-square error (RMSE), were adopted
and defined as follows:

SNRout = 10log

N
∑

n=1
f 2(n)

N
∑

n=1
[ f ′(n)− f (n)]2

, (23)

RMSE =

√√√√ 1
N

N

∑
n=1

[ f ′(n)− f (n)]2, (24)

where f (n) is the original signal, f′(n) is the denoised signal, and N is the signal length.
Here, we take the Bumps signal with 5 dB Gaussian white noise as an example to illustrate the

proposed VMD-WOA method. The WOA was used to search for the optimal VMD parameters of
the Bumps signal, and the convergence curve for VMD parameter optimization is shown in Figure 3.
The lowest local minimum energy value was 0.0395. Thus, the corresponding optimal parameter
combination of decomposition mode number K and quadratic penalty α was (9, 8770).Remote Sens. 2019, 11, 126 9 of 16 
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Figure 3. WOA convergence curve for VMD parameter optimization.

The decomposition result of the Bumps signal with the optimal parameters is shown in Figure 4,
and these modes are distributed from low frequency to high frequency. The PDFs of each mode and
the Bumps signal were obtained by the kernel smoothing density function, and the Bhattacharyya
distances between them were calculated using Equation (18). As shown in Figure 5, the slope between
BLIMF2 and BLIMF3 was the maximum. Thus, BLIMF1 and BLIMF2 were considered the relevant
modes and could be used for signal reconstruction to achieve noise filtering.
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The results of different denoising methods for the noisy Bumps signal with input SNR = 5 dB
are compared in Figure 6, and the best result was given by VMD-WOA. As shown in this figure,
the worst filtering result was obtained by WT-db4 technology; the resulting filtered signal had many
“burrs” and the lowest SNRout of 14.27 dB. The EMD-DT, EMD-STRP, and EMD-VMD methods were
better, but the denoised signals still lost many useful signal components, and the methods generated
a large-amplitude distortion at both the beginning and the end of the filtered signal. The result of
EMD-VMD was superior to that of EMD-based denoising. Thus, VMD is superior to EMD and can
overcome the modal mixing problems in EMD.
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Figure 6. Comparisons of different denoising techniques for the noisy Bumps signal. WT is wavelet
transform, EMD is empirical mode decomposition, EMD-DT is EMD-direct thresholding, EMD-STRP
is EMD combined with soft thresholding and a roughness penalty, EMD-VMD is the VMD method
based on the decomposition level of EMD, and VMD-WOA is the VMD method combined with the
whale optimization algorithm (WOA).



Remote Sens. 2019, 11, 126 10 of 15

The denoising performance by the abovementioned methods for the noisy Bumps signal with
SNRin values varying from −4 dB to 11 dB is displayed in Figure 7. The VMD-WOA method obtained
the best results, as expected, under different SNRin. Even in the worst-case scenario, with the lowest
SNRin of −4 dB, VMD-WOA still guaranteed a high SNRout up to 10.3 dB. In addition, the performance
comparisons in terms of RMSE at different SNRin revealed that VMD-WOA can achieve the minimum
error in reconstructing the Bumps signal.Remote Sens. 2019, 11, 126 11 of 16 
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Table 1 lists the values of SNRout/RMSE as a function of the SNRin, obtained by applying WT-db4,
EMD-DT, EMD-STRP, EMD-VMD, and VMD-WOA to the three other synthetic signals. The entries
that correspond to the best observed SNRout/RMSE are highlighted in bold. The table shows that the
proposed VMD-WOA outperformed all the other methods for the Heavy Sine, Blocks, and Doppler
signals in the whole range of the SNRin values. VMD-WOA showed the best performance, particularly
for the Heavy Sine signal. When the SNRin value was 11 dB, the SNRout improved to 25.59 dB and the
RMSE was reduced to 0.16 for VMD-WOA. The superiority and reliability of the proposed method
were further proved by these experiments.

Table 1. Denoising performance with different SNRin for the Heavy Sine, Blocks, and Doppler signals.

SNRin −4 dB −1 dB 2 dB 5 dB 8 dB 11 dB

(a) Heavy Sine
WT-db4 5.04/1.73 7.69/1.27 10.40/0.93 14.31/0.59 16.86/0.44 20.19/0.30
EMD-DT 8.67/1.14 11.38/0.83 13.60/0.85 17.06/0.43 21.29/0.27 22.93/0.22

EMD-STRP 9.03/1.10 11.49/1.04 13.87/0.82 17.36/0.42 21.39/0.26 23.02/0.22
EMD-VMD 11.30/0.84 14.10/0.61 17.89/0.39 19.61/0.32 22.39/0.23 24.35/0.19
VMD-WOA 12.59/0.73 16.80/0.45 19.25/0.34 21.78/0.24 24.23/0.19 25.59/0.16
(b) Blocks

WT-db4 4.76/1.72 8.16/1.16 10.48/0.89 13.93/0.60 15.72/0.49 18.14/0.37
EMD-DT 7.75/1.22 10.19/0.92 12.43/0.71 14.76/0.54 15.67/0.49 16.37/0.45

EMD-STRP 7.87/1.20 10.30/0.91 12.50/0.70 14.68/0.55 15.40/0.50 17.55/0.39
EMD-VMD 10.90/0.85 11.93/0.75 13.81/0.61 15.26/0.51 16.08/0.47 17.80/0.38
VMD-WOA 11.02/0.83 12.30/0.72 14.01/0.59 15.85/0.48 16.27/0.46 18.25/0.36
(c) Doppler

WT-db4 4.98/0.167 8.62/0.109 10.81/0.082 13.25/0.064 15.06/0.052 18.38/0.035
EMD-DT 6.74/0.127 10.38/0.089 12.61/0.069 14.89/0.053 16.28/0.045 18.57/0.034

EMD-STRP 6.68/0.132 10.55/0.087 11.43/0.079 13.55/0.062 14.89/0.053 17.69/0.038
EMD-VMD 9.76/0.095 11.70/0.076 12.35/0.071 14.91/0.053 16.54/0.044 18.45/0.035
VMD-WOA 10.28/0.089 12.30/0.071 13.45/0.062 15.04/0.052 17.01/0.041 19.41/0.031

4.2. Experiments on a Lidar Echo Signal

To further verify the denoising effect of our method, we tested the proposed VMD-WOA algorithm
on real cases measured by our ground-based lidar. Continuous systematic observations of the
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vertical distribution of aerosol extinction coefficient were conducted at the Nanjing University of
Information Science (32.2 ◦N, 118.7 ◦E). The Rayleigh–Raman–Mie lidar used in the experiment
was developed by the Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences.
This lidar system contains a diode-pumped Nd:YAG laser with a pulse output wavelength of 532 nm,
a repetition frequency of 20 Hz, and a pulse energy of about 200 mJ. The receiver unit is a 400 mm
diameter Cassegrain telescope with a field of view of 2 mrad. The lidar echo signal is received by a
photomultiplier tube and sampled at a range resolution of 30 m.

Given the different axes of the lidar transmitting and receiving system, the telescope can receive
only a part of the echo at a certain distance. Thus, we corrected the geometric overlap factor (GOF)
for the original lidar echo signal (measured on 24 March 2017). The waveform of the GOF-corrected
signal fluctuated obviously under the influence of noise. The performance of the VMD-WOA method
and the other techniques on the GOF-corrected signal is shown in Figure 8. To show the denoising
results clearly, a zoomed figure of the 4–6 km signal is plotted in the figure. Table 2 lists the SNRs of the
GOF-corrected signal processed by the five denoising techniques. As shown, the denoised results from
WT-db4 and EMD-DT fluctuated considerably due to the influence of the wavelet function and direct
thresholding. VMD-WOA featured the highest SNR of 23.92 dB and a smoother signal, indicating
a better denoising performance than the other methods. Compared with EMD’s variation and WT,
VMD could separate components of similar frequencies by searching for a number of modes and
their respective center frequencies, which reproduced the input signal exactly. Moreover, by adopting
Wiener filtering in the Fourier domain during the optimization process, the updated mode was less
affected by noisy disturbances, which made VMD more robust against noisy data.
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Table 2. The SNRs of the geometric overlap factor (GOF)-corrected signal processed by the different
denoising techniques.

WT-db4 EMD-DT EMD-STRP EMD-VMD VMD-WOA

SNR (dB) 20.67 20.36 22.25 22.61 23.92

With increasing measurement height, the intensity of the lidar return signal decays with the square
of the distance. The range-square-corrected signal is generally obtained to eliminate the influence of
distance on the echo signal by multiplying the square of the distance by the received signal intensity.
Figure 9 shows the range-square-corrected signal before and after denoising with different denoising
techniques. As seen in the figure, each method significantly denoised the signal, but VMD-WOA
featured a better denoising performance with respect to the signal smoothness and integrity. It is
apparent that the VMD-WOA method filtered the noise to the greatest extent and maintained the
change trend of the original signal compared with the other denoising methods. As shown, when the
height was increased above 3 km, the useful far-field signal intensity decreased and was gradually
overwhelmed by noise. At a height above 6 km, the signal began to weaken, with an intensity close to
zero. After denoising with VMD-WOA, a useful signal above 6 km was effectively extracted, and the
effective detection range of the lidar extended from 6 km to 10 km.
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Then, the Fernald method was used to retrieve the profiles of the aerosol extinction coefficient,
and the results are shown in Figure 10. The lidar data used for inversion were measured on 24, 25, 18,
and 19 March 2017. As shown in the figure, VMD-WOA had a good noise filtering effect for the lidar
echo data acquired in different time periods. This is due to the fact that VMD-WOA is an adaptive
model that can select appropriate parameters according to the characteristics of the different lidar data.
In fact, this method also had a good noise filtering effect for signals obtained in different locations and
weather conditions, which shows that it had strong adaptability.
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5. Conclusions

In this study, the noise filtering method VMD-WOA was proposed and successfully applied
in the field of laser atmospheric detection. When implementing the VMD for signal processing,
the decomposition mode number K and quadratic penalty α need to be selected appropriately. To solve
this problem, WOA was used to search for the optimal combination of parameters (K, α). Then,
the VMD-WOA method achieved denoising by reconstructing the relevant modes, which were selected
using the Bhattacharyya distance. Finally, the feasibility of the proposed method was investigated
theoretically and experimentally. The simulation of the filtering effects on four representative signals
(Bumps, Heavy Sine, Blocks, and Doppler signals) with different SNRin showed that the VMD-WOA
method outperformed other denoising methods (WT-db4, EMD-IT, EMD-STRP, and EMD-VMD).
Experimentally, the performance of VMD-WOA was compared with that of the other four methods on
a lidar echo signal. The signal-to-noise ratio of the denoised signal was increased to 23.92 dB, and the
detection range was extended from 6 to 10 km. Experiments on different aerosols were also carried out,
and the aerosol extinction coefficient retrieved from the denoised signal showed good smoothness.
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