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Abstract: The development of new approaches to tree-level parameter extraction for forest resource
inventory and management is an important area of ongoing research, which puts forward high
requirements for the capabilities of single-tree segmentation and detection methods. Conventional
methods implement segmenting routine with same resolution threshold for overstory and understory,
ignoring that their lidar point densities are different, which leads to over-segmentation of the
understory trees. To improve the segmentation accuracy of understory trees, this paper presents
a multi-threshold segmentation approach for tree-level parameter extraction using small-footprint
airborne LiDAR (Light Detection And Ranging) data. First, the point clouds are pre-processed and
encoded to canopy layers according to the lidar return number, and multi-threshold segmentation
using DSM-based (Digital Surface Model) method is implemented for each layer; tree segments
are then combined across layers by merging criteria. Finally, individual trees are delineated, and
tree parameters are extracted. The novelty of this method lies in its application of multi-resolution
threshold segmentation strategy according to the variation of LiDAR point density in different canopy
layers. We applied this approach to 271 permanent sample plots of the University of Kentucky’s
Robinson Forest, a deciduous canopy-closed forest with complex terrain and vegetation conditions.
Experimental results show that a combination of multi-resolution threshold segmentation based on
stratification and cross-layer tree segments merging method can provide a significant performance
improvement in individual tree-level forest measurement. Compared with DSM-based method,
the proposed multi-threshold segmentation approach strongly improved the average detection rate
(from 52.3% to 73.4%) and average overall accuracy (from 65.2% to 76.9%) for understory trees.
The overall accuracy increased from 75.1% to 82.6% for all trees, with an increase of the coefficient
of determination R2 by 20 percentage points. The improvement of tree detection method brings
the estimation of structural parameters for single trees up to an accuracy level: For tree height,
R2 increased by 5.0 percentage points from 90% to 95%; and for tree location, the mean difference
decreased by 23 cm from 105 cm to 82 cm.

Keywords: airborne LiDAR; tree segmentation; multi-threshold; deciduous forest; canopy layer

1. Introduction

Over the past decades, airborne LiDAR has been extensively used in the field of forestry to
minimize traditional forest inventory practices, which are labor-intensive and cost-consuming. Due to
LiDAR’s ability to capture data at unprecedented spatial and temporal resolution in the shape of
three-dimensional (3D) point clouds, there has been a multifold increase in the demand for tree-level
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information to improve the accuracy of forest assessment, monitoring, and management activities [1–4].
Medium- or large-footprint (20–70 m) LiDAR datasets are useful in describing the vertical distribution
of canopies at the resolution of the footprint, while small-footprint (10s of cm) LiDAR provides both
vertical and horizontal information at the scale of individual trees [4]. Estimates of forest biomass
have largely ignored the understory trees, which play an important role in forest ecosystems [5–8].
How to isolate individual trees from different canopy layers to obtain tree-level attributes and to
employ accurate and automated tree segmentation methods that are able to isolate tree crowns, both
vertically and horizontally, are required answers [9–12].

Various methods have been developed to extract individual tree information from high-resolution
LiDAR datasets. These techniques generally fall into two categories: canopy height models (CHMs) or
digital surface models (DSMs), e.g., [13–18] and, more recently, directly using raw LiDAR point clouds
methods, e.g., [10,19,20]. The CHM-based methods identify local maxima (LMX), assumed as the tree
apices, or use local minima (LM) to depict tree crown boundaries. The LMX-based methods search for
the apices of the canopy and delineate crowns by expanding outward from those apices in a variety of
ways, such as valley following or seeded region-growing [17,21–23]. Although LMX-based methods
are computationally the fastest and simplest algorithms, these methods often fail to detect understory
and overlapping trees in structurally complex forests and have difficulty detecting canopy edges,
typically oversimplifying canopy geometry [24]. LM-based approaches proceed by creating an inverted
CHM of the canopy surface to identify the local maxima ridges that delineate adjacent individual tree
crowns [16,25]. In general, LM-based approaches typically use watershed segmentation routines and
are prone to under-/over-segmentation due to differences in tree heights and natural variability of
vegetation within the canopy [26]. DSM-based methods locate the global maximum elevation amongst
lidar surface points, generate vertical profiles, and create a convex hull to delineate tree crown [24].
Hamraz et al. (2016) [26] proposed a robust non-parametrical tree segmentation approach based on
DSM, which did not require a priori knowledge of either stand structure or typical tree attributes.
The approach identified 94% of dominant and co-dominant trees, about 62% of intermediate and
overtopped trees, and the overall segmentation accuracy was 77%. In general, these approaches have
an inherent drawback of missing understory trees due to focusing only on the surface data during
individual tree segmentation [11,12].

Numerous recent techniques utilize all the horizontal and vertical information to segment
individual trees by processing the raw point clouds. Point cloud-based techniques make use of all
the information from discrete return LiDAR datasets and therefore provide a broad prospect for
future advancement in this field. From the computational viewpoint, these methods can be classified
into volumetric and profiler methods. Volumetric-based methods directly search the 3D volume
for delineating individual trees [10,19,20,27–31]; hence, they are generally highly computationally
demanding and so the methods have focused on small regions within a single study site and may
not be applicable across a wide range of forest types [9]. On the other hand, the profiler methods
reduce the computational load through a more modular process. They usually utilize two modules to
implement segmentation, one of which is used for vertical segmentation, i.e., to strip the 3D volume
to multiple 2D horizontal profiles, and the other one for horizontal segmentation, i.e., to search the
trees within the profiles and eventually aggregate the tree segments across the profiles [9,12,32–35].
Ayrey et al. (2017) [32] introduced a layer stacking single tree segmentation approach, which sliced the
whole forest point cloud at 1-m-height intervals and delineated trees in each layer, ultimately merging
the results across the tree profiles. Compared with the watershed algorithm, this method improved
individual tree segmentation accuracy; however, they generally ignored information about the vertical
crown geometry during processing a 2D profile [35]. To minimize information loss during profile
generation, other profiler methods have analyzed the vertical distribution of lidar points to identify
2.5D profiles, which contains more vertical information about vegetation. Wang et al. (2008) [12]
analyzed the vertical distribution of all lidar points globally within a given area to determine the height
levels of the stripping profiles, then searched trees in each profile, and finally used top-down routine
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to unify any detected crown that might present in different profiles. Hamraz et al. (2017) [35] proposed
a stratification-enabled segmentation approach, which stratified the point clouds to canopy layers
by examining the height histogram of all points within a given region and then segmented single
tree crowns within each layer using the DSM-based segmentation method. The approach improved
detection rate for understory trees (from 46% to 68%) at the cost of introducing a fair number of
over-segmented understory trees (increased by 15 percentage points). These methods identify the 2.5D
profiles by analyzing vertical distribution or height histogram of lidar points, which effectively utilize
the vertical information of vegetation and improve the detection rate of understory trees; however,
the overall accuracy of understory trees (usually around 60%) is always lower than overstory trees
(usually around or above 90%) [31,35]. The main reason for this deficiency is the occlusion effect of
higher tree canopies, which greatly reduce the penetration of lidar pulses toward lower vegetation
layers. This fact leads to a much lower point density and resolution depicting understory trees [36,37].
However, existing methods implement segmenting routine with the same resolution threshold for
overstory and understory, ignoring that their lidar point densities are different, which leads to the
over-segmentation of the understory trees. Very few studies have analyzed the effect of resolution on
the overall precision of tree segmentation. Hamraz et al. (2017) [38] has recently analyzed the effect of
LiDAR point density on segmentation of understory trees and believes that there are two potential ways
to improve the accuracy of the segmentation of understory trees with low point density. One is to adjust
the parameters of the tree segmentation method, and the other is to use more customized methods.

The objectives of this study are: (1) to highlight a new multi-threshold tree segmentation for
tree-level parameter extraction in a deciduous forest using small-footprint airborne LiDAR data,
(2) to analyze the effect of segmentation resolution on the tree segmentation accuracy for different
canopy layers, and (3) to present the results of the multi-threshold segmentation approach when
applied to the Robinson Forest, and evaluate this approach with respect to the tree detection rates and
correctness of detected trees. The remainder of the paper is organized as follows: Section 2 describes
the study area and airborne LiDAR data acquired from a Leica ALS60 system. Section 3 details the
proposed multi-threshold tree segmentation method. Section 4 describes and analyzes the conducted
experiments. The discussion of the presented multi-threshold segmentation approach is given in
Section 5. Ultimately, concluding remarks are given in Section 6.

2. Study Area and Data

2.1. Study Site and Field Data

Our study uses one of several datasets of the Department of Forestry at the University of Kentucky.
The study site is the Robinson Forest, (coordinates: 37◦28′23”N 83◦08′36”W), located in the rugged
eastern section of the Cumberland Plateau in Breathitt, Perry, and Knott counties in southeastern
Kentucky. The vegetation is a diverse, contiguous mixed mesophytic forest of approximately
80 tree species with northern red oak (Quercus rubra L.), white oak (Quercus alba L.), yellow-poplar
(Liriodendron tulipifera L.), American beech (Fagus grandifolia Ehrh.), eastern hemlock (Tsuga canadensis (L.)
Carrière), and sugar maple (Acer saccharum Marsh.) as dominant and co-dominant species. Understory
species include eastern redbud (Cercis canadensis L.), flowering dogwood (Cornus florida L.), spicebush
(Lindera benzoin L.), pawpaw (Asimina triloba (L.) Dunal), umbrella magnolia (Magnolia tripetala L.),
and bigleaf magnolia (Magnolia macrophylla Michx.). The average canopy cover across the Robinson
Forest is approximately 93% with small openings scattered throughout. Most areas exceed 97% canopy
cover; however, recently harvested areas have an average cover as low as 63%. The Robison Forest is
now protected from commercial logging and mining activities. Its total area is about 7440 hectares,
including 2.5 million (±13.5%) trees, more than 60% of which are understory [35].

Throughout the whole Robinson Forest, 271 circular plots with a regular distribution of 0.04 ha in
size (grid-wise every 384 m) were field surveyed during the summer of 2013. A few of the 271 plots
were not georeferenced very accurately and might be up to 5 m error. Within the Clemons Fork
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watershed (covering an area of about 1500 hectares), 1.2 × 1.2 m white plywood boards were installed
to increase reflectivity before lidar data were collected from the circular plots. During the installation
of boards, their centers were placed in the exact position of the plot rebar markers, with the purpose of
correctly geo-referencing the exact position of plot center. Within each plot, the species, DBH (diameter
at breast height), height, canopy class (dominant, co-dominant, intermediate or overtopped), condition
(live or dead), stem class (single or multiple) were recorded for all trees >12.5 cm DBH. Moreover,
horizontal distance and azimuth from the center of the plot to the face of each tree at breast height
were collected to draw the stem map [35]. The site variables of each plot were recorded, including
slope, aspect, and position. Table 1 shows the attribute statistics for the 271 plots in the study area.

Table 1. Attribute statistics for the 271 plots in the study area.

Plot-level Metric Min Max Average Total Percent in Total

Slope (%) 0 93 50
Aspect (◦) 2 360 179
Tree count 2 41 14.7 3986 100%
Dominant 0 3 0.5 130 3.26%

Co-dominant 0 10 3.5 958 24.03%
Intermediate 0 34 5.5 1487 37.30%
Overtopped 0 19 4.3 1155 28.97%

Dead 0 7 0.9 256 6.42%
Species count 1 12 6.0 43

Shannon diversity index 0 2.25 1.50
Median tree height (m) 13.9 28.8 19.5
Interquartile range of

tree height (m) 1.2 12.4 5.5

2.2. LiDAR Campaign

The LiDAR data provided by the Department of Forestry at the University of Kentucky are a
combination of two separate datasets collected by the same LiDAR system (Leica ALS60). During the
collection process, the system was set at 200 kHz pulse repetition rate and 40◦ field of view, and the
average speed of flight was set to 105 knots over strips with 50% overlap. One dataset was low density
(~2 pt/m2) collected during the spring of 2013 (leaf-off season) for acquiring terrain attribution as part
of a state-wide elevation dataset acquiring program from the Kentucky Department of Geographic
information. The other dataset was high density (~50 pt/m2), collected during the summer of 2013
(leaf-on season) with average altitude of 214 m above the ground. Up to 4 and 5 returns were captured
per LiDAR pulse for the leaf-off and leaf-on collections respectively, and only 90%–95% of the middle
part of the flight strips was used to generate datasets. Both datasets were pre-processed by the
vendor using TerraScan software. During this process, LiDAR points were divided into ground and
non-ground points. Then, a 1-m-resolution digital elevation model (DEM) was created based on
ground points, and the nearest neighbor method was used for fill void and the average method for
interpolation [35].

3. Multi-Threshold Tree Segmentation Approach

A pre-processing routine was first applied to homogenize point spacing and create a grid of
resolution equal to the nominal post spacing (NPS); the highest elevation point within each grid cell
(LiDAR surface points, LSPs) was then selected to filter the LiDAR point cloud. The LiDAR-derived
DEM was used to calculate the heights above ground for all LSPs. Those low-vegetation LSPs (<5 m)
were eliminated from further analysis. Based on the variability of vegetation structure (stem density
and tree height), several gaps without vegetation were created in the remaining LSP dataset and used
in later analysis. Finally, LSPs were smoothed to reduce small variation in vegetation elevation within
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canopies, while maintaining important vegetation patterns. A Gaussian smoothing filter with standard
deviation equal to the NPS and a radius of 3 × NPS was used.

After the pre-processing routine, several canopy layers at different height levels were then isolated
by analyzing the LiDAR return number (Section 3.1). Every isolated canopy layer was segmented with
different resolution thresholds by applying the DSM-based approach (Section 3.2). A combination
rule was utilized to merge the segments of each layer across canopy layers (Section 3.3). After
that, individual trees are delineated, and tree-level parameters were extracted (Section 3.4). Finally,
the optimal segmenting resolution threshold value of each canopy layer in the study area was obtained
through cross-testing, and the evaluation metrics of the method proposed in this paper were presented
(Section 3.5). Figure 1 shows the processing framework applied by our method.
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3.1. Isolating Layers

The diameter of the laser pulse is limited (~10 cm and larger). For small-footprint laser pulses,
it is possible that only part of the diameter across an object. This part of the pulse reflects from there,
and the rest of the pulse keeps travelling until it meets other objects which result in reflection of other
parts of the pulse. After receiving the reflected laser pulse, the detector is triggered when the in-coming
pulse reaches the set threshold so as to measure the flight time. The received laser pulse samples all
return which are above the threshold at different stages of the reflected laser waveform. Accordingly,
the range is measured to each of those points wherefrom a return occurred to yield their coordinates
(Figure 2a).
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Figure 2. (a) Illustration of multiple lidar returns from a tree; (b) LiDAR points distribution statistics of
each layer for the 271 plots.

Therefore, to a certain extent, the distribution of lidar return points reflects the degree of leaf
overlap. Within overstory and understory, there are more return points where the leaves are denser
and vice versa, which characterizes the vertical structure of the vegetation. As shown in Figure 3,
point clouds of different layers can depict the tree canopies at different height levels.
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Figure 3. Example of isolating layers for a plot according to LiDAR point return number. (a) Before
stratification and (b) after stratification.

Because of the penetration and multi-return characteristics of LiDAR, it offers an opportunity
to capture the vegetation structure [39]; we vertically stratified each point cloud into several canopy
layers by the LiDAR return number for the 271 plots and coded them into the first to fifth (Figure 2b).
The layers with total heights below the minimum height of 5 m were eliminated due to being related
to ground-level vegetation. Stratification did not identify any layers for plots without enough large
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trees and up to five layers for plots with very complex crown structures. We counted the number of
points within each layer of the 271 plots and found that the amount of LiDAR points decreased as the
number of LiDAR returns increased. The amount of LiDAR points within the first layer was the largest,
and the percentage of numbers in the third layer was less than 5% (Figure 2b). The point density below
the third layer is too low, resulting in insufficient points to characterize the vegetation. Therefore,
LiDAR return points within layers 4 and 5 were combined into layer 3 point clouds in this project. The
stratification strategy based on the lidar return number facilitates segmenting the lower tree canopies
using the DSM-based method, which focuses on the surface points during tree segmentation.

3.2. Implementing the Multi-Threshold Segmentation Using DSM-Based Method

3.2.1. DSM-Based Method

According to the DSM-based segmentation proposed by Hamraz et al. (2016) [26], after the
pre-processing steps, the tree segmentation is implemented according to the following routines:
(1) locate the global maximum elevation (GMX) amongst LSPs, which is assumed to represent the
apex of the highest tree within a given region; (2) generate vertical profiles originating from the GMX
location and extending outwards; (3) identify the individual LSP along the profile that may represent
the tree canopy boundary using adjacent trees gap recognition and local minima (LM) recognition for
each profile; (4) create a convex hull along boundary points to delineate the tree canopy; and (5) cluster
all LSPs encompassed within the convex hull and assign them as the current highest tree canopy. These
routines are applied iteratively until all LSPs have been clustered into tree canopies. Figure 4 is an
illustration of the five routines within the DSM-based tree segmentation approach.
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During profile generating, the number of profiles required to smoothly represent tree canopies
is determined dynamically according to LiDAR-detected canopy radii. The procedure starts with
eight uniformly spaced profiles in angular (every 45◦). After the tree canopy boundary and thus
radius is determined for each profile (described below), the maximum tree canopy radius (r) is used to
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determine the chord height (x) between two maximum tree canopy radius profiles separated by the
angular spacing (ϕ) (Figure 5) as follows:

x = r(1− cos(
ϕ

2
)), (1)

If the chord height is larger than NPS, the angular spacing is reduced by half and the number of
profiles is doubled.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 24 
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3.2.2. Multiple Resolution Threshold Segmentation for Stratified Canopy Layers

For the DSM-based segmentation approach, grids with resolution equal to the average NPS are
created by homogenizing the point spacing; LSPs are then obtained to perform segmentation. However,
grids with the fixed resolution are not appropriate for multi-layer segmentation because the point
spacing (or point density) is inconsistent for over- and understory trees. Therefore, it is assumed
that better performance can be achieved by implementing multi-resolution threshold segmentation.
To obtain different segmentation resolution, during the procedure of profile generation, we set the
resolution threshold (TH) of each layer to be variable rather than rigidly equal to NPS; their values are
calculated as follows:

THi = Ai ×NPS, (2)

where i denotes the number of layers, THi denotes the threshold value of layer i is A times of NPS.
The flowchart of the improved DSM-based segmentation method is shown in Figure 6.

During multiple resolution threshold segmentation of the isolated canopy layers, different from the
direct segmentation of the first layer, the lidar point return number of the second and third layers should
be set to the first return number as LSPs to implement DSM-based segmentation. The segmentation
threshold of each layer is set to different values, and the optimal value of each layer is analyzed in detail
in Section 3.5.2. A detailed description of the routines is given in the following: (1) isolate canopy layers
for a given plot according to lidar point return number; (2) set the lidar point return number of the
second and third layers to first return number, respectively; (3) assign the optimal resolution threshold
value THi to layer i as its segmentation threshold; and (4) implement the improved DSM-based
segmentation for each canopy layer. An example of multiple resolution threshold segmentation for
isolated canopy layers using improved DSM-based method is shown in Figure 7.
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3.3. Combining Tree Segments across Layers

3.3.1. Combination Results with the Resolution Threshold Value

After implementing multiple resolution threshold segmentation for each layer, all segments within
adjacent layers are traversed systematically to determine whether they meet the merging criteria,
and the regions that meet the criteria are connected. The remaining connected regions constitute the
final segmentation result. The combination of segments in vertical neighboring layers contains the
following cases, as shown in Figure 8a:

• New connected regions appear, such as R1, R2, R3, and R4;
• The area of the connected regions increases (or remains unchanged), such as R5 and R6;
• Two or more small connected regions merge into a larger one, such as R7 and R8.

The number of vertical neighboring connected regions contained in the large area connected
region Ri can be divided into the following:

• 0, indicating that Ri is a newly generated connected region, such as R1;
• 1, indicating that the connected region already exists, and only an increase of area is possible,

such R6;
• 2, indicating that two small connected regions grow and merge into Ri, such as R8;
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• >2, indicating that several small connected regions grow and merge into Ri, but the merging
sequence is ambiguous, which is not conducive to analysis. In general, it is prevented by adding
a threshold.

According to the above analysis method, the tree structure shown in Figure 8b can be established,
which is called “connected growth tree” (CGT). It demonstrates the combination of nodes within
different layers, in which each node denotes a connected region under the threshold value. The key of
the algorithm is to determine the reasonable merging criteria.

(b)

(c) (d)

(f)

(a)

(e)

Figure 7. An example of multiple resolution threshold segmentation for isolated canopy layers. (a,c,e)
are 3D views of tree segments of the first, second and third layer, respectively; (b,d,f) are their top
views. The color of points indicates individual tree segments.
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3.3.2. Criteria for Connected Regions Merging

We assume that the connected regions of the LiDAR point cloud at coordinates (x, y, z) are E(x,
y, z) when the segmentation threshold is THi. To introduce the merging criteria, we first define the
following new measurements:

1. Connectome element

The point cloud subset of the maximum connected region that does not merge at the same
horizontal position (x, y) is defined as the connectome element: EV = E(x, y; TH1), . . . , E(x, y; THK),
where, TH1 > . . . > THK, K is the segmentation threshold series. The connectome elements meet the
following conditions:

(1) If the connected region E(x′, y′; THi) is independent of E(x, y; THi), namely E(x, y; THi) ∩ E(x′, y′;
THi) = ø, then E(x′, y′; THi) ∩ E(x, y; THi+1) = ø, i =1, 2, . . . K-1;

(2) If any E(x, y; TH′) < EV (TH′ > TH1 or TH′ < THK) is added into EV, then EV no longer meets the
condition 1), then

The EV describes the growth process of the independent child node, forms an irregular trapezoid
body, and is termed a connectome element such as R2 and R6 as shown in Figure 8a.

2. Rate of connectome element intersection area

∆S1 =
Sinter

S(x, y, THi)
, (3)

∆S2 =
Sinter

S(x, y, THi+1)
, (4)

where, S(x, y; THi+1) and S(x, y; THi) are the areas of the root node and child node, respectively; Sinter

is their intersection area. Both ∆S1 and ∆S2 are the rates of connectome element intersection area.
Based on the above, the merging criteria of the connectome elements is:
If [(∆S1 > ε) ∪ (∆S2 > ε)] = 1, then connectome elements are allowed to merge; otherwise, they are

considered independent and prohibited from merging. Where ε is a constant criterion in the range
interval, 0.5, 1.0, for which 0.8 is an ideal value in our study case.

Individual tree canopies are extracted during the forest traversal process by merging the vertical
neighboring tree segments from layers at a different height level (Figure 9).
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3.4. Delineating Individual Trees

After the cross-layer combination of tree segments, each individual tree was delineated, their
point clouds, as well as boundary points, were determined. Tree structure attributes, such as tree apex
location, tree height, crown perimeter, and the number density of tree, can be obtained directly from
the combined points. From these attributes, other forest parameters, such as Diameter at Breast Height
(DBH), Crown Base Height (CBH), Basal Area (BA), Leaf Area Index (LAI), biomass and tree species,
could be estimated using allometric equations. In this paper, our main objective was to highlight a
method to accurately detect and delineate single trees from LiDAR data; we focused on two parameters
which had been on-site measured values from a field survey, namely, tree location and height.

The highest point among the point cloud of each segmented tree is considered as the tree apex,
and the distance from the tree apex to the ground is regarded as the height of that tree. Since the
performance of trunk detection depends on the lidar point density and the forest structure, not all tree
trunks can be correctly extracted [27]; the apex of the LiDAR-derived tree is considered as its location
in this paper. Figure 10a,b show the comparison between the original and segmented point clouds for
one of the 271 plots. It is apparent visually that most of the trees are correctly delineated. The tree
delineated results in other plots in our study are similar and hence are not shown here.
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3.5. Evaluating

3.5.1. Approach Evaluation

To verify the accuracy of multi-threshold segmentation, local maximum algorithms were used to
identify treetops and then the semi-automatic method proposed by Kaiguang Zhao et al. (2018) [40] to
match the LiDAR-derived and the field trees. Given two datasets, such as A and B, any point in dataset
A can find a closest point in dataset B and vice versa. However, the identified point in dataset B has a
closest point in dataset A that is not necessarily the original A point. This approach is a variant of the
concept of Hausdorff distance and can be employed to help to pair trees. In this study, we paired a tree
location in one dataset to another in a second dataset only if the two tree locations were the closest
points to each other—a rule originally proposed by Yu et al. (2006) [41]. The distance between two
locations—(x1, y1, z1) and (x2, y2, z2)—was calculated using the particular distance metric:
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D =
√√√√
(x1 − x2)

2 + (y1 − y2)
2︸                       ︷︷                       ︸

planimetric distance

+ w·(z1 − z2)
2︸     ︷︷     ︸

height di f f

, (5)

where, (x1, y1, z1) denotes apex location of the LiDAR-derived tree, (x2, y2) and z2 denote stem location
and tree height measured in the field, respectively. The user-defined parameter w weights the vertical
distance difference against the planimetric distance; here, a value of 0.5 was used for w as a simple,
empirical choice. Using the distance metric of Equation (5), the above matching approach was run to
automatically obtain a preliminary list of paired trees. As a further step, it then selects the set of pairs
with the smallest distance where LiDAR-derived or field tree location appears not more than once
using the Hungarian allocation algorithm and regards the dataset as the matched trees [26].

The number of matched trees (MT) characterizes the segmentation quality; the number of omission
errors (OE) and commission errors (CE) represents the under- and over-segmentation, respectively.
The accuracy of the method was evaluated in terms of recall (Re), precision (Pr) and F-score (F) using
the following equations [42]:

Re =
MT

MT + OE
, (6)

Pr =
MT

MT + CE
, (7)

F = 2×
Re× Pr
Re + Pr

, (8)

Re is a measure of tree detection rate, Pr is a measure of correctness of detected trees, and F is a measure
of overall accuracy, taking CE and OE into account.

3.5.2. Evaluation of Segmentation Threshold Values for Each Layer

Among the 271 plots of Robinson Forest, 90 plots (about one-third of the 271 the plots) were
randomly selected as a dataset to test resolution threshold effect on segmentation of different canopy
layers, and the experiment of multi-threshold tree segmentation was then carried out in the remaining
181 plots using the obtained optimal thresholds. In this paper, the effect of different resolution thresholds
on the segmentation accuracy of each layer is cross-tested. Using Equation (2) (see Section 3.2.2),
the segmentation threshold of one of the three layers was tested, while that of the other two layers
were fixed, i.e., THi equals to NPS (0.258 m). The experimental results are shown in Figure 11.

Figure 11 shows the tree segmentation accuracy scores using multiple resolution thresholds within
the 90 plots. As shown, for over- and under-story trees, when the resolution thresholds of the three
layers are increased, Pr tends to decrease slightly, which is compensated by increases in Re, resulting
in a stable F-score. For the resolution thresholds TH1, TH2, and TH3 of the first, second and third
layers, the metrics tend to be stable when they exceed 1.2*NPS, 1.5*NPS, and 2*NPS, respectively.
Therefore, in this paper, we set thresholds of segmentation resolution of three layers equal to 1.2*NPS,
1.5*NPS, and 2*NPS, respectively. For understory trees, the average segmentation accuracy score
increases with the increase of TH2 and TH3. As shown in Figure 11, when the TH3 reaches 2*
NPS, the average F-score exceeds 70%, increasing by nearly 10 percentage points. This observation
indicates an increased sensitivity of multi-threshold approach to segment understory trees while barely
affecting the segmentation of overstory trees, which is also an indication of sound operation of the
multi-threshold procedure.
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4. Results

4.1. Tree Detection Rate and Accuracy

The relationship between the number of field trees and the number of segmented trees in the 271
plots is shown in Figure 12. The correlation of multi-threshold tree segmentation is relatively strong,
with the coefficient of determination R2 = 0.87. In general, the number of trees is under-estimated
in a deciduous forest. Compared with the DSM-based segmentation method, there are more trees
detected, with an increase of R2 by 20 percentage points. There are 3896 trees in total in the 271 plots;
only 3535 trees were segmented using the multi-threshold tree segmentation algorithm. The algorithm
correctly detected 3097 trees, falsely detected 438 trees, and missed 799 trees, with under-segmentation
outweighing over-segmentation. However, utilizing the DSM-based tree segmentation algorithm,
only 2967 tree were segmented; the algorithm correctly detected 2591 trees, falsely detected 376 trees,
and missed 1305 trees.

The statistical results of the segmentation scores of the 271 plots are shown in Figure 13, compared
with the metrics of the DSM-based tree segmentation approach, for overstory trees, Re increased by
2.6 percentage points from 92.0% to 94.6%, Pr by 1.4 percentage points from 87.1% to 88.5, and F by
2.4 percentage points from 88.5% to 90.9%. For understory trees, Re increased by 21.1 percentage
points from 52.3% to 73.4%, Pr decreased by 1.8 percentage points from 88.5% to 86.7%, resulting in an
increase of F by 11.7 percentage points from 65.2% to 76.9%. For all trees, Pr increased slightly by 0.3
percentage points from 87.3% to 87.6%, Re and F increased by 13 and 7.5 percentage points, from 66.5%
to 79.5%, 75.1% to 82.6%, respectively.
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4.2. Tree-Level Parameter Estimation

Having matched the LiDAR-derived tree with the field tree, we could carry out a performance
evaluation of the tree-level parameter estimation. Two tree parameters (tree location and height)
derived from the LiDAR data were validated with on-site measured tree location and height. Only
correctly-detected trees were used; that is, falsely-detected trees and missed trees were not counted.
Among the ground truth data, only 84 of the 271 plots (i.e., 1240 trees) have on-site measured tree
height data. Using our proposed multi-threshold method and DSM-based method, there were 1135
and 897 trees correctly detected within the 84 plots, respectively. The scatterplots of LiDAR-derived
vs. on-site measured tree heights for all correctly-detected trees of the two methods are shown in
Figure 14a,b, respectively. A simple linear regression was used to fit the lines (marked in light blue) to
each dataset. For the multi-threshold method, the value of R2 was 0.95. However, for the DSM-based
method, the correlation result was relatively weak with R2 = 0.90.

In this study, the apex of the LiDAR-derived tree was considered as the location of the tree.
Figure 15a shows the histogram of tree positioning errors (namely, the distances between the
LiDAR-derived and the on-site measured values of the matched trees’ horizontal coordinates) using
our proposed multi-threshold method. As a contrast, the histogram generated by the DSM-based
method is given in Figure 15b. The mean differences of our proposed multi-threshold method and the
DSM-based method were 82 cm and 105 cm, respectively.

After matching the lidar-derived trees with the field trees, we can also estimate the crown sizes.
As shown in Figure 16, crown perimeters and heights of all of the correctly-detected trees reveal that
most of the trees have a crown perimeter range of 10–40 m, and a height range of 10–30 m. Tree
height and crown size distribution statistics have practical guiding significance for forest management,
such as improvement cutting, forest inventory, growth forecasting, and afforestation design.
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5. Discussion

In recent decades, airborne LiDAR-based remote sensing has shown promise in forest science,
for characterizing the structure of forests at landscape-level, stand-level, and plot-level [9,11,23,40].
These efforts in forest quantification are currently driving improvements in forest assessment, monitoring,
and management activities [2,3,40]. The correct detection and characterization of individual trees is one of
the key issues in forest science, linking with biometer ecological models [43] and more precise estimations
of biomass in forests [17].

However, the overall detection accuracy of trees, especially of understory trees, is relatively
low in complex and closed-canopy deciduous forests [31,35]. In some studies, only about 50% [3,15]
and 65% [14] of the trees are detected. Hu et al. (2014) [44] proposed an automated method using
prior knowledge of tree crowns, which correctly delineated about 74% and 72% of the crowns in two
stands of mixed wood and deciduous species, respectively. Duncanson et al. (2014) [9] proposed
a multilayer canopy delineation method which correctly isolated 70% dominant, 58% co-dominant,
35% intermediate, and 21% suppressed trees in a closed-canopy deciduous forest. Some recent
researches improved the tree detection accuracy, for example, Wanqian Yan et al. (2018) [43] developed
an automated hierarchical single-tree segmentation approach, and achieved the average correctness,
completeness, and overall accuracy of 90%, 88%, and 89%, respectively. Ayrey et al. (2017) [32] used a
layer stacking approach which detected 79% of trees in sparse and 72% of trees in dense even-aged
deciduous stands. However, the trees in these study areas were planted almost at the same time,
leading to their similarities in shape and size, and segmenting trees is relatively simpler. Paris et al.
(2016) [33] correctly detected 97% and 92% of the dominant trees and 77% of the sub-dominant trees
with a commission rate of 7% in conifer sites. It is worth noting that, due to well-defined crown shapes,
segmenting trees in coniferous forests is relatively simpler. Studies show better tree segmentation
performance of coniferous forest compared to deciduous forest or mixed forest [44]. Our algorithm was
tested in the University of Kentucky’s Robinson Forest—a natural deciduous forest with complex terrain
and vegetation structure and as a result provided a reasonable test of universality and applicability.
Overall, 79.5% of the trees in our study area were detected by the algorithm, and 87.6% of them were
correctly detected; the overall accuracy, taking CE and OE into account, was 82.6%, in which 73.4% of
understory trees were detected and 86.7% of them were correctly detected. Our new algorithm shows
good potential to identify single trees in natural deciduous.

In a few scenarios, due to the surrounding tall trees and the airborne lidar scanning field of view
(40◦ in our study area), some lower-altitude upper trees may not be able to be scanned directly and
captured as the first return number point clouds (Figure 7a,b). In our algorithm, the hierarchical
segmentation strategy based on lidar return number can effectively detect these trees to minimize
under-segmenting tree crowns (Figure 7c,d). Meanwhile, our algorithm, because it makes full use of
the vertical information of vegetation by canopy stratification and setting the different segmentation
threshold for each canopy layer, increases the detection ration of understory trees. For further details,
by comparing the segmentation scores between overstory trees and understory trees shown in Figure 13,
it may be concluded that:

For the detection rate Re, the improvement in the latter is greater, which indicates that the
multi-threshold segmentation can effectively detect understory vegetation;

For the correctness of detected trees Pr, the detection accuracy of understory trees decreases with
the increase of detection rate. The main reasons are as follows: On the one hand, the detection rate
of lower trees improved, and the number of detected trees increased. On the other hand, due to the
occlusion effect of higher vegetation layer, the pulse penetration rate of lidar and point density of the
lower vegetation are reduced, which limits the improvement of segmentation accuracy. These two
factors lead to a decrease of detection accuracy of multi-threshold segmentation method for understory
trees compared with DSM-based method;

For the overall accuracy F, the latter improves more. Although the accuracy of the detection
rate decreases slightly, the detection rate is improved, which leads to the improvement of the overall
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segmentation accuracy. This proves the effectiveness of the multi-threshold method for the segmentation
of undergrowth trees.

By comparing the overall accuracy F for all trees, the multi-threshold tree segmentation approach
has a higher score. As noted, DSM-based and other CHM-based algorithms might not perform well
in deciduous forests with dense interlocking crowns lacking distinct peaks and troughs. However,
the proposed method implements multi-threshold segmentation for different canopy layers and
combines tree segments of each layer according to the characteristics of vegetation structure, which
leads to improve the detection rate of lower vegetation and reduce over- and under-segmentation
(Figures 7 and 10).

Due to the importance of the ecological environment and the increasing demand for precise forestry,
more and more forestry researches focus on the identification and parameter estimation of individual
trees at tree-level. Some recent studies have focused on the use of understory vegetation information
to improve detection accuracy. For example, Wei et al. (2018) [27] used the trunk detection-aided mean
shift clustering techniques to delineate individual and estimate tree structural parameters. Hamraz et al.
(2017) [35] proposed a stratification-enabled tree segmentation approach, which stripped the canopies
one by one to detect understory trees. The similarity between these methods and the method proposed
in this paper lies in that they all aim to improve the detection rate of understory trees through the
information of low canopies. The difference or novelty of our method lies in that, first, so far, little
literature has studied the effect of threshold sizes on the segmentation of canopy layers’ point clouds
with different point density. For the stratification-enabled tree segmentation approach proposed by
Hamraz et al. (2017) [35], DSM-based tree segmentation is implemented on the stripped canopy layers
to detect understory trees. However, this method implements a segmenting routine with a fixed
threshold for overstory and understory, ignoring the difference of their lidar point densities between
overstory and understory, which leads to over-segmentation of the understory trees. In our approach,
we tried to implement multi-resolution threshold segmentation for canopy layers to obtain better
performance. Second, Hamraz et al. (2017) [35] stripped the canopy according to the height histogram
of lidar points. In contrast, for the first time, we stratified the canopy according to the lidar return
number. This technique can dynamically acquire the vertical structure characteristics of vegetation
without statistic the distribution of lidar points and a priori assumptions about tree canopy shape
or size. Finally, in our algorithm, a cross-layer combination rule was proposed to merge the tree
segments belonging to the same tree, which makes full use of the spatial relationship of tree canopies
and reduces over-segmentation.

In our algorithm, the major limitation or the biggest uncertainty in tree segmentation mainly
derives from two aspects: On the one hand, according to the cross-layer combination rule, when the
overlap area of adjacent canopy segments is more than a certain value (equal to 0.8), they will be
considered as a crown of the same tree to be combined. Therefore, when a small tree is completely
within the vertical projection of the crown of a large tree, the small one may be considered as a part of
the big one and not be detected by our algorithm. However, in the natural environment, tree growth is
often limited to light availability. Trees that are completely under the crown of a large tree receive
very little light and may not grow very high. Therefore, they will be considered as low-vegetation and
eliminated. On the other hand, it is worth noting that the algorithm is sensitive to the segmentation
threshold of each canopy layer. In this paper, the segmentation effect of each canopy layer on the
sample plots is cross-tested, and the optimal segmentation threshold of each layer is then obtained by
statistical analysis. Since the plots of the study area in this paper belong to the same natural deciduous
forest with similar terrain and vegetation conditions, the segmentation threshold of each canopy layer
is sufficient in this study. In other forests, the segmentation threshold of each canopy layer should be
redetermined according to their terrain, vegetation conditions, and lidar point density. To obtain the
adaptive tree segmentation thresholds of different forests, we plan to obtain segmentation thresholds
by using deep learning algorithm in future work.
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6. Conclusions

This paper proposed a multi-threshold single-tree segmentation approach using small-footprint
airborne LiDAR data, which consists of data pre-processing and isolating canopy layers, multiple
resolution threshold segmentation for isolated layers, cross-layer combination of tree segments,
delineation of individual trees, and tree parameter extraction. It is an improved hierarchical scheme
incorporating a multiple threshold segmentation strategy, which has the promise to be successfully
applied to natural deciduous forests. By applying the proposed approach to airborne LiDAR data
acquired in a closed-canopy deciduous forest located in southeastern Kentucky and comparing it
with existing point-based methods in terms of overall tree detection rates and tree-level parameter
estimation accuracy, we have shown that the multi-threshold segmentation can lead to significant
performance improvements in single tree-level forest inventory. Our approach is robust and effective
for delineating individual trees from airborne LiDAR data since: (1) multi-threshold method facilitates
to improve the detection rate of understory with low point density; (2) the cross-layer combination
of tree segments makes full use of vertical information of the tree, reduces over-segmentation, and
improves accuracy of tree detection; and (3) the encoded canopy layers for segmenting are determined
according to the lidar return number without a priori assumptions about tree canopy shape or size,
leading to capture the local information of the canopy dynamically and to use it to improve delineating
the contour of the crown.
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