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Abstract: Knowledge of the distribution of tree species within a forest is key for multiple economic
and ecological applications. This information is traditionally acquired through time-consuming
and thereby expensive field work. Our study evaluates the suitability of a visible to near-infrared
(VNIR) hyperspectral dataset with a spatial resolution of 0.4 m for the classification of 13 tree
species (8 broadleaf, 5 coniferous) on an individual tree crown level in the UNESCO Biosphere
Reserve ‘Wienerwald’, a temperate Austrian forest. The study also assesses the automation potential
for the delineation of tree crowns using a mean shift segmentation algorithm in order to permit
model application over large areas. Object-based Random Forest classification was carried out
on variables that were derived from 699 manually delineated as well as automatically segmented
reference trees. The models were trained separately for two strata: small and/or conifer stands
and high broadleaf forests. The two strata were delineated beforehand using CHM-based tree
height and NDVI. The predictor variables encompassed spectral reflectance, vegetation indices,
textural metrics and principal components. After feature selection, the overall classification accuracy
(OA) of the classification based on manual delineations of the 13 tree species was 91.7% (Cohen’s
kappa (κ) = 0.909). The highest user’s and producer’s accuracies were most frequently obtained
for Weymouth pine and Scots Pine, while European ash was most often associated with the lowest
accuracies. The classification that was based on mean shift segmentation yielded similarly good
results (OA = 89.4% κ = 0.883). Based on the automatically segmented trees, the Random Forest models
were also applied to the whole study site (1050 ha). The resulting tree map of the study area confirmed
a high abundance of European beech (58%) with smaller amounts of oak (6%) and Scots pine (5%).
We conclude that highly accurate tree species classifications can be obtained from hyperspectral data
covering the visible and near-infrared parts of the electromagnetic spectrum. Our results also indicate
a high automation potential of the method, as the results from the automatically segmented tree
crowns were similar to those that were obtained for the manually delineated tree crowns.

Keywords: imaging spectroscopy; hyperspectral imaging; tree species; Random Forest; mean shift
segmentation; OBIA; UNESCO Biosphere Reserve ‘Wienerwald’

1. Introduction

The number of remote sensing papers focusing on tree species classification has increased
substantially over the past few decades mainly due to a higher availability of multi- and hyperspectral
data [1]. While forest managers and the timber industry have an obvious interest in data on timber
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resources [2], hyperspectral and LiDAR data can also be used for a variety of ecological applications [3].
Spatially detailed information on the distribution and the share of species facilitates, for example,
(1) close-to-nature forest management [4], (2) the monitoring of invasive species [5] as well as (3)
targeted conservation efforts [6]. While field assessments are the method of choice to acquire detailed
information for small areas, it is not an option for large areas. Only remote sensing approaches have
the potential to provide detailed information on large areas in a cost-efficient and reliable way.

The distinct spectral signature of a tree species relies on its structural, morphological and
(bio-)chemical properties, e.g., water content and the amount of photosynthetic pigments [7–10].
Under comparable site conditions, trees of the same species, but of a different age or health state,
may feature different spectral signatures [10–15], while the overall shape of the reflection curve is
widely conserved across species borders [16]. As pointed out by Fassnacht et al. (2016), it is merely the
amplitude of the peaks that is affected by the changes of the structural, morphological and chemical
properties, and therefore discriminative power. In reality, however, the remotely recorded signal is
rarely the pure signature of a tree. The observed spectral radiance is rather the mixture of signals from
the tree itself—the useful signal—and the understory. Together with shading effects, the understory is
the main perturbing factor for tree species discrimination. The strong effect of understory reflectance
on the overall signal has been demonstrated both experimentally [17] as well as using physically based
radiative transfer models [18].

Hyperspectral data in the optical range are well suited to capture subtle changes in the
reflectance spectra of vegetation. Unlike multispectral data, data cubes that are derived from
imaging spectrometers are characterized by many narrow, contiguous bands. These may span the
electromagnetic spectrum from the visible to near-infrared until the short-wave infrared (SWIR)
portion [19]. Some sensors are even capable of measuring detailed spectral properties in the thermal
infrared [20]. Due to the narrowness and the high number of bands, meticulous spectral signatures
can be determined [21]. The small band width decreases the risk that highly discriminative reflectance
values of narrow stretches of the spectrum are drowned out. Fassnacht et al. (2016) report that in 13
reviewed studies, most parts of the spectrum were considered important at least once. This points to
the need for using contiguous data with a high spectral resolution. However, with a narrowing band
width, the signal-to-noise ratio decreases [19], which makes the application of smoothing and filtering
techniques necessary. To cover very large areas, the currently very high costs of hyperspectral data
also have to be considered [1,22].

A tree crown is a distinct object with a strong spectral variability and is often surrounded by
cavities exposing shadows and forest floor. With the availability of (sub-)meter spatial resolution
data it is therefore advisable to use object-based classification approaches [4,23]. In object-based
classifications, pixels belonging to the same object are grouped and subsequently classified. The asset
of object-based classification is that besides the spectral information also the shape or texture of an
object can also be included in the analysis. This can become beneficial particularly for data with a
high spatial resolution [24]. Reference tree polygons for model training can be manually delineated or
generated using well established automated segmentation techniques such as watershed or region
growing [25]. Automated approaches build on object boundaries that are detected in the digital
image [26] and have the advantage that tree crowns can be separated over large areas, thereby enabling
a subsequent wall-to-wall mapping.

For tree species classification, both parametric and non-parametric classification algorithms
have been used [1,4,9,27]. Non-parametric classifiers do not make any assumptions about the
shape of the model function and are thereby more likely to get close to the true shape. On the
other hand, non-parametric classifiers require a high number of observations as they do not
restrict themselves to a small number of parameters [28]. Among the 101 studies on tree species
classification using hyperspectral data reviewed by Fassnacht et al. [1], the Random Forest [29] and the
computation-intensive [30] Support Vector Machines (SVM) classifiers were by far the most commonly
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used non-parametric classifiers. However, the number and quality of the reference samples is probably
more important than the chosen classifier [1,31].

This study aims at applying the Random Forest classification algorithm to hyperspectral and tree
height data in order to automatically classify tree species within an object-based approach. The project
area is located in the UNESCO Biosphere Reserve ‘Wienerwald’ nearby Vienna, Austria. The temperate
forest hosts a variety of tree species and is thereby a suitable test site for tree species classification
experiments. The following research questions are studied: (1) Are accurate classifications of individual,
manually delineated tree crowns possible with hyperspectral VNIR data? (2) If so, is this still possible
with automatically segmented tree crowns, so as to permit wall-to-wall mappings? (3) Which of the
remotely sensed spectral variables are particularly important for classification accuracy? (4) Which
tree species can be classified best/worst?

2. Materials and Methods

2.1. Study Site

The study site is located in the Austrian province of Lower Austria and covers an area of 1050
ha (Figure 1). The area is a composite of forested, agricultural and urban areas with buildings and
roads. The elevation of the hilly terrain ranges between 250 and 600 m above sea level. The area can
be allocated to the colline and submontane altitudinal belt. The annual rainfall ranges from 700 to
1,000 mm and precipitation peaks in July. The dominating soils are luvisol and pseudogley. Naturally,
the forest is dominated by sessile oak-hornbeam forests, alder-ash forests as well as beech forests with
an admixture of sessile oak, ash and maple [32]. In the areas with ongoing timber production, pure
spruce, pine and larch stands can be found.
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The study site is located in the ‘Wienerwald’, which became a UNESCO Biosphere Reserve in
2005. The reserve is divided into multiple patches. Each one is allocated to one of three different zones,
depending on the priorities for the implementation of the biosphere reserve objectives. A large part
in the South of the study site is contained by a core region. Core regions are the supposed ‘primeval
forests of tomorrow’, which is why silvicultural management has stopped since 2005 [33,34]. A small
stretch in the North-West is located in one of the buffer zones, which are not inherently connected to
management limitations. The forested part of the transition area of the study site is managed by the
Austrian state forest enterprise. The geographical location of the study site is presented in Figure 1.

2.2. Remote Sensing Data

Airborne data were recorded by Airborne Technologies. Hyperspectral data were acquired on
25 August 2016 under cloudless conditions with a Hyspex VNIR 1600 push broom sensor that was
mounted on a Tecnam MMA aircraft. The sensor covers the electromagnetic spectrum from 415 nm to
991 nm and provides data with 160 spectral bands, each with a spectral width of 3.7 nm. During the
overflight, 18 flight strips were generated with solar azimuth angles between 145◦ and 165◦ and solar
zenith angles between 47.8◦ and 51.1◦. The average flying altitude was 830 m.a.s.l. and the average
flying speed was 56 m/s. However, the high flight speed and altitude interfered with the high spectral
resolution of the VNIR sensor. Therefore, two VNIR bands at a time needed to be fused during the
pre-processing, resulting in a reduction of the original 160 spectral bands to 80 bands. The pixel size
was approximately 0.4 m.

Airborne laser scanning data were acquired during the same flight using a RIEGL LMS-Q680i
sensor. The point cloud featured an average point density of 15 points/m2 and was used to create
Digital Surface and Digital Terrain Models (DSM, DTM) of 0.5 m spatial resolution.

The hyperspectral data were pre-processed involving atmospheric correction and mosaicking.
First, individual images were corrected for atmospheric effects using ATCOR4 [35,36]. After this, flight
strips were aligned to create a seamless combined image (mosaicking) using the ENVI software (Exelis
Visual Information Solutions, Boulder, CO, USA).

2.3. Forest Mask

To isolate the forested areas within the hyperspectral data for subsequent segmentation, a forest
mask was created. The basic components of the final forest mask were two sub-masks: (1) a canopy
height model (CHM)-based mask, and (2) a Normalized Difference Vegetation Index (NDVI)-based
mask. To derive the CHM layer, the difference between DSM and DTM was calculated. The CHM-based
mask only included and assembled pixels with a height of at least 3 m. With respect to the second
sub-mask, pixels with NDVI values ≥0.6 were considered as being forested. For the final forest mask,
the intersection of the CHM- and vegetation-based masks was used. According to this forest mask,
8.4 km2 of the 10.5 km2 study site are covered by trees. Subsequently, small grasslands, road strips
and shadows were eliminated. Elimination was based on the results of a pixel-based Random Forest
classification which distinguished the following classes: reference tree classes, shadows, streets, and
grasslands. We checked visually that the forested area was well covered.

2.4. Reference Data

A reference shapefile with 287 forest stand polygons and information on the relative shares of 38
tree species was provided by the Austrian state forest enterprise. The shapefile refers to the situation
in 2008 and covers the study area. However, the study was mainly focused on middle-age and mature
stands and therefore only little changes of the species composition over time can be expected. Of the
38 recorded species, 23 were attributed to at least one of the mentioned 287 polygons. Only very few
species grew in pure stands.

By using reference polygons that were provided by the forest enterprise, detailed reference data
were collected during field work in summer 2017. To achieve a decent representation of all tree
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species in the classification, we decided to exclude all species with less than 20 reference samples.
Subsequently, the reference trees were delineated manually in ArcGIS (ESRI 2011). Examples are
shown in Figure 2. Upon delineation, only sunlit portions of each crown were considered, which
served to decrease intra-crown and intra-species variation. The number and species of the reference
trees are given in Table 1. In total, 699 reference polygons were finally available for the study, and each
were assigned to one of 13 tree species (eight broadleaf, five coniferous).
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Figure 2. Illustration of the manual crown delineation approach. Due to our intent to exclude shaded
areas of the tree crowns from the reference sample, some reference tree polygons (like the one at the
bottom left) have a contorted shape. Background: Color infrared composite of the hyperspectral data.

Table 1. Overview of the general characteristics of the reference tree species and the respective
class sizes.

Common Name Acronym Scientific Name Type Number

European beech EB Fagus sylvatica Broadleaf 99
Oak species * OS Quercus sp. Broadleaf 64
European ash EA Fraxinus excelsior Broadleaf 44

European hornbeam EH Carpinus betulus Broadleaf 43
Silver birch SB Betula pendula Broadleaf 41

Sycamore maple SM Acer pseudoplatanus Broadleaf 40
Wild cherry WC Prunus avium Broadleaf 37
Black alder BA Alnus glutinosa Broadleaf 33

Norway spruce NS Picea abies Conifer 83
European larch EL Larix decidua Conifer 83

Scots pine SP Pinus sylvestris Conifer 78
Silver fir SF Abies alba Conifer 30

Weymouth pine WP Pinus strobus Conifer 24

* Sessile oak (Q. petraea), Pedunculate oak (Q. robur), Austrian oak (Q. cerris).

2.5. Workflow Description

In this work, a three-step approach was followed (Figure 3). First, a Random Forest classifier was
trained with the 699 manually delineated reference trees using 202 predictor variables. This step served
to evaluate the classification performance for optimally delineated tree crowns. After this, the entire
study area, and all of the trees within the study area, were automatically segmented into image objects.
The segments corresponding to the manually delineated crowns (highest amount of overlapping
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area) were selected and were used to create an additional Random Forest model. By comparing the
classification results it was checked how strongly the classification accuracy was impaired by the
automatic segmentation of the reference trees. To generate a wall-to-wall tree species map, the Random
Forest model that was trained on the segmented reference trees was applied to all of the automatic
generated segments.
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Figure 3. Workflow overview. In the first two steps, Random Forest models based on both manually
delineated and segmented reference trees were trained. In the third step, the model based on segmented
reference trees was applied to the whole hyperspectral image to produce a classified tree map.

2.6. Noise Removal

Smoothing was applied as even atmospherically corrected reflectance data contain noise.
Without smoothing, the noise would be passed on to all classification features. Smoothing is based on
the assumption that in the absence of noise—the process underlying the data would result in a smooth
curve [28]. The Whittaker smoother is well suited for this task [37]. The smoother balances fidelity to
the data with the smoothness of the resulting curve and has the ability to automatically interpolate
between missing values [38,39]. The algorithm was executed on the mean reflectance values of each
tree crown using the R function miwhitatzb1 [40]. The smoothing was done in one iteration and the
parameter (λ) was set to 12.

2.7. Feature Extraction

A large number of features was extracted from the hyperspectral data cube (Table 2). Besides the
smoothed reflectance values, these were statistics of the first derivative of the mean spectral signature
(minimum, maximum, mean, standard deviation), vegetation indices (Table A1), textural metrics and
principle components. All of the features were generated at object-level only and by using previously
smoothed spectra. Object-level information was generated using simple value averaging.

Table 2. Number of variables calculated per object and type of variable.

Reflectance Values 1st Derivatives Vegetation
Indices

Textural
Metrics

Principal
Components

Number of
Variables 80 4 22 16 80
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Texture describes tone changes within an image (‘granularity’), i.e., how ‘smooth’ or ‘coarse’ an
image appears. With a scale large enough to picture objects of interest over the extent of multiple
pixels, texture differences between these objects frequently constitute a distinctive feature [41].

To calculate texture metrics, the ‘Haralick Texture [42] Extraction’ (HTE) application as
implemented in the Orfeo ToolBox (OTB) was run [43]. Red (700 nm) and near-infrared bands (846 nm)
were selected for this application. As it generated the most appealing output layers (visual inspection),
the radius for texture extraction was set to three pixels. Corresponding to the maximum pixel values
of each band, the input image maxima were specified as 15,132 (700 nm) and 15,010 (846 nm). For all
other parameters default the values were kept. The ‘simple’ mode of the HTE application was chosen
for analysis as its texture features showed the most variability. The ‘simple’ mode yields eight textural
feature layers for each spectral band (Energy, Entropy, Correlation, Inverse Difference Moment, Inertia,
Cluster Shade, Cluster Prominence and Haralick Correlation).

To create variables with potentially higher (condensed) information content, a Principal
Component Analysis (PCA) was performed on the atmospherically corrected and mosaicked VNIR
data [44]. During this, different amounts of information from the input (bands) are merged into
separate uncorrelated principal components [19]. As the computation of principal components for
the whole VNIR data would have needed high amounts of memory space, the transformation matrix
was determined for an image subset (0.6 km2), which featured only forest. The PCA was done in R
using the function prcomp from the immanent ‘stats’ package. Scaling was enabled which eliminates
the unit of measurement and thereby makes reflectance values from different bands with different
value ranges comparable [45]. The resulting transformation matrix was used to calculate principal
components across the image extend.

2.8. Segmentation

The (large scale) mean shift algorithm was applied to the hyperspectral data twice. First, to define
strata of (i) small broadleaf or conifer and (ii) high broadleaf stands and a second time to delineate the
individual tree crowns within the strata. The first segmentation was necessary as when the mean shift
algorithm was applied to the complete hyperspectral data, we found that segmentation parameters,
which were suitable for conifers and trees with a rather small crown, left trees with a wide crown
over-segmented. It was thereby decided to apply different segmentation parameters to the mentioned
groups (small broadleaf or conifer, high broadleaf). A conifer of any height was assigned to the first
group (small broadleaf or conifer), while depending on its height—a broadleaf tree was assigned to
either the first or the second group. Tree height was considered proxy for tree age, which in turn was
considered a proxy for tree crown size. Once, the strata were established, the mean shift algorithm was
applied a second time to delineate the individual tree crowns within the strata (using strata-specific
parameters) and to thereby automate the tree crown delineation process.

For both segmentation purposes, the mean shift algorithm was used. The mean shift
algorithm [46,47] is a non-parametric method for locating the maxima of a density function [48].
Upon mean shift image segmentation, the mean of all the pixel values within a defined circular window
around the starting point is calculated. The extent of the window is defined by a spatial and spectral
distance. The center of the window is next shifted to the point corresponding to the previously determined
mean. This process is repeated until the maximum number of iterations is reached or the window does
not significantly move anymore. At this point, an adjustable convergence threshold defines what should
be considered as a significant move. Upon clustering, those pixels whose windows got shifted to the
same location are grouped together.

For applications over large areas, it has to be considered that the basic mean shift algorithm
is unstable due to its tile-wise computation of images. Besides other modifications, the large scale
mean shift (LSMS) algorithm [48] generates overlapping tiles, assuring that the surroundings of the
border segments from one tile are also explored in another. This prevents a false generation of segment
borders at tile borders. Hence, for the generation of the strata, the four-stage LSMS as implemented in
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the Orfeo toolbox was used. In recent years, LSMS was used for several forest-related analyses of earth
observation data [49–51]. However, to our knowledge there are still no studies using the mean shift
algorithm for the delineation of individual tree crowns.

2.8.1. Stratification

Before delineating individual crowns, we first used the CHM to differentiate stands with mainly
high and mainly small trees. This permits combining small broadleaf stands and conifer stands into one
stratum for optimum segmentation and classification results at tree level (same for the high broadleaf
stands). Acceptable segmentations (visual inspection) were obtained using a spatial radius of 12, a
range radius of 3, a minimum object size of 20,000 and maximum 50 iterations (Table 3). Figure 4 gives
an idea of the sensitivity of the segmentation. Segments of the high and small trees were separated by
applying a threshold of 10 m on the mean height of each segment.
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Conifers were separated from broadleaved trees using a pixel-based Random Forest classification.
The model was trained using reference data of the following classes: broadleaf trees, coniferous
trees, shadow, non-forest vegetation and infrastructure/houses. The pixel-based classification of the
VNIR data cube had an overall accuracy of 98.4% (CI = 98.3%, 98.4%;) and a Cohen’s kappa of 0.974.
The producer and user accuracies of the conifer class were 87.2% and 94.0%, respectively.

Finally, the shapes indicating small broadleaf or conifer stands were merged. The merger
served to indicate the areas in the VNIR data that were designated for the segmentation with a
more conservative set of parameters, while the inverse of these areas was used for the segmentation of
the high broadleaf stands.

2.8.2. Segmentation of Individual Tree Crowns

Within the two strata, the mean shift algorithm was used to delineate the individual tree crowns.
The strata-specific parameters are listed in Table 3 (lower part). The parameters take into account that
young (small) broadleaf trees and conifers are best delineated using a small parameter for minimum
object sizes (and range radius), compared to larger crowns that are typical for higher trees and
broadleaf species.
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Mean shift segmentation generated 1,596,727 segments with a mean area of 3.65 m2. The average
object size in the small broadleaf or conifer strata was 2.65 m2, compared to 4.06 m2 for the high
broadleaf strata. Figure 5 gives an idea about the performance of the selected parameters.

Table 3. Parameters of the mean shift segmentations for the conifer or small broadleaf and high
broadleaf stands (upper part), and the delineation of the individual tree crowns (lower part).

Purpose Parameter Height Separation

Spatial Radius 12
Strata definition Range Radius 3

Minimum Object Size 20,000
Conifer or small broadleaf High broadleaf

Spatial Radius 2 2
Tree crown delineation Range Radius 1 2

Minimum Object Size 5 10
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2.9. Random Forest Classification

The Random Forest algorithm [29] has gained popularity in remote sensing and is frequently
used for the classification of tree species [1,4]. The algorithm constructs hundreds of decision trees
based on bootstrap samples that were randomly created from the original dataset. Observations within
each bootstrap sample account for about two-thirds of all observations within the original dataset
and are drawn with replacement. Random Forest uses each decision tree for the classification of the
observations that were not part of the corresponding bootstrap sample (Out-of-bag (OOB) data) [29].

Random Forest deviates from classical bagging algorithms insofar as—to prevent a correlation
between the decision trees—it does not consider all input variables (features) for the construction of
each decision tree, but only a random selection of these. For a dataset with p input variables and a
categorical response variable, the number of features that are considered within each sample is

√
p by

default, with features being selected randomly selected for each bootstrap sample anew [52]. Only one
of all the

√
p variables considered at each node [53,54].
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Within the training state of the Random Forest model reference data is used, i.e., all observations
feature a true class label. In each decision tree only the corresponding OOB data set is classified.
The proportion of matches between majority vote from the OOB results and the true class label is used
for accuracy assessment. Due to this built-in validation measure, it becomes unnecessary to set aside a
test set [53,55,56].

There are different ways of how the Random Forest algorithm estimates the importance of each
input variable for the classification result. One measures the impact that the input variable has on the
classification result and is originally called the Margin measure [53], however it is referred to as Mean
Decrease in Accuracy (MDA) in e.g., the randomForest R package [57]. The margin of an observation is
defined as the number of votes for the true class of the observation minus the number of votes for other
classes. In the first step, OOB data is passed down the corresponding decision trees. In the second
step, the values of one specific input variable are randomly permuted within the OOB data. Each of
the modified OOB datasets is then run down its corresponding unaltered decision tree. The average
lowering of the margin across all of the observations upon the permutation of variable values is a
measurement of the relative importance of the input variable for classification. A large decrease of the
average margin corresponds to a high importance [53]. As it is customary for classification studies, the
results of a classification are displayed in a confusion matrix, featuring the producer’s, the user’s and
the overall accuracy as well as Cohen’s kappa coefficient.

For this study, the algorithm was executed in R version 3.3.3 [58]. We used the randomForest()
function from the identically named package by Liaw and Wiener [57]. The function confusionMatrix
from the ‘caret’ package [59] was used for the extraction of Cohen’s kappa and the ‘raster’ package [60]
was used for data preparation. The default settings of the two tuning parameters for randomForest
were kept: the number of decision trees to grow (ntree = 500) and the number of variables used to split
at each node (mtry =

√
p). The setting does not only ensure comparability with other studies, but also

proofed to lead to reasonable results in studies that experimented on these values [4,61].
To find the optimum feature combination, a recursive feature selection was applied [62].

The backward features selection starts with a model that is based on all of the input features and makes
a step-wise reduction by removing each time the least important variable based on the MDA values
which are recalculated at each step [63–65]. At the end, the model with the lowest number of input
features which reaches min 97.5% of the maximum OOB overall accuracy is used.

To obtain a quality indicator in the model application step, classification reliability was calculated
as the share of votes for the class with the highest number of votes minus the share for the class with
the second highest number of votes [50,65]. This yields a reliability value ranging between 1 and 0,
with 1 indicating a high and 0 indicating a low classification reliability.

3. Results

3.1. Spectral Signatures of Tree Species

The complete spectral signatures for each of the 13 investigated tree species are featured
in Figure 6a. The reflectance values of the different species are particularly widespread around
wavelengths > 800 nm. The reflectance of sycamore maple is comparatively high, while the opposite is
true for Norway spruce. For the spectral interval between 800 and 1000 nm, the reflectance values of
broadleaves are generally higher than the corresponding values of conifers. However, there is some
overlap, e.g. around the comparatively low reflectance values of wild cherry in the spectral interval
between 800 and 991 nm. For the visible range, the spectral signatures around the green peak at 560 nm
are shown in Figure 6b. Directly at the peak, the ranking of the maximum reflectance values is very
different. Three of the four highest reflectance values were obtained for coniferous species, while the
lowest ones were featured by wild cherry.
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3.2. Classification of Manually Delineated Reference Trees

The results of the classification of manually delineated reference trees are given in Table 4.
Hereafter, this classification will be referred to as the ‘VNIR (all)’, compared to the results that
were obtained from the automatically segmented tree crowns (labeled as ‘VNIR (all—mean shift)’).
The lowest user’s accuracy was obtained for sycamore maple (78.7%) and is mainly owed to
misclassifications of European ash. The maximum value (100.0%) was achieved for Weymouth pine,
silver fir and wild cherry. The classification of Weymouth pine and silver birch yielded a producer’s
accuracy of 100.0%. The lowest producer’s accuracy was associated with European ash (72.7%), which
was mainly due to the mentioned misclassifications as sycamore maple and black alder. With one
misclassification as European beech, silver fir is the only coniferous species that got classified as a
broadleaf. There was also only one misclassification of a broadleaf species as a conifer, namely wild
cherry as European larch.

Of all 699 reference trees, 58 were misclassified (8.3%). Of these, nine trees were conifers,
which corresponds to 3.0% of all conifers in this classification, while a total of 49 broadleaves were
misclassified (12.2% of all broadleaves). The overall accuracy of the classification is 91.7% (confidence
interval (CI) = 89.4%, 93.6%), while Cohen’s kappa reaches 0.909.

The importance of the 24 variables that are part of the best model are illustrated in Figure 7a.
Most of the variables are principal components (17) representing a weighted average of the individual
spectral bands. The other variables are vegetation indices (PRI, BR, PSRI, mSR705, GNDVI, mND705)
and the minimum of the first derivative. The three most important variables are PRI, PC 23 and PC 11.
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Table 4. Confusion matrix for the VNIR (all) classification based on the manually delineated tree crowns. The gray lines separate coniferous and broadleaf trees. Tree
species are abbreviated as follows: EB = European beech, OS = oak species, EA = European ash, EH = European hornbeam, SM = sycamore maple, SB = silver birch,
WC = wild cherry, BA = black alder, NS = Norway spruce, EL = European larch, SP = Scots pine, SF = silver fir, WP = Weymouth pine. Other abbreviations in the table:
PA = producer’s accuracy, OA = overall accuracy, UA = user’s accuracy, κ = Cohen’s kappa.

Reference
EB OS EA EH SB SM WC BA NS EL SP SF WP ∑ UA [%]

Classification

EB 88 5 3 4 0 1 1 1 0 0 0 1 0 104 84.6
OS 4 55 1 0 0 1 0 1 0 0 0 0 0 62 88.7
EA 2 1 32 0 0 0 0 1 0 0 0 0 0 36 88.9
EH 1 1 0 39 0 0 1 0 0 0 0 0 0 42 92.9
SB 1 0 0 0 41 0 1 1 0 0 0 0 0 44 93.2
SM 2 2 4 0 0 37 0 2 0 0 0 0 0 47 78.7
WC 0 0 0 0 0 0 33 0 0 0 0 0 0 33 100.0
BA 1 0 4 0 0 1 0 27 0 0 0 0 0 33 81.8
NS 0 0 0 0 0 0 0 0 78 2 1 0 0 81 96.3
EL 0 0 0 0 0 0 1 0 3 81 0 0 0 85 95.3
SP 0 0 0 0 0 0 0 0 2 0 77 0 0 79 97.5
SF 0 0 0 0 0 0 0 0 0 0 0 29 0 29 100.0

WP 0 0 0 0 0 0 0 0 0 0 0 0 24 24 100.0
∑ 99 64 44 43 41 40 37 33 83 83 78 30 24 699

PA [%] 88.9 85.9 72.7 90.7 100.0 92.5 89.2 81.8 94.0 97.6 98.7 96.7 100.0
OA [%] 91.7

κ 0.909
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Figure 7. Ranking of the input features based on the importance measure MDA (Mean Decrease
in Accuracy) obtained from the best Random Forest models for the classification of the manually
delineated (a) and automatically segmented individual tree crowns (b); a higher score indicates a
higher importance.

To evaluate the potential benefit of adding variables of the four variable groups (i) texture,
(ii) statistics of the first derivative, (iii) indices and (iv) principal components—in contrast to using
only band values for the classification—the subsets of the reference dataset were also classified.
The classification that only used the 80 smoothed bands as an input (‘VNIR (bands)’) yielded an
overall accuracy of 58.1% (CI = 54.3%, 61.8%) with a Cohen’s kappa of 0.536. At this, 55.1% of all
broadleaves and 24.2% of the conifers were misclassified. Adding texture variables (‘VNIR (bands,
texture)’) or statistics of the first derivative to the band values (‘VNIR (bands, 1st derivative)’) did
hardly improved the classification results (overall accuracy = 59.4%/59.1% (CI = 55.6%, 63.0%/55.3,
62.8), Cohen’s kappa = 0.550/0.547). Including all 22 vegetation indices (‘VNIR (bands, indices)’),
however, improved the result significantly (overall accuracy = 75.5% (CI = 72.2%, 78.7%), Cohen’s
kappa = 0.730). With an overall accuracy of 89.3% (CI: 86.7%, 91.5%) and a Cohen’s kappa of 0.882,
the best results for these two-variable groups setups were obtained for ‘VNIR (bands, PCs)’. The very
best results were obtained by using variables from all of the groups (VNIR (all)). Combining bands,
indices and principal components (‘VNIR (bands, indices, PCs)’) resulted in an overall accuracy of
91.0% (CI = 88.6%, 93.0%) and a Cohen’s kappa of 0.901.

3.3. Classification of Mean Shift-Segmented Reference Trees

Using reference trees that were segmented with the mean shift algorithm (‘VNIR (all)—mean
shift’), the lowest user’s accuracies were obtained for oak (79.4%). As in the case of the VNIR (all)
classification, Weymouth pine was associated with the maximum producer’s and user’s accuracy
(100.0%). The lowest producer’s accuracy was obtained for European ash (75.0%), mainly due to
misclassifications as black alder, European beech and oak. Silver fir is the only coniferous species that
got misclassified as a broadleaf species, namely European beech. Half of the broadleaf species got
misclassified as conifers at least once. With this, sycamore maple got most frequently misclassified as a
conifer (silver fir). Most misclassified broadleaf species were classified as European larch. Of all 699
reference trees, 74 were misclassified (10.6%). Of these 74 trees, 14 were conifers, which corresponds to
4.7% of all conifers in this classification, while a total of 60 broadleaves were misclassified (15.0% of all
broadleaves). The overall accuracy of the classification is 89.4% (CI = 86.9%, 91.6%). Cohen’s kappa
reaches 0.883. The confusion matrix is provided in Table 5.
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Table 5. Confusion matrix of the VNIR (all—mean shift) classification based on the automatically segmented tree crowns. The gray lines separate coniferous and
broadleaf trees. Tree species are abbreviated as follows: EB = European beech, OS = oak species, EA = European ash, EH = European hornbeam, SM = sycamore
maple, SB = silver birch, WC = wild cherry, BA = black alder, NS = Norway spruce, EL = European larch, SP = Scots pine, SF = silver fir, WP = Weymouth pine. Other
abbreviations in the table: PA = producer’s accuracy, OA = overall accuracy, UA = user’s accuracy, κ = Cohen’s kappa.

Reference
EB OS EA EH SB SM WC BA NS EL SP SF WP ∑ UA [%]

Classification

EB 84 5 3 3 0 1 1 1 0 0 0 2 0 100 84.0
OS 6 54 3 1 0 2 0 2 0 0 0 0 0 68 79.4
EA 2 1 33 0 0 1 0 1 0 0 0 0 0 38 86.8
EH 1 1 0 38 0 0 1 0 0 0 0 0 0 41 92.7
SB 1 0 0 0 40 0 1 0 0 0 0 0 0 42 95.2
SM 3 2 2 0 0 31 0 1 0 0 0 0 0 39 79.5
WC 1 0 0 0 0 1 33 0 0 0 0 0 0 35 94.3
BA 1 1 3 0 0 2 0 28 0 0 0 0 0 35 80.0
NS 0 0 0 0 0 0 0 0 77 2 2 1 0 82 93.9
EL 0 0 0 1 1 0 1 0 4 81 0 1 0 89 91.0
SP 0 0 0 0 0 0 0 0 2 0 76 0 0 78 97.4
SF 0 0 0 0 0 2 0 0 0 0 0 26 0 28 92.9

WP 0 0 0 0 0 0 0 0 0 0 0 0 24 24 100.0
∑ 99 64 44 43 41 40 37 33 83 83 78 30 24 699

PA [%] 84.8 84.4 75.0 88.4 97.6 77.5 89.2 84.8 92.8 97.6 97.4 86.7 100.0
OA [%] 89.4

κ 0.883
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Of all 24 variables selected for the best VNIR (all—mean shift) model, 21 were also among the
24 variables of the best model of the VNIR classification. The three new variables were Texture NIR
8 (Textural feature: Haralick Correlation), PC 5 and PC 4. Similar to previous results, most of the
variables are principal components (18). Again, the vegetation index PRI is the most important variable,
followed by BR. In total, five vegetation indices are included in the model. The complete variable
importance plot is provided in Figure 7b.

3.4. Comparison of Classifications Results for Manually and Automatically Segmented Reference Trees

Table 6 summarizes the classification results that were obtained from all of the classifications of
the manually delineated and automatically segmented reference trees. In general, the results of the
VNIR (all—mean shift) classification were only slightly worse than the ones obtained for the equivalent
manual delineation scenario. For the classifications that were based on manually delineated trees,
the results were best upon including all variables, closely followed by the classification using bands,
indices and principal components. Using only reflectance values (VNIR (bands)) yielded the worst of
all results. A huge difference was found between the results of the four classifications using spectral
reflectance values plus one of the four other variable groups (1st derivative, texture, indices, principal
components): While the scenarios with indices and principal components generate good results, it
does hardly make a difference to the accuracy when texture or statistics of the first derivative are
added to the classification.

Table 6. Overall accuracy (OA) and Cohen’s kappa (κ) for classifications of reference trees.
The dotted line separates the classifications of the manually delineated reference trees (above) from the
classifications of the segmented reference trees (below). Abbreviations are as follows: CI = Confidence
Interval, Ind. = Indices, PCs = Principal components, Text. = Texture, 1st Deriv. = 1st Derivative.
The best classification is printed in bold.

Classification Designation Variables OA [%] (CI [%]) K

VNIR (bands) Bands 58.1 (54.3, 61.8) 0.536
VNIR (bands, 1st derivative) Bands, 1st Deriv. 59.1 (55.3, 62.8) 0.547

VNIR (bands, texture) Bands, Text. 59.4 (55.6, 63.0) 0.550
VNIR (bands, indices) Bands, Ind. 75.5 (72.2, 78.7) 0.730

VNIR (bands, PCs) Bands, PCs 89.3 (86.7, 91.5) 0.882
VNIR (bands, indices, PCs) Bands, Ind., PCs 91.0 (88.6, 93.0) 0.901

VNIR (all) Bands, 1st Deriv., Text., Ind., PCs, 91.7 (89.4, 93.6) 0.909
VNIR (all—mean shift) Bands, 1st Deriv., Text., Ind., PCs, 89.4 (86.9, 91.6) 0.883

The classification accuracies of the individual tree species varied between the different
classifications. However, some species were repeatedly associated with highest or lowest accuracies.
The producer’s accuracy of European ash was the lowest in all eight classifications. The species
that were associated with minimum user’s accuracies were European ash, oak and sycamore maple.
Both Weymouth pine and Scots pine had the maximum user’s accuracies in four cases. Two times, Scots
pine, Weymouth pine, silver birch and European larch were associated with the highest producer’s
accuracies. There were only three cases where maximum accuracy values were obtained for a broadleaf
species (producer’s accuracy of silver birch (twice), user’s accuracy of wild cherry).

3.5. Importance of Wavelengths for Principal Components

Figure 8 presents the wavelength loadings for the first two principal components (PC 1 and PC
2), as well as the four principle components that were associated with the highest importance in the
best model of the VNIR (all) classification (PC 23, PC 11, PC 15 and PC 13). The average spectral
signature of European beech was added to the graphs to ease interpretation. The loadings of the first
two PCs, particularly PC 1, are very uniform (Figure 8a,b). This implies that these two PCs focus on
the overall spectral variability in the data cube without necessarily improving the discrimination of the
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species. On the contrary, the loadings of the four most important principal components (Figure 8c–f)
feature several peaks, indicating that different parts of the electromagnetic spectrum contribute to the
separability of the classes. Besides peaks around green wavelengths (500–550 nm), we also note maxima
located around blue wavelengths, as well as in the red region of the light spectrum. Compared to the
visible spectral range, the near-infrared range seems to store less information that is needed for species
discrimination (in this particular case).
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(a,b) feature the principal components number 1 and 2. (c–f) give the loading graphs for the principal
components that were ranked as most important in the best VNIR (all) model (PC 23, PC 11, PC 15, PC
13). For comparison, the spectral signature of European beech is presented in addition.

3.6. Wall-to-Wall Mapping on Mean Shift-Segmented VNIR Image

The wall-to-wall tree species and classification reliability maps are presented in Figures 9 and 10.
The classification map (Figure 9) shows the high species richness and biodiversity. The corresponding
classification reliabilities (Figure 10) demonstrate a large spatial variability. In the upper map detail (A)
of Figure 10, an accumulation of segments with low reliabilities can be found (in red). Around this
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area, high classification reliabilities have been recorded (in green). This pattern can be rediscovered
in the upper map detail (A) of Figure 9. High classification reliabilities correspond to an area where
all segments were classified as European beech. In contrast, the area of low classification reliability
is made up of segments that were mainly classified as black alder, European ash and oak. A similar
picture of tree species distribution patterns matching the classification reliabilities is depicted in the
second map details (B) where in this case Scots pine being is associated with the highest reliabilities.
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Figure 10. Classification reliabilities that are associated with the tree species maps of Figure 8 based
on the mean shift-segmented VNIR data. Two small areas (A, B) are highlighted to demonstrate
the richness of the derived information. The black-and-white background image shows the
non-forested areas.

The average classification reliability (=share of votes for the class with the highest number of
votes minus the share for the class with the second highest number of votes) of all of the segments is
0.36 with substantial differences for the different species (Figure 11). The highest and lowest mean
classification reliability values of the broadleaf species were obtained for European beech (0.44) and
sycamore maple (0.13). The corresponding values of conifers were 0.45 (Scots pine) and 0.08 (silver fir).
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4. Discussion

The study shows that accurate tree species classification results can be obtained with hyperspectral
data, with overall accuracies exceeding 90%. Differences between segmented and manually delineated
tree crowns were small and not statistically significant. At the same time, despite the high number of
classified tree species (13), our classification results outperformed other studies.

4.1. Classification Accuracies

The high OOB classification accuracies can be first and foremost attributed to the fact that the
acquired hyperspectral dataset featured both a high spectral (80 bands, 7.3 nm wide) as well as a high
spatial resolution (0.4 m). In other studies, a comparable resolution is usually—if at all—only given for
either the spectral or the spatial domain. For example, a pixel-based classification of five tree species
with hyperspectral data of 8 m spatial resolution and 125 bands resulted in an overall accuracy of 86%
based on an independent validation data set [66]. Fassnacht et al. [67] achieved overall accuracies
of 84% to 92% (seven species) and 86% to 97% (five species) with hyperspectral data with 125 bands
of 3 to 4 m spatial resolution using different feature selection approaches and an iterative bootstrap
classification approach. Richter et al. [27] separated ten broadleaved tree species based on data with
367 spectral bands and 2 m spatial resolution with an overall accuracy of 78.4%. Dalponte et al. [68]
obtained a cross validated Cohen’s kappa of 0.890 in a pixel-based classification that was based on
hyperspectral data with a spatial resolution of 0.4 m and 160 bands (band width: 3.6 nm), hence using
data more similar to ours. However, only three tree species were classified, demonstrating that the
excellent spatial and spectral resolution of our dataset cannot be the only reason for our good results.
All of these studies used pixel-based approaches to classify hyperspectral data covering VNIR as well
as the SWIR region.

On the other hand, also studies based on multispectral data with high spatial resolution (2 m)
achieved good classification results. Using WorldView-2 data for the object-based classification of ten
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tree species, Immitzer et al. [4] obtained an OOB overall accuracy of 82.0%. Other WorldView-2 studies
in Central Europe achieved similar results [15,69].

As evident in Table 6, vegetation indices and principal components strongly contributed to the
success of our approach. These findings are in line with other studies [66,67]. Beneficial were also
the high number of reference samples per class (24 (Weymouth pine) to 99 (European beech)). At the
same time, only the sunlit areas of each tree crown were considered when delineating the reference
samples. This has also been recommended by other studies [4,23,66] and was done with the ambition
to decrease the intra-crown and intra-class variation of the spectral signal due to varying illumination
within the canopy. Similarly, the parameters of the segmentation algorithm were set to mimic these
manual delineations. Together, these choices have certainly positively contributed to the classification
results, although we did not attempt to quantify the contribution of each individual factor.

4.2. Suitability of Hyperspectral Dataset and Segmentation Algorithms

One main objective of the study was to check how much the quality of the classification is affected
by replacing manually delineated polygons with segmented reference polygons. Obviously, any
observed decrease in accuracy should be traded off against the potential benefits of an automated crown
delineation process. For example, only automatic segmentation makes it possible to apply per-tree
classification models over large areas, leveraging the full environmental and economic potential
of remotely sensed data [70]. With this in mind, the observed loss in classification accuracy was
acceptable. Indeed, we only found a slight decrease of the VNIR (all) classification results compared
to those that were based on automated segmented reference data (∆ overall accuracy = −2.3 pp,
∆κ = −0.026). This decline in classification accuracy can be considered very small, especially in the
face of the overlapping confidence intervals (Table 6). Relatively similar classifications using manually
and automatically segmented objects were also reported by Dalponte et al. [69]. However, these results
were based only on three different tree species.

To generate reasonable tree crown objects with acceptable efforts, while avoiding the pitfalls
and challenges of more sophisticated approaches (e.g., [25,71,72]), we chose to implement a stratified
approach. We first separated the high and broadleaf stands from the small and/or conifer stands.
For this, a LiDAR-based CHM was used, which could, however, easily be replaced by CHMs generated
from photogrammetry. The high broadleaf stands were usually made up of relatively large crowns,
whereas small trees and conifers generally had small crowns. The tree crown segmentation parameters
were fixed accordingly for the two strata. Parameter settings were chosen in a way that the polygons
resulting from the segmentation process were as congruent as possible with the manually delineated
polygons. For this, over-segmentation was chosen over under-segmentation. Therefore, the majority
of the segments are presumably smaller than the corresponding manual objects. In the reference
dataset, the average automated generated segment size was around 40% smaller than the manually
delineated crowns. As only sunlit areas were included in the manually delineated polygons, it was to
be expected that a smaller extent of this polygon (as obtained from our segmentation) would still yield
good classification results. No further attempts were made to optimize the tree crown segmentation
process, which would be necessary if also the tree number should be counted. One possibility for the
optimization of the parameters could be based on the classification results [65]. Another option would
be to use unsupervised approaches [73]. Also, with respect to the chosen mean shift segmentation
algorithm, we did not study the various existing alternatives [25]. In our understanding, the most
appealing advantage of the mean shift algorithm is the fact that minimum object sizes can be
deliberately set [74].

4.3. Classification of Tree Species

In all but the VNIR (all) classification, the user’s and producer’s accuracies of the five coniferous
species were higher compared to the eight broadleaf species. Similar findings were reported by other
studies [23,31,67]. By far the best classification results were obtained for Weymouth pine and Scots
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pine. The classes with the lowest user’s accuracies, i.e., the classes that the most misclassified trees
were assigned to, are European ash, oak and sycamore maple.

The clear superiority of the two coniferous species Weymouth pine and Scots pine is probably
related to the distinctiveness of their spectral signatures. By contrast, the intra-class spectral signatures
of the mentioned broadleaf species are very diverse and overlap with those of other tree species.
Consequently, four of the six trees that were misclassified as black alder in the VNIR (all) classification
were European ash, which is a species with a very similar spectral signature.

In the VNIR (all—mean shift) classification, oak was associated with the lowest user’s accuracy,
mainly owing to misclassifications of European beech. This was not expected as there seemed to
be relatively large spectral differences between the two respective spectral curves (Figure 6). It is
possible that the data of some of the reference trees were noisy, which remained unrecognized upon
inspection of the average spectral signatures. For example, signal from the soil, smaller trees and
other (understory) vegetation might also be featured in the reference dataset due to a loose canopy
structure [1,75].

Another possible reason for the high classification accuracy of both Weymouth and Scots pine
could be related to the light requirements of these species. Dalponte et al. [6] argue that the low shade
tolerance of pines allows them to grow only under good light conditions, which is why these trees
are usually less suppressed by neighboring trees. In our study, this could have minimized external
perturbations of the spectral signatures of the two pine species. Indeed, the stand where all of the
reference Weymouth pines were sampled was comparatively open. Some correlation between light
requirement and the accuracies in the VNIR (all) classification could be implied, e.g., by the high
producer’s accuracies of the highly light requiring species silver birch (100.0%), Scots pine (98.7%)
and European larch (97.6%). Also, the user’s accuracies of sycamore maple (78.7%), European ash
(88.9%) and European hornbeam (92.9%) are in line with their rising light requirement (for a ranking
of the light requirements of the tree species, see Ellenberg and Leuschner [76]). However, the fact that
there are multiple deviations from this supposed relationship suggests that the light requirement of a
species is only one factor among others that is relevant for the classification accuracy.

It is a well-known issue that the Random Forest classifier favors the classification of classes with
a large number of reference samples—often at the expense of those with less reference samples [77].
In our work, however, both user’s and producer’s accuracies were relatively independent from the
sample number. Even the species with relatively few reference samples (≈ n≤ 30: silver fir, Weymouth
pine) appeared to still have had enough samples not to be overwhelmingly affected. Apparently, in
our study, the classification success depended more on the distinctiveness of the spectral signatures
and much less on the number of reference samples.

Similar to other studies, we evaluated our models only with respect to the chosen classes. The 13
tree species that were included in our study cover the vast majority of the forest. However, we know
that more species are present in the forest. For some very rare species that were reported in the dataset
from the Austrian state forest enterprise, we were not able to take a sufficient amount of reference
samples (≥20). Those species are therefore automatically misclassified, but do not appear in our
confusion matrices. The same shortcoming exists for young and/or covered trees. For example, tree
age can have effects on the spectral signatures of tree species [12,14]. There were hardly any young
trees featured in the reference dataset as their usually small crowns were hard to identify in the data,
often overlapping with neighboring tree crowns or even completely hidden. Therefore, it is probable
that the accuracy of the model is positively biased.

As expected, the accuracies improved when apart from the spectral reflectance values there were
additional variables used for the classifications including a simultaneous feature selection [27,31,68,78].
In particular, the addition of spectral indices and principal components drastically improved the
classification results. By contrast, the inclusion of textural metrics and first derivatives only had a
small effect. With respect to the textural metrics, it seems that the ratio of object to pixel size was not
large enough to produce meaningful additional information [79].
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The upswing in accuracies associated with broadleaves was more pronounced than the
corresponding values for conifers (VNIR (all)—VNIR (bands): ∆ UAbroadleaf = + 42.1 pp, ∆ PAbroadleaf
= + 45.6 pp, ∆ UAconifer = + 31.1 pp, ∆ PAconifer = + 27.6 pp). These results suggest that conifers can be
classified decently already with very basic variables while additional variable are particularly beneficial
for the correct classification of broadleaf trees. The correction for background effects through vegetation
indices, for example, might be helpful for the classification of relatively open and transparent broadleaf
trees, but less beneficial for the classification of the relatively compact conifer canopies.

The achieved classification reliability is additional information which can be important for the
interpretation of the classification results or for revising the results [64]. Schultz et al. [65] showed that
high reliabilities are positively correlated with a higher amount of correct classification. Species which
obtained higher class specific accuracies were frequently classified with a higher reliability in the
wall-to-wall mapping. It seems that the reliability results are also affected by a class occurrence (both
in the model and in reality). However, we found (not shown) that the use of identical same sample
sizes in each class achieved similar results. Compared to crop classifications [51,65], we note that the
obtained reliability values were not very high.

4.4. Variable Importance

Recursive feature selection was used to narrow down the number of variables to the ones resulting
in the highest classification accuracies. The approach is based on the importance values and the OOB
accuracies from the Random Forest models. We obtained satisfactory results, which are in line with
other studies [50,55,64,65]. However, as it uses OOB results, the feature selection procedure can lead to
some kind of bias. Although the variables that were kept for the different models were never fully
identical, there was a high level of agreement, not only among the variable groups (e.g., principal
components, vegetation indices), but also among specific variables. This does not only add to the
confidence in the reproducibility and meaningfulness of the feature selection, but it also makes it
possible to draw general conclusions from the feature selection results.

In all cases where the vegetation indices were included in the classification (VNIR (all), VNIR
(bands, indices), VNIR (bands, indices, PCs), VNIR (all—mean shift), the Photochemical Reflectance
Index (PRI) was the most important variable. Furthermore, the vegetation indices BR, PSRI, GNDVI
and mND705 were also featured in all of the four said models. Of the five most frequently featured
vegetation indices, four (PRI, BR, PSRI, GNDVI) included a green wavelength and three of them (BR,
PSRI, GNDVI) related it to one from the near-infrared part of the spectrum.

At least in terms of quantity, principal components were the most important group of variables.
Interestingly, three of the four models including principal components did not feature any of the
first two principal components, which by definition explain most of the variation in the image data
(Exception: VNIR (bands, PCs), PC 2). This points to a main criticism in using principle components in
regression problems (in contrast to Partial least squares regression (PLSR) and independent component
analysis (ICA)): the most useful information is not necessarily contained in the first components, but
might be contained in later factors [44,80]. This drawback was avoided in our study by considering all
PCs, and using the implemented feature selection approach to select those ones contributing best to
the separability of the classes.

5. Conclusions

In this work, 699 manually delineated reference trees of 13 tree species were classified with the
Random Forest classifier. The reference dataset comprised a variety of explanatory variables, including
reflectance values, vegetation indices, textural metrics, statistics of the first derivative of the mean
spectral signature and principal components. After the classification of the manually delineated
polygons, the same procedure was carried out for the corresponding segments that were generated
with automated mean shift segmentation. The resulting Random Forest models were finally applied
to the segmented VNIR data and classified tree maps of the study area were obtained. This setup
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ensured that useful insights could be gained with respect to (i) the importance of the different variables,
(ii) species-related differences in classification accuracy, and (iii) the automation potential of the
proposed method.

Despite the fact that we studied 13 different species, we obtained very high classification accuracies
(out-of-bag overall accuracy > 0.90). We attributed these results to the richness of the acquired
hyperspectral data set (80 spectral bands), which were moreover recorded at a very high spatial
resolution (0.4 m). As expected, not all of the species were equally well classified. Notably, for
European ash and oak could not be well separated from the remaining species (mainly European beech)
due to supposed high intra-class variabilities and overlapping spectral signatures. In general, conifers
were better identified compared to broadleaf species. No relation was found between the number of
available reference samples (24 ≤ n ≤ 99) and the species-specific user’s and producer’s accuracy.

With respect to the predictive variables we found that vegetation indices and principle components
were the most important. Among the vegetation indices, PRI, BR, PSRI, GNDVI and mND705 were
of major significance for a successful classification. The first four mentioned indices include a green
wavelength and three of them relate it to near-infrared reflectance values. The most important principal
components share a high reliance on blue and green wavelengths.

In this work, the mean shift algorithm has shown to generate decently classifiable segments, which
can be seen as a first step in the direction of an automated tree species classification approach. It seems
meaningful to apply more advanced and objective evaluation methods and possibly also to evaluate
other algorithms. More research is also needed to better understand the effects of shortcomings in the
reference data, such as unequal sample sizes or an inhomogeneous distribution of reference samples
over the study site. Ultimately, the applicability of tree species classification models over much larger
geographical areas should be investigated.
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Appendix A

Table A1. Names, equations and references for the 22 vegetation indices used in this study.

Index Equation Reference

Ratio Vegetation Index RVI = ρ801.99 nm
ρ678.11 nm

[81]

Difference Index NIR− R = ρ772.84 nm − ρ663.54 nm [82]

Normalized Difference Vegetation
Index

NDVI = ρ801.99 nm−ρ678.11 nm
ρ801.99 nm+ρ678.11 nm

[83]

Green-Red Difference Index GRR =
ρ561.52 nm−ρ663.54 nm
ρ561.52 nm+ρ663.54 nm

[82,84]

Difference Difference Vegetation
Index

DD = (2 ∗ ρ947.73 nm − ρ750.98 nm)−
(ρ648.97 nm − ρ546.95 nm)

[85]

Atmospherically Resistant
Vegetation Index ARVI = ρ867.57 nm−(2∗ρ663.54 nm−ρ466.79 nm)

ρ867.57 nm+(2∗ρ663.54 nm−ρ466.79 nm)
[86]

Green Atmospherically Resistant
Vegetation Index

GARI =
ρ750.98 nm−(ρ546.95 nm−(ρ466.79 nm−ρ670.83 nm))
ρ750.98 nm+(ρ546.95 nm−(ρ466.79 nm−ρ670.83 nm))

[87]



Remote Sens. 2018, 10, 1218 24 of 29

Table A1. Cont.

Index Equation Reference

Green Normalized Difference
Vegetation Index

GNDVI = ρ750.98 nm−ρ546.95 nm
ρ750.98 nm+ρ546.95 nm

[88]

Visible Atmospherically Resistant
Index

VARI = ρ561.52 nm−ρ663.54 nm
ρ561.52 nm+ρ663.54 nm−ρ488.66 nm

[89]

Enhanced Vegetation Index
EVI =

2.5 ∗ ρ867.57 nm−ρ648.97 nm
ρ867.57 nm+6∗ρ648.97 nm−7.5∗ρ466.79 nm+1

[90]

2-band Enhanced Vegetation Index EVI2 = 2.5 ∗ ρ867.57 nm−ρ648.97 nm
ρ867.57 nm+2.4∗ρ648.97 nm+1 [91]

Photochemical Reflectance Index PRI = ρ532.38 nm−ρ568.81 nm
ρ532.38 nm+ρ568.81 nm

[92,93]

Red Edge Normalized Difference
Vegetation Index

RENDVI = ρ750.98 nm−ρ707.26 nm
ρ750.98 nm+ρ707.26 nm

[94]

Modified Simple Ratio mSR705 =
ρ750.98 nm−ρ444.93 nm
ρ707.26 nm−ρ444.93 nm

[95]

Modified Normalized Difference
Index

mND705 =
ρ750.98 nm−ρ707.26 nm

ρ750.98 nm+ρ707.26 nm−2∗ρ444.93 nm
[95]

Green Ratio GR =
ρ546.95 nm
ρ663.54 nm

[15]

Blue Ratio
BR =

ρ663.54 nm
ρ481.37 nm

∗ ρ546.95 nm
ρ481.37 nm

∗ ρ721.84 nm
ρ481.37 nm

∗ ρ831.14 nm
ρ481.37 nm

[15]

Red Ratio RR =
ρ831.14 nm
ρ663.54 nm

∗ ρ546.95 nm
ρ663.54 nm

∗ ρ831.14 nm
ρ721.84 nm

[15]

Infrared Percentage Vegetation
Index

IPVI = ρ801.99 nm
ρ801.99 nm+ρ678.11 nm

[96]

Normalized Difference Red Edge
Index

NDRE =
ρ787.42 nm−ρ721.84 nm
ρ787.42 nm+ρ721.84 nm

[97]

Plant Senescence Reflectance
Index

PSRI = ρ678.11 nm−ρ503.23 nm
ρ750.98 nm

[98]

Weighted Difference Vegetation
Index

WDVI =
ρ845.71nm −

ρsoil867.57 nm
ρsoil685.4 nm

∗ ρ678.11nm
[99–101]
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