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Abstract: With the rapid development of hyperspectral applications using unmanned
aerial vehicles (UAVs), the traditional assumption that ground objects exhibit Lambertian
reflectance is no longer sufficient to meet the high-precision requirements for quantitative
inversion and airborne hyperspectral data applications. Therefore, it is necessary to estab-
lish a hyperspectral bidirectional reflectance distribution function (BRDF) model suitable
for the area of imaging. However, obtaining multi-angle information from UAV push-
broom hyperspectral data is difficult. Achieving uniform push-broom imaging and flexibly
acquiring multi-angle data is challenging due to spatial distortions, particularly under
heightened roll or pitch angles, and the need for multiple flights; this extends acquisition
time and exacerbates uneven illumination, introducing errors in BRDF model construction.
To address these issues, we propose leveraging the advantages of multi-spectral cameras,
such as their compact size, lightweight design, and high signal-to-noise ratio (SNR) to
reconstruct hyperspectral multi-angle data. This approach enhances spectral resolution
and the number of bands while mitigating spatial distortions and effectively captures the
multi-angle characteristics of ground objects. In this study, we collected UAV hyperspectral
multi-angle data, corresponding illumination information, and atmospheric parameter
data, which can solve the problem of existing BRDF modeling not considering outdoor
ambient illumination changes, as this limits modeling accuracy. Based on this dataset,
we propose an improved Walthall model, considering illumination variation. Then, the
radiance consistency of BRDF multi-angle data is effectively optimized, the error caused by
illumination variation in BRDF modeling is reduced, and the accuracy of BRDF modeling is
improved. In addition, we adopted Transformer for spectral reconstruction, increased the
number of bands on the basis of spectral dimension enhancement, and conducted BRDF
modeling based on the spectral reconstruction results. For the multi-level Transformer
spectral dimension enhancement algorithm, we added spectral response loss constraints to
improve BRDF accuracy. In order to evaluate BRDF modeling and quantitative application
potential from the reconstruction results, we conducted comparison and ablation experi-
ments. Finally, we solved the problem of difficulty in obtaining multi-angle information
due to the limitation of hyperspectral imaging equipment, and we provide a new solution
for obtaining multi-angle features of objects with higher spectral resolution using low-cost
imaging equipment.
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1. Introduction
The BRDF is used to describe the reflectance characteristics of electromagnetic waves

from natural surfaces [1,2]. The study of the BRDF typically relies on the acquisition
of multi-angle data. This data collection can be categorized into three main platforms:
satellite-borne [3], airborne, and ground-based remote sensing systems [4,5]. Ground-based
multi-angle data acquisition equipment tends to be large, heavy, and complex to transport
and assemble, and the measurement results are often susceptible to interference from
self-shadowing effects. In contrast, UAVs have several advantages over satellite-borne
and ground-based systems for multi-angle data acquisition. These advantages include
greater operational flexibility, higher spatial resolution, lower operational costs, and the
convenience of conducting ground-based synchronous auxiliary tests.

With the development of UAV-borne hyperspectral applications, the assumption that
ground objects behave as Lambertian surfaces no longer satisfies the requirements for
high-precision quantitative inversion and the application of airborne hyperspectral data [6].
Due to the low flying altitude and high spatial resolution of UAV-borne hyperspectral
platforms, the effects of terrain undulations and the anisotropy of ground objects are more
pronounced [7]. In the case of commonly used push-broom hyperspectral systems, images
are typically acquired by maintaining a constant speed and straight flight path. However,
platform instability, variations in flight attitude, imaging angle, and environmental changes
lead to slight differences in the instantaneous field of view for each linear array, causing
slight deviations in the observation direction. Then, each pixel within a single image is
coupled with bidirectional reflectance from the ground surface, and the resulting effects are
not uniform, which increases the complexity and uncertainty of BRDF modeling. Therefore,
a more efficient method is required to establish the BRDF model.

High-quality input is fundamental for constructing a high-precision BRDF model.
Traditional BRDF measurements are typically conducted under ideal conditions, such as
clear, sunny days, and often require repeated measurements of fixed areas over extended
periods. This approach is time-consuming and does not account for variations in illumi-
nation conditions during data acquisition. Errors caused by discrepancies in front-end
radiance are carried through subsequent radiometric corrections in the BRDF model, be-
coming increasingly significant at lower solar altitude angles or over longer observation
periods [8]. The definition of the BRDF does not impose specific environmental constraints,
and as such, traditional BRDF measurements are generally based on the assumption that
ambient illumination remains stable. However, in UAV imaging, environmental factors
such as atmospheric conditions, cloud cover, and variation in water vapor content invari-
ably affect the transmission of electromagnetic radiance. Consequently, the quantitative
acquisition and modeling of the BRDF are influenced not only by the reflectance character-
istics of ground objects but also by changes in the radiance characteristics of the imaging
environment. This is further demonstrated by studies on multi-angle data collection and
BRDF modeling conducted in both sunny and cloudy weather, which highlighted the need
for greater radiance consistency in BRDF modeling data [9–15]. Multi-spectral cameras,
characterized by their compactness, lightweight design, and high SNR, are particularly
suitable for UAV-based BRDF research utilizing multi-angle multi-spectral imagery [16,17].
Reconstructing hyperspectral multi-angle data from multi-spectral multi-angle data en-
ables the full utilization of multi-spectral imagery to capture the multi-angle features of
objects, enhancing both spectral resolution and the number of spectral bands. This ap-
proach enables the acquisition of high-precision, high-quality multi-angle data at a lower
cost [18]. The process of simulating high-dimensional data from low-dimensional inputs
is inherently an underdetermined problem. In recent years, Transformer-based models
have gained significant success in computer vision, particularly due to their multi-head
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self-attention mechanism, which outperforms convolutional neural networks (CNNs) in
capturing long-range dependencies and non-local self-similarity [19–22]. This ability helps
address some of the limitations associated with CNN-based algorithms. Integrating BRDF
reconstruction with deep learning techniques allows for leveraging the strengths of deep
learning to address underdetermined problems while considering performance differences
and spectral band variations across various remote sensing platforms. This approach facil-
itates data simulation from a data-driven perspective, thus meeting the BRDF modeling
requirements for various imaging platforms, both ground-based and airborne.

The main contributions of this paper are summarized as follows.
(1) A hyperspectral dataset is collected using a UAV within the spectral range of

400–1000 nm. The dataset comprises 200 images along with corresponding illumination
data, which are accurately linked to global positioning system (GPS) timestamps. Unlike
existing datasets, our collection is specifically designed for UAV-based reconstruction that
accounts for variations in outdoor solar illumination. This dataset offers valuable support
for future research in outdoor spectral imaging, processing, and analysis.

(2) A method to enhance the accuracy of BRDF models is proposed by incorporating
photometric correction to mitigate the radiance discrepancies in front-end data. The
time-dependent photometric correction is incorporated into the BRDF modeling process,
effectively eliminating the impact of radiometric variations in the front-end data during
model construction. The BRDF model is developed using parameter values that accurately
represent the bidirectional reflectance characteristics of ground objects. This approach
effectively compensates for the impact of time-varying illumination on the multi-angle data
acquisition process, ensuring the long-term accuracy of the BRDF model across extended
time periods.

(3) Hyperspectral multi-angle data can be effectively reconstructed and generated
by utilizing a multi-level Transformer-based spectral dimension enhancement algorithm
combined with spectral response loss constraints. This approach expands the application
potential of a multi-spectral BRDF and addresses the challenge of limited multi-angle
information due to the constraints of hyperspectral imaging equipment. Consequently, it
offers a novel solution for acquiring multi-angle features of ground objects with higher
spectral resolution, utilizing low-cost imaging systems.

2. Methodology
2.1. Improvement of Walthall BRDF Model Based on Illumination Correction

The Walthall model is a typical BRDF statistical model that establishes a functional
relationship between the bidirectional reflectance data and the observed zenith angle θv,
the observed azimuth angle ϕv, and the solar azimuth angle ϕi. The model often uses
the difference between the latter two to represent the relative azimuth angle. The specific
formula is as follows:

R(θv, φv, φi) = aθ2
v + bθv cos(φv − φi) + c (1)

where a, b, and c represent empirical coefficients.
However, Walthall ignored the effect of the solar zenith angle on the bidirectional

reflectance of the ground objects. Based on this, Nilson and Kuusk [23] made improvements:

R(θi, θv, φv, φi) = a
(

θ2
i + θ2

v

)
+ bθ2

i θ2
v + cθiθv cos(φv − φi) + d (2)

where d represent empirical coefficients. θi is the solar zenith angle.



Remote Sens. 2025, 17, 863 4 of 21

In order to enable the model to characterize the hotspot effect, Liang and Strahler [24]
further added an exponential term that can characterize the hotspot effect:

R(θi, θv, φv, φi) = a
(

θ2
i + θ2

v

)
+ bθ2

i θ2
v + cθiθv cos(φv − φi) + d + c1e−c2 tan(π−ξ) (3)

where c1, c2, and ξ are undetermined coefficients.
The above model measures the entrance pupil radiance and uses the radiance of the

whiteboard image as the reference to calculate the reflectance ratio:

L
Lwhite

= R(θi, θv, φv, φi) (4)

where L represents the entrance pupil radiance of each band observed by the sensor; Lwhite

represents the radiance of the whiteboard.
Our research is based on the improved Walthall model, takes the radiance of the

whiteboard at the time of imaging as the benchmark, introduces the illumination correction
factor to correct the image, and, to some extent, compensates for the influence of Walthall’s
neglect of the solar zenith angle. The UAV remote sensing platform operated below the
clouds, where solar illumination fluctuated rapidly due to cloud cover, affecting image
brightness. To correct this, we use the atmospheric downwelling irradiance measuring
device (DIMD) for continuous downward irradiance observation, with the cosine corrector
positioned toward the zenith to minimize errors from varying observation angles. We
interpolate DIMD data to match the push-broom line acquisition times of the UAV. The
irradiance values are integrated into the hyperspectral imager’s corresponding channels
using a formula for radiance collection [25]. Illumination correction coefficients, k, for each
band are derived by dividing the measured irradiance by the benchmark irradiance. The
improved formula can be expressed as

L
Lwhite

· k = R
′
(θi, θv, φv, φi) (5)

R
′
(θi, θv, φv, φi) = k

(
a
(

θ2
i + θ2

v

)
+ bθ2

i θ2
v + cθiθv cos(φv − φi) + d + c1e−c2 tan(π−ξ)

)
(6)

where R
′

represents the reflectance with illumination correction.

2.2. BRDF Reconstruction Model Based on Multi-Level Spectral Attention Mechanism

Based on the improved Walthall model, when acquiring multi-angle data, we em-
ployed a multi-level spectral reconstruction model to enhance the spectral resolution
of BRDF data during multi-angle data acquisition. This network was proposed by
Cai et al. [26] and performs well in the task of hyperspectral reconstruction. The over-
all structure of the network is shown in Figure 1.

Figure 1a shows a single-level spectral-wise transformer (SST) network. The em-
bedding layer in SST is a 3 × 3 convolution, the downsampling operation adopts a 4 × 4
convolution, and the upsampling operation employs a 2 × 2 transposed convolution.
Figure 1b shows a multi-level spectral reconstruction network. The entire network uses
three SST modules. In order to avoid information loss during downsampling operation, the
entire module uses skip-layer connections. The upsampling and downsampling processes
involve transferring feature combination information through feature permutation.

Traditional visual Transformers divide images evenly into multiple sub-blocks along
the spatial dimension to form tokens. However, hyperspectral data exhibit high spatial
similarity across sparse channels, making it more computationally efficient to calculate
self-attention along the spectral channel dimension rather than the spatial dimension. Based
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on this insight, Spectral-wise Multi-head Self-Attention (S-MSA) treats the feature map of
each spectral channel as a token and calculates its self-attention features. This approach
significantly enhances the focus on spectral features during spectral reconstruction. In this
module, each spectral channel’s feature is used as a token to facilitate spectral dimension
reconstruction. The structure of this module is illustrated in Figure 2a.

Figure 1. Multi-level BRDF spectral reconstruction network. (a) Single-level spectral transformer
module SST; (b) Multi-level spectral reconstruction network.

Figure 2. The structure of each component in the SST module. (a) Spectral Multi-Head Attention
Module S-MSA; (b) Dual RsFFN; (c) Spectral Attention Module SAB.

Assume X in ∈ RH×W×C is the input. First, X in is transformed along the spectral
dimension and shaped into C tokens to obtain Xcube ∈ RHW×C. Then, Xcube enters three
branches and uses C channels convolution to obtain Q branch XQ ∈ RHW×C, K branch
XK ∈ RHW×C, and V branch XV ∈ RHW×C.

Since the input multi-spectral information and each spectral dimension of the hyper-
spectral have different degrees of correlation, directly employing the multi-head attention
method cannot learn the input spectral features well. The formula of the single-head
self-attention model is as follows:

SA = XV

(
soft max

(
σXT

KXQ

))
(7)
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where XT
K represents the transposed matrix of XK.

The entire S − MSA can be expressed as follows:

S − MSA(X in ) = (concatN
head=1(SA)w + GELU(XV) (8)

where w is an external spectral parameter with a learnable dimension of 1 × C that is
initialized to 0. Finally, the output of S − MSA is reshaped to obtain the output feature map
Xout ∈ RH×W×C of the N heads.

The traditional Transformer is followed by a feed-forward network (FFN). Considering
that the convolutional layer has good local context perception, we designed a dual residual
feed-forward neural network called Dual RsFFN, as shown in Figure 2b. Given a module
input, X′ ∈ RC×H×W , in RsFFN, a convolution of 1 × 1 is first used to expand X′ to a higher
dimension, X1 ∈ RrC×H×W , where r is the ratio of the number of expansion channels,
which is set to 4 in this study. Then, a convolution of 3 × 3 is used to encode the information
of the adjacent pixel positions of X1, and it is summed with X1 to obtain X2 ∈ RrC×H×W .
Finally, X2 is remapped to the initial input dimension of X3 ∈ RC×H×W through the 1 × 1
convolution layer, and the final output is summed with the input. The whole process
increases the permutation and combination of features by expanding the channel ratio, and
it then removes redundant features by using a convolution of 1 × 1 to reduce the dimension.
GELU is used as the activation function after each convolution layer. The above process
can be expressed as

X1 = GELU
(
Conv1

(
X′)) (9)

X2 = X1 + GELU(Conv2(X1)) (10)

X3 = X′ + GELU(Conv3(X2)) (11)

where Conv1 and Conv3 denote 1 × 1 convolution, and Conv2 represents 3 × 3 convolution.
Finally, S-MSA and Dual RsFFN form the spectral attention module SAB, as shown in
Figure 2c.

2.3. Loss Function of the Reconstruction Model

The entire model BRDF reconstruction network can be optimized by minimizing the
MRAE between the reconstructed BRDF data IREC and the corresponding ground truth
(GT) data IHSI .

Previous CNN-based spectral reconstruction models fit RGB to hyperspectral image
(HSI) mapping and rarely consider integrating camera spectral sensitivity into spectral
reconstruction to achieve more accurate reconstruction. Li et al. [27] proposed the camera
spectral response (CSR) function based on the fact that a given CSR function can be applied
to the reconstructed HSI as a more refined constraint. Therefore, the loss function is a
linear combination of two terms that can more finely represent the difference between the
resampled RGB of the GT image and the reconstructed HSI. The CSR function is as follows:

LCSR =
1

WHN

N

∑
n=1

W

∑
i=1

H

∑
j=1

∣∣∣(µ
(

Iijn
HSI

)
− µ

(
Iijn

REC

))∣∣∣ (12)

LTotal = LMRAE + ηLCSR (13)

where µ represents the spectral response function of CIE-1964; η is a hyperparameter, which
is empirically set to 10.
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3. Experimental Results and Analysis
3.1. Experimental Data and Settings

The push-broom hyperspectral imaging system and the illumination measurement
system are used for multi-angle hyperspectral data collection in this experiment. The
imaging system used in this study comprised a lightweight UAV, a MicroHSI™410SHARK
hyperspectral imager, a RedEdge multi-spectral imager, and a DJI Ronin MX stabilization
platform. The UAV platform employed is a M600pro DJI, known for its cost-effectiveness
and user-friendly operation. It has a maximum payload capacity of 6.0 kg and a total
weight of 10 kg, including the battery. The UAV can withstand wind speeds up to 8 m/s
and achieve a maximum horizontal flight speed of 18 m/s. Its hover time without a payload
is 38 min, and it operates within an environmental temperature range of −10 to 40 ◦C.
Considering the endurance of the UAV and the time limitations for BRDF observation, the
azimuth angle range covered in this study spans from 0◦ to 360◦, with a step size of 30◦.
The zenith angle observation range is from 0◦ to 20◦, with a step size of 5◦. Automatic
observations at specified positions, angles, and altitudes are achieved through the design
of the flight route.

During the collection of multi-angle data, the experiment utilizes a multi-rectangular
overlapping flight path (Figure 3). This flight route addresses the limitations of traditional
circular flight paths, which are not suitable for push-broom hyperspectral imaging, while
also enhancing data collection efficiency. To maintain a stable imaging distance of 50 m,
flights with a 0◦ zenith angle and the multi-rectangular overlapping flight path were
conducted separately. By stabilizing the gimbal’s side swing, observations of different
zenith angles are achieved for each rectangular route. An atmospheric downlink irradiance
measurement device is positioned in a flat, open area within the experimental zone. This
device, consisting of a spectrometer, a cosine corrector, and a storage unit, collects time-
varying illumination data simultaneously with the multi-angle data. Different grayscale
targets (reflectance values of 70%, 50%, 40%, 20%, 10%, and 5%) and standard whiteboards
are sequentially placed in the target area for subsequent reflectance conversion and BRDF
model validation. The test duration, number of flights, and atmospheric conditions are
summarized in Table 1 and Figure 4.

Figure 3. UAV nested multi-rectangular flight routes.
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Figure 4. Changes in aerosol and water vapor content on the day of the experiment (left column: the
first day; right column: the second day).

Table 1. Basic statistics of UAV tests.

Time Flights Solar Zenith Angle (◦) Solar Azimuth (◦)

20230303 7 0–56 103–235
20230304 3 32–60 124–271

The process of multi-angle data collection is outlined as follows (taking a flight altitude
of 50 m as an example):

(1) The UAV flies at an altitude of 50 m and collects data at a 0◦ observation zenith angle.
At this time, the flight direction is from south to north, and the stable gimbal moves
vertically downward to complete the push-scan of the space dimension;

(2) Lower the altitude of the UAV and collect observations at a 5◦ zenith angle. At this
time, the flight route follows the planned rectangular route: adjust the stabilization
gimbal’s side swing angle to 5◦ and fly each rectangle in a clockwise direction to
complete the collection of all observation azimuth angles at the zenith angle;

(3) Decrease the flight altitude, adjust the lateral movement distance, stabilize the gimbal
side swing angle to 10◦, and continue to complete the acquisition of all observation
azimuth angles under the zenith angle in a clockwise direction;

(4) Continue to adjust the flight altitude, lateral displacement, and lateral swing angle,
and repeat the above steps to complete the collection of the remaining observation
zenith angle information;

(5) Observations are conducted over multiple days at different times to collect data corre-
sponding to varying solar zenith and azimuth angles. Finally, the data are reviewed,
and additional flights are conducted if necessary to ensure comprehensive coverage.

When observing at different zenith angles, it is necessary to program and preset the
flight route and adjust the flight altitude and lateral movement distance of the UAV; the
observation angle of the UAV at the moment of imaging is shown in Figure 5, where the
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UAV can descend to the next fixed altitude and automatically adjust the lateral displacement
distance according to the latitude and longitude coordinates.

Figure 5. Schematic diagram of observation angles at the moment of UAV imaging.

The calculation formulas for the flight altitude and lateral distance of the UAV in the
test are as follows:

h = H ∗ cos θv (14)

h = H ∗ sin θv (15)

where H is the initial altitude, θv is the zenith angle of the UAV, h is the altitude correspond-
ing to different zenith angles, and s is the lateral displacement distance corresponding to
different zenith angles. The corresponding relationship between the lateral displacement
distance, altitude, and side swing angle in the experiment is shown in Table 2.

Table 2. Flight parameter correspondence table.

Zenith Angle (◦) Flight Altitude (m) Distance of Lateral Displacement (m)

0 50 0
5 49.8 4.35

10 49.2 8.68
15 48.2 12.94
20 46.9 17.10
25 45.3 21.13

On the basis of sufficient data collection, BRDF modeling and evaluation work are
carried out. The data processing workflow is illustrated in Figure 6. Due to the influence
of UAV take-off and landing times, as well as turning and attitude changes during flight,
invalid data may be generated. Therefore, the first step is to eliminate redundant data. Next,
the illumination correction coefficients are calculated and applied using the time when
each flight strip passes over the standard whiteboard. Finally, atmospheric corrections are
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applied individually to each edge of the overlapping rectangles in each flight strip, ensuring
that the edges of the rectangles are minimally affected by variations in illumination and
observation geometry.

Figure 6. Processing flow of multi-angle data.

Our experiment employs deep learning for the spectral reconstruction of the BRDF.
The UAV hyperspectral training set uniformly crops 64 × 64 pixel, three-band multi-spectral,
and 31-band hyperspectral samples from the original dataset. The batch size of the model is
20, and the parameters of the Adam optimization algorithm are a and b. The initial learning
rate is 0.0004, and the cosine annealing scheme is used for 20 cycles of learning. Finally,
the test dataset is input into the trained network to obtain the reconstructed hyperspectral
image. The GPU is NVIDIA RTX 3090, and the development environment is Pytorch.

3.2. Comparative Experiment and Analysis

In order to analyze the reconstruction effect of the hyperspectral reconstruction model,
this section compares it with advanced reconstruction algorithms such as HSCNN+ [28],
HRNet [29], EDSR [30], HDNet [31], MIRnet [32], MPRNet [33], and MST++ [26]. The
results are shown in Figure 7.

We mainly list the reconstruction results under the same observation azimuth angle
when the observation zenith angle, θv, is 5◦, 10◦, and 15◦, respectively. The main ground
objects are targets with different gray levels. A comparison of the image reconstruction
results from different methods reveals that all approaches have yielded favorable outcomes.
In terms of texture details, the spatial relative positioning of each image pixel is well
preserved, indicating that the BRDF acquisition angle characteristics have been effectively
maintained without introducing errors in angle information during subsequent BRDF
modeling. From a color perspective, some algorithms exhibit slight color discrepancies
in the reconstruction. This is primarily due to deviations in one of the three bands of
the true-color composite image. These deviations tend to increase as the observation
zenith angle increases, suggesting that the spectral curve reconstruction accuracy of these
algorithms needs further improvement. In addition, the color information of algorithms
such as MST++, MPRNet, and MIRnet has little variation, and these can be used as the
preferred algorithms for BRDF reconstruction. From the perspective of feature information,
such as targets and shadows in the image, some algorithms, such as HDNet and HRNet,
have shadows of varying degrees, and the reconstruction results of EDSR, MIRNet, HDNet,
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HRNet, etc., have grayscale anomalies in the high reflectance target area, indicating that
these algorithms need to optimize the local attention module when reconstructing the
BRDF image in order to further improve the accuracy of local reconstruction.

Figure 7. Comparison of true color results of BRDF data reconstructed using different methods at
different observation zenith angles.

Figure 8 presents a comparison of the mean spectral curves obtained from the spectral
reconstruction of BRDF test data under different illumination conditions. The first row
displays the reconstructed hyperspectral curves, with the spectral reconstruction results for
5◦, 10◦, and 15◦ zenith angles shown from left to right. The spectral curve reconstructed for
the target area was selected for analysis. The spectral curve reconstructed at a 10◦ zenith
angle closely matches the real data. The second row illustrates the hyperspectral error
curves. In the error analysis, the algorithm presented in this study exhibits relatively low
errors for the first 22 bands, demonstrating a closer alignment with the GT spectral curve.

Figure 9 shows the heat map visualization results of the BRDF test data in the 5-th
and 15-th bands of the HSCNN+, HRNet, EDSR, HDNet, MIRnet, MPRNet, and MST++
algorithms and the proposed algorithm, with observation zenith angles of 5◦, 10◦, and 15◦.

From top to bottom, the heat maps show the spectral reconstruction results for input
multi-spectral data for HSCNN+, HRNet, MST++, and the algorithm proposed in this study.
The results demonstrate that the proposed algorithm consistently delivers satisfactory
reconstruction outcomes, regardless of the observation zenith angles (5◦, 10◦, or 15◦).
Notably, at a 5◦ observation zenith angle, the reconstruction closely approximates the GT,
with the entire heat map appearing predominantly dark blue. For an observation zenith
angle of 10◦, the heat map reveals relatively larger reconstruction errors in the darker
areas of the original image. For instance, a small portion of the heat map for the HDNet
algorithm approaches red, indicating that the comparison algorithm fails to accurately
capture the hyperspectral attributes corresponding to the input sample area, resulting
in substantial deviations between the reconstructed and actual results. Although the
BRDF spectral reconstruction algorithm proposed in this study exhibits varying degrees of
error at different locations, the heat map shows significant improvement compared to the
other algorithms.
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Figure 8. Comparison of mean spectral curves and error curves reconstructed by different BRDF
methods at different angles.

The experimental results indicate that the error value for the 15-th band is higher than
that for the 5-th band. This discrepancy is primarily due to the lower SNR of the bands
closer to the beginning of the hyperspectral data, which introduces interference during the
reconstruction process and leads to larger errors in the reconstructed data. In contrast, start-
ing from the 15-th band, the higher SNR of the subsequent bands improves reconstruction
quality. By analyzing the error heat maps, it is evident that the hyperspectral BRDF data
reconstructed using the proposed algorithm exhibit the lowest error values compared to
the other algorithms, both for the 5-th and 15-th bands. The results demonstrate that the
proposed algorithm achieves excellent performance regardless of whether the SNR is low
or high, indicating its robustness across different conditions.

Additionally, Table 3 presents the experimental results of the BRDF test set, evaluated
using two performance metrics: RMSE and MRAE. The results demonstrate that the
proposed algorithm outperforms the comparison algorithms in both metrics, achieving
the lowest MRAE of 0.3377. This indicates that incorporating spectral response loss as
a constraint in the reconstruction network enhances the accuracy of spectral dimension
reconstruction for BRDF data. To provide a more intuitive comparison, this paper also
includes a comparison of the parameter counts for different algorithms; the parameter
counts are in millions (M). Notably, since the spectral response loss is integrated into the
network of the proposed method based on MST++, the parameter count remains consistent
with that of MST++. This highlights the efficiency advantage of MST++, which is the main
factor regarding selection in the spectral reconstruction of multi-angle data.

Table 3. Quantitative comparison of different reconstruction methods on the test set.

Method RMSE MRAE Parameter Calculation Amount (M/Millions)

HSCNN+ 0.0866 0.5472 4.65
HRNet 0.0815 0.4997 31.70
EDSR 0.0621 0.4804 2.42

HDNet 0.0530 0.3751 2.66
MIRNet 0.0488 0.3539 3.75
MPRNet 0.0488 0.3469 3.62
MST++ 0.0469 0.3385 1.62

Ours 0.0461 0.3377 1.62
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Figure 9. Error heat map comparison of the reconstruction results of different reconstruction methods
in the 5-th and 15-th bands.

3.3. Ablation Experiment and Analysis

For the SST module, we set the number of stackings to 2, 3, 4, and 5 to explore the
effect of model depth on reconstruction. We can see that as N increases, MRAE and RMSE
will decrease to varying degrees, but the corresponding network parameters will also
increase. After increasing to 4, the accuracy will no longer improve. It is demonstrated that
when stacking three modules, high-precision reconstruction can be maintained. As can be
seen from Table 4, as the number of stacked modules increases, the number of parameters
also increases.

Table 4. Quantitative comparison of different numbers of SST on the test set.

Number of SST RMSE MRAE Parameter Calculation Amount (M)

N = 2 0.0465 0.3402 1.08
N = 3 0.0461 0.3377 1.62
N = 4 0.0489 0.3685 2.16
N = 5 0.0493 0.3798 2.70
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3.4. Quantitative Application

After analyzing and comparing the multi-angle spectral reconstruction experiment, we
verified the reconstruction results via quantitative application. Our method was primarily
used to model the BRDF of the reconstructed multi-angle data and to compare it with the
results of the multi-angle BRDF model. In the experiment, five different kinds of target
reflectance in five bands are selected for illustration.

When modeling the BRDF, we utilized the Walthall model based on illumination
improvement to model the BRDF and reduce the impact of illumination on the BRDF. To
more intuitively illustrate the effect of illumination correction on the Walthall model, we
present polar coordinate diagrams for different grayscale targets across various bands.

To minimize the introduction of additional sources of error, we selected the hyperspec-
tral data for analysis. After converting the radiance to reflectance, the data were input into
the Walthall model, both with and without illumination correction, to generate multi-angle
enhanced data. By examining the distribution of these data, we can intuitively assess the
improvement in the Walthall model with illumination correction, thereby highlighting the
critical importance of accurate BRDF modeling. The distribution results of the BRDF model
data with/without illumination are shown in Figure 10.

Figure 10. Comparison of Walthall model data distribution with/without considering the
illumination variation.

The outer perimeter of the polar coordinates represents different observation azimuths
ranging from 0◦ to 360◦, and the radial axis corresponds to the reflectance values of the
data. The blue triangles indicate the multi-angle data distribution without considering
illumination, whereas the red stars represent the multi-angle distribution after illumination
correction. As observed from Figure 10, the data dispersion is significantly reduced when
illumination is considered, with the values predominantly distributed along the circumfer-
ence. The transitions and changes are much smoother. In contrast, when illumination is
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not considered, the data transitions at the inflection points appear less smooth and natural,
with some values exhibiting substantial fluctuations. After the illumination correction, the
range of these fluctuations is notably reduced.

To more intuitively demonstrate the impact of illumination correction, Table 5 presents
a comparison of the standard deviation and mean of the BRDF data across five selected
bands, both with and without illumination correction. After applying the illumination
correction, the standard deviation and mean for each band were significantly reduced. This
indicates that environmental factors such as weather changes (including illumination, cloud
cover, and atmospheric conditions) can influence the accuracy of the collected BRDF data
and the resulting model. Given the relatively low flight altitude of the UAV, the radiance
transmitted through the atmosphere encompasses nearly the entire atmospheric column.
Although this study employed drone-based hyperspectral data collection as an alternative
to ground-based platforms, the process remains susceptible to a range of factors. These
influences are highly variable and random, underscoring the necessity of synchronized
measurements from either ground or drone platforms to mitigate such error sources during
both data acquisition and modeling.

Table 5. Standard deviation with/without considering illumination.

Reflectance
Without Considering Illumination With Considering Illumination

450 nm 490 nm 650 nm 750 nm 850 nm Avg. 450 nm 490 nm 650 nm 750 nm 850 nm Avg.

5% 0.02 0.02 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.01
10% 0.03 0.03 0.03 0.03 0.04 0.03 0.01 0.01 0.02 0.02 0.02 0.02
20% 0.05 0.05 0.06 0.06 0.07 0.06 0.03 0.03 0.03 0.04 0.04 0.03
40% 0.03 0.04 0.05 0.05 0.05 0.04 0.02 0.02 0.03 0.03 0.03 0.03
50% 0.06 0.06 0.08 0.09 0.08 0.07 0.03 0.04 0.05 0.05 0.05 0.04

When collecting BRDF multi-angle data, we selected targets with favorable isotropic
characteristics. By comparing the data distribution of the targets in different bands and
different gray levels, it can be seen that illumination is an important source of error in BRDF
modeling. Adding illumination correction will reduce the error of BRDF data, thereby
improving the accuracy of the BRDF model’s description of the multi-angle features of
ground objects.

After studying the influence of illumination on the distribution of BRDF data and
improving it, we reveal the BRDF modeling results of each grayscale target based on the
improved Walthall model, as shown in Figure 11. In the polar coordinate diagram, the
outer circle of 0◦ 360◦ represents different observation azimuths, the radial axis represents
different observation zenith angles, and the color represents the reflectance value of each
grayscale target at different angles. We randomly selected five evenly distributed bands of
450 nm, 490 nm, 650 nm, 750 nm, and 850 nm to show the results.

Figure 11 presents the BRDF modeling results of hyperspectral data after incorporating
illumination correction, using polar coordinates to provide a more intuitive representation
of the data distribution and underlying patterns. By comparing the grayscale reflectance at
different levels, it is evident that with increasing reflectance, the reflectance of each band at
an observation azimuth of 90◦ tends to rise, exhibiting a pronounced hotspot effect. When
comparing different spectral bands, it is observed that as the wavelength increases, the
multi-angle distribution of reflectance for low-reflectance targets shows minimal change,
and the reflectance distribution for high-reflectance targets exhibits more pronounced
variations. These findings indicate that for uniform and flat objects under clear weather
conditions, higher reflectance leads to a more pronounced bidirectional reflectance effect,
which becomes more evident at longer wavelengths.
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Figure 11. Hyperspectral BRDF modeling with illumination correction Walthall model.

We utilized the spectral reconstruction results along with the Walthall model, incorpo-
rating illumination correction, to model the BRDF, and the results are presented in Figure 12.
The BRDF results derived from the spectral reconstruction data more effectively capture the
multi-angle characteristics across various grayscale levels and wavelengths. The direction
of the hotspot effect is clearly visible in the overall polar coordinate diagram. A comparison
of different bands reveals that, with increasing wavelength, the multi-angle distribution of
low-reflectance targets changes slowly, while the distribution for high-reflectance targets
exhibits more significant variations. When the spectral device has a limited number of
bands, spectral reconstruction can enhance the spectral dimension, increasing the number
of bands and thereby providing a more comprehensive representation of the multi-angle
reflectance characteristics of ground objects across a broader spectral range.

Figure 13 illustrates the absolute difference between the spectral reconstruction BRDF
model and the hyperspectral BRDF model. The color scale represents the magnitude of
the error, with brighter colors indicating larger errors. In the brightest regions of the im-
age, the error value is predominantly controlled within 0.09, and most of the errors are
below 0.07. The reflectance errors for different targets show an increasing trend with the
rise in observation zenith angle, as indicated by the radial axis of the polar coordinates.
This pattern suggests that the primary source of error in BRDF reconstruction is spectral
variability during multi-angle observation. As the observation angle changes, the hyper-
spectral camera captures corresponding variations in the data, which reflect the combined
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effects of observation angle, environmental factors, and the multi-angle characteristics of
ground objects.

Figure 12. Multi-angle spectral reconstruction BRDF modeling considering the illumination-corrected
Walthall model.

The process of generating high-dimensional spectral data from low-dimensional inputs
via spectral reconstruction involves deep learning to model how spectral data change with
angle and the corresponding increase in spectral band data. In addition to expanding the
number of spectral bands per pixel, spectral reconstruction also incorporates the learning
of spatial structures and texture information. Throughout this process, factors such as
radiance transmission, angular characteristics, proximity effects, temperature variations,
and environmental changes are inter-related, collectively influencing and constraining the
accuracy of BRDF reconstruction.

To facilitate a more intuitive comparison of the error changes, we further statistically
analyzed the errors, as shown in Table 6. The statistical analysis of the mean errors for
different reflectance values across each band reveals that, as reflectance increases, the error
mean generally follows a trend of gradual increase. This trend is particularly pronounced
at 450 nm and 850 nm, which are located at the spectral extremes of the detector’s response
range. Based on the detector’s response characteristics, it can be observed that the SNR at
the ends of the spectral range is slightly lower compared to the central bands.
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Figure 13. Error analysis comparison between spectral reconstruction BRDF model and hyperspectral
BRDF model.

Table 6. Statistics of mean error between spectral reconstruction BRDF model and hyperspectral
BRDF.

Reflectance 450 nm 490 nm 650 nm 750 nm 850 nm Avg.

5% 0.05 0.06 0.06 0.05 0.05 0.05
10% 0.06 0.06 0.07 0.05 0.07 0.06
20% 0.07 0.06 0.07 0.06 0.07 0.07
40% 0.06 0.07 0.06 0.06 0.08 0.07
50% 0.09 0.06 0.07 0.08 0.09 0.08

We considered the error source of illumination during our research, mainly reducing
the impact of downlink illumination (direct + diffuse) on BRDF spectral reconstruction. This
reduces the spectral variation caused by the mismatch of the spatiotemporal dimensions
during the measurement, BRDF modeling, and reconstruction processes, improving the
robustness of the algorithm.

According to the above analysis, the accuracy of obtaining the BRDF of ground objects
using the spectral reconstruction method for spectral dimension enhancement still needs
to be improved. Future research can consider the influence of the atmosphere on the
radiance transmission of different bands, combine deep learning algorithms to reconstruct
the spectral dimension more accurately, and improve the modeling accuracy of the BRDF.
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4. Conclusions
This paper presents a comprehensive collection of UAV hyperspectral multi-angle

data, along with corresponding illumination and atmospheric parameters. These data
address the issue that existing BRDF models often neglect variations in outdoor solar
illumination, which can adversely affect the accuracy of modeling. By building upon this
dataset, we propose an improved Walthall model that incorporates illumination factors.
This enhancement effectively optimizes radiance consistency across multi-angle BRDF data,
mitigating errors introduced by illumination changes and ultimately improving BRDF
modeling accuracy.

Furthermore, we employed Transformer-based methods for spectral reconstruction.
By increasing the number of spectral bands through spectral dimension enhancement, we
modeled the BRDF based on the reconstructed spectral data. The multi-level Transformer
spectral dimension enhancement algorithm was augmented with a spectral response loss
constraint to further refine BRDF accuracy. To evaluate the effectiveness and quantitative
potential of the reconstructed images, we conducted ablation experiments, analyzing
various reflectance levels and spectral bands. In the future, we will fully exploit the
multi-angle observation potential of the existing instruments.
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